

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202302-0069-53

Page: 1 of 564

Radio Test Report

FCC ID: XVG500106RTBT IC: 6800A-500106RTBT

Report No. : TBR-C-202302-0069-53

Applicant: Amino Communications Ltd

Equipment Under Test (EUT)

EUT Name : IPTV Receiver

Model(s) No. : Amigo 7Y, AMIGO 7Y, Amigo 7Yzzzzzzzz, AMIGO 7Yzzzzzzzzz

(zzzzzzz can be combination of A-Z, a-z, 0-9, "-", "/", "blank" for

marketing purpose)

Brand Name : AMINO

Sample ID : 202302-0069-5-1#&202302-0069-5-2#

Receipt Date : 2023-04-06

Test Date : 2023-04-07 to 2023-12-23

Issue Date : 2023-12-25

Standards : FCC Part 15 Subpart E 15.407

RSS-247 Issue 3 August 2023

RSS-Gen Issue 5 Amendment 2 February 2021

Test Method : ANSI C63.10: 2013

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : 7/1/8

Engineer Manager : Lyd

Seven Wu Ivan Su Ray Mai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

NTENTS	2
GENERAL INFORMATION ABOUT EUT	5
1.1 Client Information	5
1.2 General Description of EUT (Equipment Under Test)	5
1.3 Block Diagram Showing the Configuration of System Tested	7
1.4 Description of Support Units	7
1.5 Description of Test Mode	8
1.6 Description of Test Software Setting	10
1.7 Measurement Uncertainty	12
TEST SUMMARY	14
TEST SOFTWARE	14
TEST EQUIPMENT	15
CONDUCTED EMISSION TEST	17
5.1 Test Standard and Limit	17
5.2 Test Setup	17
5.3 Test Procedure	17
5.4 Deviation From Test Standard	17
5.5 EUT Operating Mode	17
5.6 Test Data	17
RADIATED AND CONDUCTED UNWANTED EMISSIONS	22
6.1 Test Standard and Limit	22
6.2 Test Setup	23
6.3 Test Procedure	24
6.4 Deviation From Test Standard	25
6.5 EUT Operating Mode	25
6.6 Test Data	25
RESTRICTED BANDS REQUIREMENT	314
7.1 Test Standard and Limit	314
7.2 Test Setup	315
7.3 Test Procedure	315
7.4 Deviation From Test Standard	316
7.5 EUT Operating Mode	316
7.6 Test Data	316
	GENERAL INFORMATION ABOUT EUT

Report No.: TBR-C-202302-0069-53 Page: 3 of 564

8.	BANDWIDTH TEST	417
	8.1 Test Standard and Limit	417
	8.2 Test Setup	417
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	419
	8.5 EUT Operating Mode	419
	8.6 Test Data	
9.	MAXIMUM CONDUCTED OUTPUT POWER	497
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	498
	9.4 Deviation From Test Standard	498
	9.5 EUT Operating Mode	498
	9.6 Test Data	498
10.	POWER SPECTRAL DENSITY TEST	516
	10.1 Test Standard and Limit	516
	10.2 Test Setup	516
	10.3 Test Procedure	516
	10.4 Deviation From Test Standard	517
	10.5 Antenna Connected Construction	517
	10.6 Test Data	517
11.	FREQUENCY STABILITY	560
	11.1 Test Standard and Limit	560
	11.2 Test Setup	560
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	561
	11.5 Antenna Connected Construction	561
	11.6 Test Data	561
12.	ANTENNA REQUIREMENT	564
	12.1 Test Standard and Limit	564
	12.2 Deviation From Test Standard	
	12.3 Antenna Connected Construction	
	12.4 Test Data	564

Report No.: TBR-C-202302-0069-53 Page: 4 of 564

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202302-0069-53	Rev.01	Initial issue of report	2023-12-25
			TO THE STATE OF TH
133			m33 400
	Maria		MUBA
	12		
	TO ST		m(1814)
(10)33			000
		Contraction of the second	6033
			(103)
	D V		1033
	Miles		600

Page: 5 of 564

1. General Information about EUT

1.1 Client Information

Applicant	<u>.</u>	Amino Communications Ltd
Address	13	1010 Cambourne Business Park, Cambourne, Cambridge, CB23 6DP, United Kingdom.
Manufacturer		Shenzhen SDMC Technology Co., Ltd.
Address	10	Room 1022, Floor 10, Building A, Customs Building, No. 2, Xin'an 3rd Road, Dalang Community, Xin'an Street, Bao'an District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Na	ame	P	IPTV Receiver	1000	mil's		
For IC	Model No.	-	AMIGO 7Y	HILL		ATRIA S	
Models No.		:	Amigo 7Y, Amigo 7Yzzzzzzzz, AMIGO 7Yzzzzzzzz (zzzzzzz can be combination of A-Z, a-z, 0-9, "-", "/", "blank" for marketing purpose)				
FCC Model Different			All these models are identical in the same PCB, layout and electrical circuit, The only difference is model name for marketing purpose.				
DI C		N.	Operation Frequence U-NII-1: 5180MHz~ U-NII-2C: 5500MHz	∕5240MHz, U-NI			
		A	VIV	PIFA Ant.	Gain-Ant.1(A)	Gain-Ant.2(B)	
	Antenna	U-NII-1	3.35 dBi	3.06 dBi			
	UALL	Designation:	U-NII-2A	3.11 dBi	2.33 dBi		
Produc			U-NII-2C	1.97 dBi	2.24 dBi		
Descri	ption			U-NII-3	2.26 dBi	2.22 dBi	
		Modulation Type:		802.11a: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM) 802.11ax: OFDMA (BPSK, QPSK,16QAM, 64QAM, 256QAM, 1024QAM)			
Power	Rating		AC Adapter 1# (Mo Input: 100-240V~50 Output: 12.0V=1.0A AC Adapter 2# (Mo Input: 100-240V~50 Output: 12.0V=1.0A	0/60Hz, 0.4A A 12W del: DCT12W12 0/60Hz, 0.3A Ma	20100US-A0 DA	133	
Softwa	re Version	5.0	Android 12				
Hardwa	are Version	ŀ	MB.024.B			4000	
			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW				

Remark:

(1)The antenna gain and adapter provided by the manufacturer, the verified for the RF conduction test provided by TOBY test lab.
(2)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 564

(3) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5180~5240MHz (U-NII-1)	38	5190 MHz	46	5230 MHz
(0-1411-1)	40	5200 MHz	48	5240 MHz
	42	5210 MHz		

For 20 MHz Bandwidth, use channel 36, 40, 44, 48. For 40 MHz Bandwidth, use channel 38, 46. For 80 MHz Bandwidth, use channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5260~5320 MHz (U-NII-2A)	52	5260 MHz	60	5300 MHz
	54	5270 MHz	62	5310MHz
	56	5280MHz	64	5320 MHz
	58	5290MHz		

For 20 MHz Bandwidth, use channel 52, 56, 60, 64. For 40 MHz Bandwidth, use channel 54, 62. For 80 MHz Bandwidth, use channel 58.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5500~5720 MHz	108	5540 MHz	134	5670 MHz
(U-NII-2C)	110	5550 MHz	136	5680 MHz
	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz		

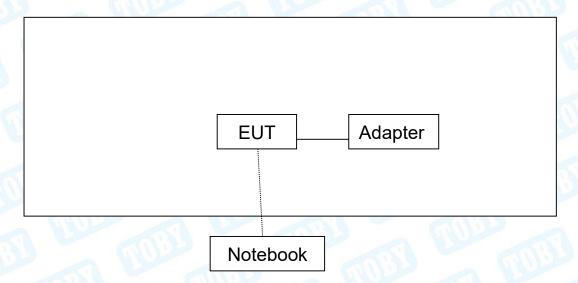
For 20 MHz Bandwidth, use channel 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144

For 40 MHz Bandwidth, use channel 102, 110, 118, 126, 134, 142

For 80 MHz Bandwidth, use channel 106, 122, 138

Note: For the protection of Environment, the 5600-5650MHz band restricted in Canada. So the CH 118/120/122/124/126/128 was restricted use in Canada.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	157	5785 MHz
5745~5825MHz (U-NII-3)	151	5755 MHz	159	5795 MHz
(0-1411-3)	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz


For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165. For 40 MHz Bandwidth, use channel 151, 159. For 80 MHz Bandwidth, use channel 155.

Page: 7 of 564

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

		Equipment Inf	ormation	
Name	Model	S/N	Manufacturer	Used "√"
Notebook	Inspiron 5493		DELL	√

Page: 8 of 564

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

		or Conducted Test(AC POWER)
Fin	al Test Mode	Description
	Mode 1	TX a Mode(5180MHz)
		or Radiated Test Below 1GHz
Fin	al Test Mode	Description
	Mode 2	TX a Mode(5180MHz)
		d Above 1GHz and RF Conducted Test
Test Band	Final Test Mode	Description
13	Mode 3	TX Mode 802.11a Mode Channel 36/40/48
	Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/40/48
	Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48
HALL	Mode 6	TX Mode 802.11ax(HE20) Mode Channel 36/40/48
U-NII-1	Mode 7	TX Mode 802.11n(HT40) Mode Channel 38/46
	Mode 8	TX Mode 802.11n(VHT40) Mode Channel 38/46
	Mode 9	TX Mode 802.11ax(HE40) Mode Channel 38/46
HALL	Mode 10	TX Mode 802.11ac(VHT80) Mode Channel 42
	Mode 11	TX Mode 802.11ax(HE80) Mode Channel 42
-A 13	Mode 12	TX Mode 802.11a Mode Channel 52/56/64
OBA	Mode 13	TX Mode 802.11n(HT20) Mode Channel 52/56/64
	Mode 14	TX Mode 802.11ac(VHT20) Mode Channel 5256/64
	Mode 15	TX Mode 802.11ax(HE20) Mode Channel 52/56/64
U-NII-2A	Mode 16	TX Mode 802.11n(HT40) Mode Channel 54/62
18.	Mode 17	TX Mode 802.11ac(VHT40) Mode Channel 54/62
	Mode 18	TX Mode 802.11ax(HE40) Mode Channel 54/62
	Mode 19	TX Mode 802.11ac(VHT80) Mode Channel 58
THE STATE OF THE S	Mode 20	TX Mode 802.11ax(HE80) Mode Channel 58
A Comment	Mode 21	TX Mode 802.11a Mode Channel 100/116/140
	Mode 22	TX Mode 802.11n(HT20) Mode Channel 100/116/140/144
100	Mode 23	TX Mode 802.11ac(VHT20) Mode Channel 100/116/140/144
	Mode 24	TX Mode 802.11ax(HE20) Mode Channel 100/116/140/144
U-NII-2C	Mode 25	TX Mode 802.11n(HT40) Mode Channel 102/110/134/142
	Mode 26	TX Mode 802.11ac(VHT40) Mode Channel 102/110/134/142
	Mode 27	TX Mode 802.11ax(HE40) Mode Channel 102/110/134/142
	Mode 28	TX Mode 802.11ac(VHT80) Mode Channel 106/122/138
	Mode 29	TX Mode 802.11ax(HE80) Mode Channel 106/122/138
	Mode 30	TX Mode 802.11a Mode Channel 149/157/165
	Mode 31	TX Mode 802.11n(HT20) Mode Channel 149/157/165
	Mode 32	TX Mode 802.11ac(VHT20) Mode Channel 149/157/165
	Mode 33	TX Mode 802.11ax(HE20) Mode Channel 149/157/165
U-NII-3	Mode 34	TX Mode 802.11n(HT40) Mode Channel 151/159
	Mode 35	TX Mode 802.11ac(VHT40) Mode Channel 151/159
	Mode 36	TX Mode 802.11ax(HE40) Mode Channel 151/159
	Mode 37	TX Mode 802.11ac(VHT80) Mode Channel 155
110	Mode 38	TX Mode 802.11ax(HE80) Mode Channel 155

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest,

Page: 9 of 564

middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 8 802.11n (HT40) Mode: MCS 8

802.11ac(VHT20) Mode: MCS 0/ Nss1 802.11ac(VHT40) Mode: MCS 0/ Nss1 802.11ac(VHT80) Mode: MCS 0/ Nss1 802.11ax(HE20) Mode: MCS 0/ Nss1 802.11ax(HE40) Mode: MCS 0/ Nss1 802.11ax(HE40) Mode: MCS 0/ Nss1 802.11ax(HE80) Mode: MCS 0/ Nss1

(2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.

(3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 10 of 564

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

ies	t Software: adb command U-NII-1		MILLIE.	
	U-NII- I	Daran	neters	
Mode	Frequency (MHz)	Ant.1	Ant.2	
	5180	22	22	
802.11a	5200	22	22	
302.11d	5240	22	22	
	5180	20	20	
802.11n(HT20)		20	20	
802.1111(11120)	5200 5240	20	20	
	5180	19	19	
802.11ac(VHT20)	5200	19	19	
802.11ac(V11120)		19	19	
	5240			
902 11av/UE20\	5180	19	19	
802.11ax(HE20)	5200	19	19	
	5240	19	19	
802.11n(HT40)	5190	18	18	
	5230	18	18	
802.11ac(VHT40)	5190	18	18	
302:11d3(111140)	5230	18	18	
802.11ax(HE40)	5190	18	18	
	5230	18	18	
802.11ac(VHT80)	5210	17	17	
802.11ax(HE80)	5210	17	17	
	U-NII-2A			
Mode	Frequency (MHz)	Parameters		
	1 requeries (iiii 12)	Ant.1	Ant.	
	5260	22	22	
802.11a	5280	22	22	
	5320	22	22	
	5260	20	20	
802.11n(HT20)	5280	20	20	
THE PARTY OF THE P	5320	20	20	
101/11	5260	19	19	
802.11ac(VHT20)	5280	19	19	
	5320	19	19	
	5260	19	19	
802.11ax(HE20)	5280	19	19	
	5320	19	19	
000 44 = (LIT 40)	5270	17	17	
802.11n(HT40)	5310	17	17	
000 44 0/11740	5270	17	17	
802.11ac(VHT40)	5310	17	17	
	5270	17	17	
802.11ax(HE40)	5310	17	17	
	0010			
802 11ac(VHT80)	5290	17	17	
802.11ac(VHT80) 802.11ax(HE80)	5290 5290	17	17 17	

Report No.: TBR-C-202302-0069-53 Page: 11 of 564

	_	Parai	neters
Mode	Frequency (MHz)	Ant.1	Ant.
	5500	22	22
802.11a	5580	22	22
002.11a	5700	22	22
	5720	22	22
	5500	20	20
802.11n(HT20)	5580	20	20
002:1111(11120)	5700	20	20
	5720	20	20
	5500	20	20
802.11ac(VHT20)	5580	20	20
002.11dC(V11120)	5700	20	20
	5720	20	20
	5500	20	20
802.11ax(HE20)	5580	20	20
	5700	20	20
	5720	20	20
-	5510	18	18
802.11n(HT40)	5550	18	18
	5670	18	18
	5710	18	18
	5510	18	18
902 44 (VIIT40)	5550	18	18
802.11ac(VHT40)	5670	18	18
	5710	18	18
CALL CALLE	5510	18	18
902 44 av/UE 40)	5550	18	18
802.11ax(HE40)	5670	18	18
	5710	18	18
CHIEF CHIEF	5530	17	17
802.11ac(VHT80)	5610	17	17
	5690	17	17
	5530	17	17
802.11ax(HE80)	5610	17	17
	5690	17	17

Page: 12 of 564

	U-NII-3	_			
Mode	Frequency (MHz)		Parameters		
Mode	rrequeries (Mr12)	Ant.1	Ant.2		
	5745	24	24		
802.11a	5785	24	24		
	5825	24	24		
	5745	24	24		
802.11n(HT20)	5785	24	24		
	5825	24	24		
	5745	24	24		
802.11ac(VHT20)	5785	24	24		
	5825	24	24		
	5745	24	24		
802.11ax(HE20)	5785	24	24		
	5825	24	24		
902 44 p/UT40\	5755	24	24		
802.11n(HT40)	5795	24	24		
902 44 co(\/UT40\	5755	24	24		
802.11ac(VHT40)	5795	24	24		
902 41av/HE40)	5755	24	24		
802.11ax(HE40)	5795	24	24		
802.11ac(VHT80)	5775	20	20		
802.11ax(HE80)	5775	20	20		

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	\pm 4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	\pm 4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	\pm 4.20 dB

Page: 13 of 564

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202302-0069-53 Page: 14 of 564

2. Test Summary

Standard	d Section	Took Itoms	Toot Commission			
FCC IC		Test Item	Test Sample(s)	Judgment	Remark	
FCC 15.207(a)	RSS-Gen 8.8	Conducted Emission	202302-0069-5-1#	PASS	N/A	
FCC 15.209 & 15.407(b)	RSS-Gen 8.9 & RSS 247 5.5	Radiated Unwanted Emissions	202302-0069-5-1#	PASS	N/A	
FCC 15.203	RSS-247 6.8	Antenna Requirement	202302-0069-5-2#	PASS	N/A	
FCC 15.407(a)	RSS-247(6.2.1.2)	-26dB Emission Bandwidth	202302-0069-5-1#	PASS	N/A	
FCC 15.407(a)	RSS-247(6.2.1.2)	99% Occupied Bandwidth	202302-0069-5-1#	PASS	N/A	
FCC 15.407(e)	RSS-247(6.2.4.1)	-6dB Min Emission Bandwidth	202302-0069-5-1#	PASS	N/A	
FCC 15.407(a) RSS-247(6.2.1.1& 6.2.2.1&6.2.3.1& 6.2.4.1)		Maximum Conducted Output Power	202302-0069-5-1#	PASS	N/A	
FCC 15.407(a)	RSS-247(6.2.1.1& 6.2.2.1&6.2.3.1& 6.2.4.1)	Power Spectral Density	202302-0069-5-1#	PASS	N/A	
FCC 15.407(b)& 15.205	RSS-Gen 8.10& RSS-247 5.5	Emissions in Restricted Bands	202302-0069-5-1#	PASS	N/A	
FCC 5.407(b)&15.209	RSS-Gen 8.9 & RSS 247 5.5	Conducted Unwanted Emissions	202302-0069-5-2#	PASS	N/A	
FCC 15.407(g)	RSS-Gen 8.11	Frequency Stability	202302-0069-5-1#	PASS	N/A	
	The same	On Time and Duty Cycle	202302-0069-5-1#		N/A	

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

Report No.: TBR-C-202302-0069-53 Page: 15 of 564

4. Test Equipment

Conducted Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
Radiation Emission	Test	-			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 01, 2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 22, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117 Sep. 01, 20		Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141 Sep. 01, 202		Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129 Sep. 01, 2022		Aug. 31, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 22, 2023	Feb.22, 2024
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 01, 2022	Aug. 31, 2023
Spectrum Analyzer	KEYSIHGT	N9020B	MY60110172	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 01, 2022	Aug. 31, 2023
DE Dower Senser	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 01, 2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 01, 2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 01, 2022	Aug. 31, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

Report No.: TBR-C-202302-0069-53 Page: 16 of 564

Conducted Emissio	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
Radiation Emission	Test				•
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 22, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Nov. 13, 2023	Nov. 12, 2025
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463 Feb. 26, 26		Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059 Jun. 26, 2		Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117 Aug. 30, 202		Aug. 29, 2024
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 30, 2023	Aug. 29, 2024
Pre-amplifier	HP	8449B	3008A00849	Feb. 22, 2023	Feb.22, 2024
Highpass Filter	CD	HPM-6.4/18G	-	N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conducted	l Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 30, 2023	Aug. 29, 2024
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Aug. 30, 2023	Aug. 29, 2024
DE Dower Caraca	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Aug. 30, 2023	Aug. 29, 2024
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Aug. 30, 2023	Aug. 29, 2024
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Aug. 30, 2023	Aug. 29, 2024
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 30, 2023	Aug. 29, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

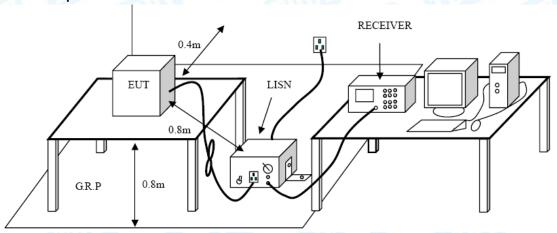
Page: 17 of 564

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

RSS-Gen 8.8 FCC Part 15.207


5.1.2 Test Limit

F	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
 ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- ●The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

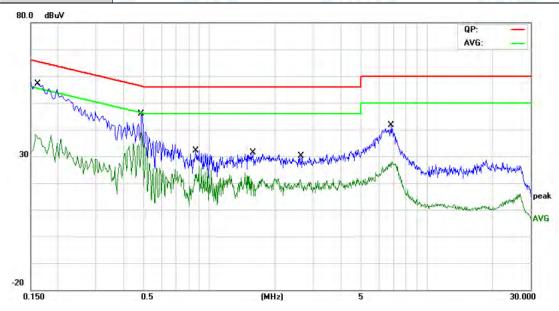
No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the following pages.

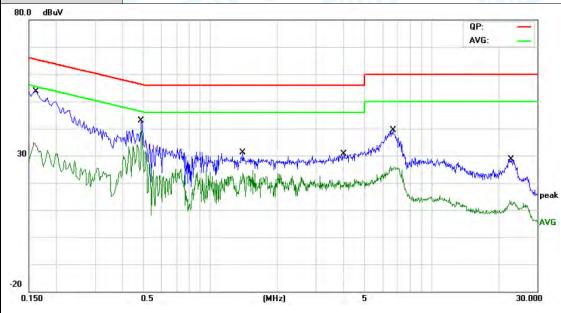


Page: 18 of 564

---Test Data

Temperature:	24.6℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz		
Terminal:	Line		
Test Mode:	Mode 1 with adapter 1#		
Remark:	Only worse case is reporte	ed.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector
1		0.1620	46.12	11.08	57.20	65.36	-8.16	QP
2		0.1620	27.10	11.08	38.18	55.36	-17.18	AVG
3		0.4860	35.01	10.93	45.94	56.24	-10.30	QP
4	*	0.4860	28.10	10.93	39.03	46.24	-7.21	AVG
5		0.8620	21.47	10.77	32.24	56.00	-23.76	QP
6		0.8620	15.57	10.77	26.34	46.00	-19.66	AVG
7		1.5859	20.76	10.57	31.33	56.00	-24.67	QP
8		1.5859	12.25	10.57	22.82	46.00	-23.18	AVG
9		2.6420	19.80	10.30	30.10	56.00	-25.90	QP
10		2.6420	11.19	10.30	21.49	46.00	-24.51	AVG
11		6.9378	31.69	10.03	41.72	60.00	-18.28	QP
12		6.9378	17.91	10.03	27.94	50.00	-22.06	AVG

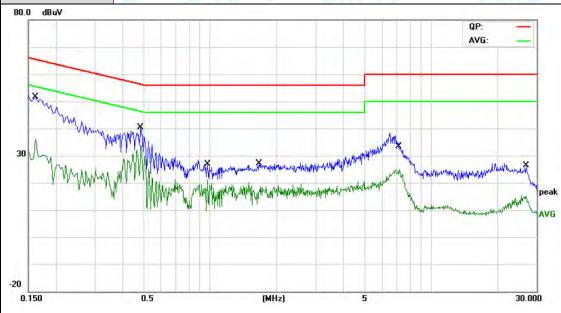

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 19 of 564

Temperature) :	24.6℃	Relative Humidity:	42%
Test Voltage	:	AC 120V/60Hz	V	
Terminal:		Neutral		
Test Mode:		Mode 1 with adapter 1#	377	100
Remark:		Only worse case is reported	I.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBu∀	dBu∀	dB	Detector
1		0.1620	42.62	11.08	53.70	65.36	-11.66	QP
2		0.1620	23.22	11.08	34.30	55.36	-21.06	AVG
3		0.4860	31.85	10.93	42.78	56.24	-13.46	QP
4	*	0.4860	28.61	10.93	39.54	46.24	-6.70	AVG
5		1.3980	20.54	10.61	31.15	56.00	-24.85	QP
6		1.3980	13.03	10.61	23.64	46.00	-22.36	AVG
7		3.9940	20.46	10.09	30.55	56.00	-25.45	QP
8		3.9940	10.72	10.09	20.81	46.00	-25.19	AVG
9		6.6940	29.28	10.03	39.31	60.00	-20.69	QP
10		6.6940	16.00	10.03	26.03	50.00	-23.97	AVG
11		22.5580	17.95	10.78	28.73	60.00	-31.27	QP
12		22.5580	2.59	10.78	13.37	50.00	-36.63	AVG

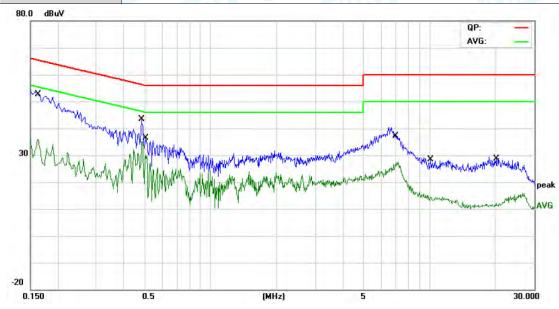
- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)



Page: 20 of 564

Temperature:	24.6℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz	No.	
Terminal:	Line		
Test Mode:	Mode 1 with adapter 2#	(3)	1000
Remark:	Only worse case is reporte	d.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBu∀	dBu∀	dB	Detector
1		0.1620	41.45	11.08	52.53	65.36	-12.83	QP
2		0.1620	25.07	11.08	36.15	55.36	-19.21	AVG
3		0.4860	29.33	10.93	40.26	56.24	-15.98	QP
4	*	0.4860	23.03	10.93	33.96	46.24	-12.28	AVG
5		0.9740	17.57	10.70	28.27	56.00	-27.73	QP
6		0.9740	10.53	10.70	21.23	46.00	-24.77	AVG
7		1.6700	16.59	10.56	27.15	56.00	-28.85	QP
8		1.6700	9.57	10.56	20.13	46.00	-25.87	AVG
9		7.1780	28.42	10.03	38.45	60.00	-21.55	QP
10		7.1780	14.86	10.03	24.89	50.00	-25.11	AVG
11		26.8820	15.46	10.83	26.29	60.00	-33.71	QP
12		26.8820	4.46	10.83	15.29	50.00	-34.71	AVG


- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 21 of 564

		THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO SERVE OF THE	
Temperature:	24.6℃	Relative Humidity:	42%
Test Voltage:	AC 120V/60Hz	Tropic and the second	
Terminal:	Neutral		
Test Mode:	Mode 1 with adapter 2#	373	100
Remark:	Only worse case is reported	I.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBu∀	dBuV	dB	Detector
1		0.1621	42.57	11.08	53.65	65.36	-11.71	QP
2		0.1621	24.85	11.08	35.93	55.36	-19.43	AVG
3		0.4820	32.35	10.93	43.28	56.30	-13.02	QP
4	*	0.4820	24.27	10.93	35.20	46.30	-11.10	AVG
5		0.5100	24.34	10.94	35.28	56.00	-20.72	QP
6		0.5100	17.90	10.94	28.84	46.00	-17.16	AVG
7		7.0740	30.31	10.03	40.34	60.00	-19.66	QP
8		7.0740	17.41	10.03	27.44	50.00	-22.56	AVG
9		10.1220	18.32	10.14	28.46	60.00	-31.54	QP
10		10.1220	6.25	10.14	16.39	50.00	-33.61	AVG
11		20.1020	18.64	10.74	29.38	60.00	-30.62	QP
12		20.1020	1.38	10.74	12.12	50.00	-37.88	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 22 of 564

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

RSS-Gen 8.9 & RSS 247 5.5

FCC Part 15.209 & FCC Part 15.407(b)

6.1.2 Test Limit

Radiated emissions which fall in the restricted bands must comply with the radiated emission

limits specified as below table:

General field strength limits at frequencies Below 30MHz					
Frequency Field Strength Measurement Distance (MHz) (microvolt/meter) (meters)					
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field strength limits at frequencies above 30 MHz					
Frequency (MHz)	Field strength (µV/m at 3 m)	Measurement Distance (meters)			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

General field strength limits at frequencies Above 1000MHz					
Frequency	Frequency Distance of 3m (dBuV/m)				
(MHz)	Peak	Average			
Above 1000	74	54			

Note

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

(3) For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

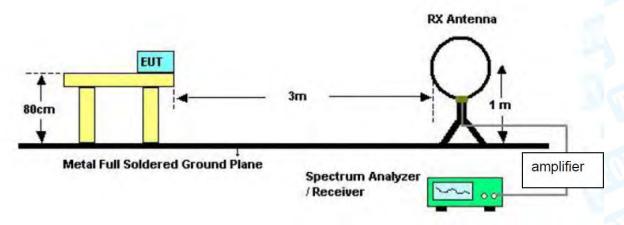
Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
	-27(Note 2)	68.3
5725~5825	10(Note 2)	105.3
5725~5625	15.6(Note 2)	110.9
	27(Note 2)	122.3

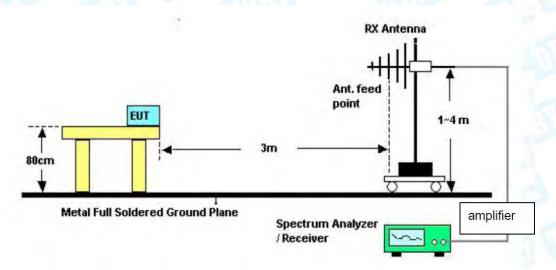
NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$


Page: 23 of 564

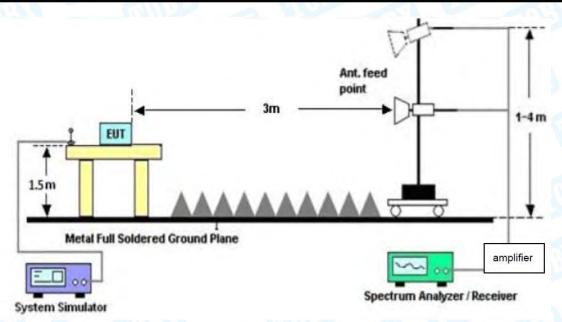
2, According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.


3, For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

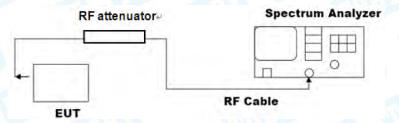
6.2 Test Setup

Radiated measurement

Below 30MHz Test Setup



Below 1000MHz Test Setup



Page: 24 of 564

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- ●The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- ●Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 25 of 564

--- Conducted measurement

● Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Please refer to the following pages.

Page: 26 of 564

---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

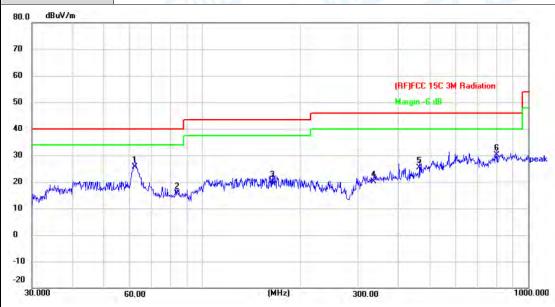
ember	rature:	23.9	C		Relative	Humidity	: 449	%	
est Vo	Itage:	AC	AC 120V/60Hz						
nt. Po	l.	Hori	Horizontal						
est Mo	ode:	Mode 2 with adapter 1#						E11	
Remark	(:	Only worse case is reported.						Val	
80.0 dB	uV/m						0.133		E, T
70									
60									
							CC 15C 3M Ra	adiation	
50						Margii	n-6 dB		Ħ
40					-			E 6	
20	Madraham daga madana		and french many	Julius June 1	and the second	January Harr	Just Horan	Maria Maria	peal
20	ded salva en de en sinden e	M	homony	monte	manufacture of the second	Johnston de Ward	hours Brain	Mary Marine	_{av} peak
20 10 0	the of material and	M	warming .	Larry Larry	manufacture of the second	harman santy Marie	Jung Hard John Commission of the Land	Mm 18 min	"/peak
30 20 10 0 -10 -20 30.000	de al contraction and and	M		(MI	hangungh harly	300.00	Anghal Per Lan		, peak
20 10 0 -10		60.00			T	300.00			
20	Freque (MH	60.00 ency		Factor (dB/m)	Level		Margin (dB)		000.000
20 110 0 0 10 10 10 10 10 10 10 10 10 10	Freque	60.00 ency Z)	Reading	Factor	Level	300.00 Limit	Margin	-10	000.000
20 110 0 -10 30.000 No.	Freque (MH	60.00 ency z)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	300.00 Limit (dBuV/m)	Margin (dB)	Detector	P/F
20 110 0 -10 -20 30.000 No.	Freque (MH 61.99	60.00 ency (z) 950 513	Reading (dBuV) 49.34	Factor (dB/m) -23.80	Level (dBuV/m) 25.54	300.00 Limit (dBuV/m) 40.00	Margin (dB) -14.46	Detector QP	P/F
20 10 0 0 -10 -20 30.000 No.	Freque (MH 61.99	ency z) 950 513 678	Reading (dBuV) 49.34 48.37	Factor (dB/m) -23.80 -22.71	Level (dBuV/m) 25.54 25.66	200.00 Limit (dBuV/m) 40.00 43.50	Margin (dB) -14.46 -17.84	Detector QP QP	P/F
20 110 0 -10 -20 30.000 No. 1 * 2	Freque (MH 61.99 166.6 215.2	ency z) 950 513 678 100	Reading (dBuV) 49.34 48.37 47.57	Factor (dB/m) -23.80 -22.71 -24.16	Level (dBuV/m) 25.54 25.66 23.41	Limit (dBuV/m) 40.00 43.50 43.50	Margin (dB) -14.46 -17.84 -20.09	Detector QP QP QP	P/F P P

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 27 of 564

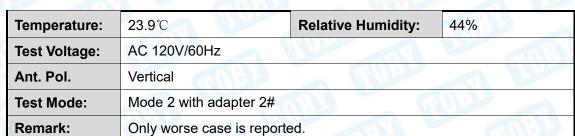
Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		TO VIEW
Test Mode:	Mode 2 with adapt	er 1#	(1)
Remark:	Only worse case is	s reported.	
80.0 dBuV/m			
70			

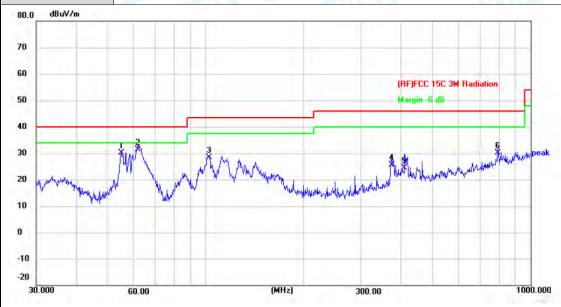
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	62.2128	52.36	-23.82	28.54	40.00	-11.46	QP	Р
2	112.9196	48.71	-24.46	24.25	43.50	-19.25	QP	Р
3	129.0146	46.55	-23.30	23.25	43.50	-20.25	QP	Р
4	463.9696	37.34	-16.29	21.05	46.00	-24.95	QP	Р
5	568.6127	33.86	-13.61	20.25	46.00	-25.75	QP	Р
6	793.3960	40.49	-9.24	31.25	46.00	-14.75	QP	Р


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 28 of 564

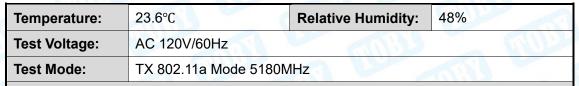
Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	Mode 2 with adapter 2#	The state of the	Time of the second
Remark:	Only worse case is report	ed.	THUE

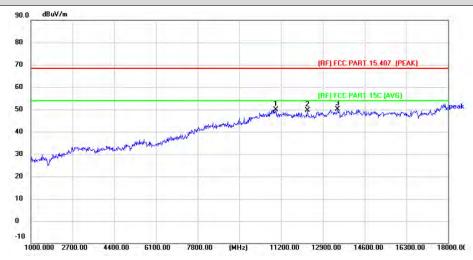

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	61.9949	49.34	-23.80	25.54	40.00	-14.46	QP	Р
2	83.5220	42.44	-26.86	15.58	40.00	-24.42	QP	Р
3	163.7547	42.51	-22.46	20.05	43.50	-23.45	QP	Р
4	336.0350	40.03	-19.87	20.16	46.00	-25.84	QP	Р
5	463.9696	41.76	-16.29	25.47	46.00	-20.53	QP	Р
6	801.7862	39.27	-9.02	30.25	46.00	-15.75	QP	Р


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 29 of 564

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	54.8348	53.11	-23.06	30.05	40.00	-9.95	QP	Р
2 *	61.7781	55.14	-23.79	31.35	40.00	-8.65	QP	Р
3	102.3597	53.95	-25.47	28.48	43.50	-15.02	QP	Р
4	373.3112	44.24	-18.68	25.56	46.00	-20.44	QP	Р
5	408.9460	42.00	-17.67	24.33	46.00	-21.67	QP	Р
6	793.3960	39.38	-9.24	30.14	46.00	-15.86	QP	Р


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)



Page: 30 of 564

Above 1GHz

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10979.000	41.75	8.18	49.93	68.30	-18.37	peak	Р
2	12271.000	40.65	9.04	49.69	68.30	-18.61	peak	Р
3 *	13495.000	39.96	10.11	50.07	68.30	-18.23	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.

Page: 31 of 564

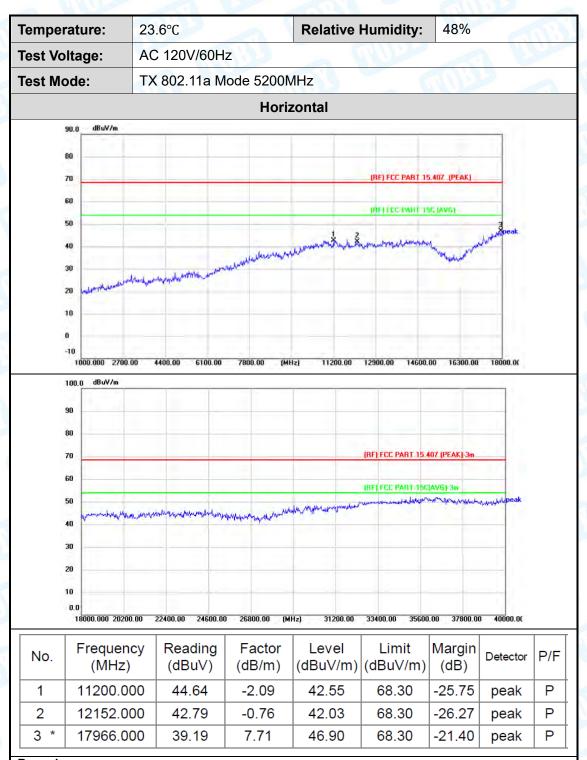
Temperature: 23.6°C **Relative Humidity:** 48% **Test Voltage:** AC 120V/60Hz **Test Mode:** TX 802.11a Mode 5180MHz **Vertical** dBuV/m 90.0 80 (RF) FCC PART 15.407 (PEAK) 70 60 (BF) FCC PABT 15C (AVG) 10 -10 1000.000 2700.00 7800.00 (MHz) 11200.00 12900.00 14600.00 16300.00 18000.00 dBuV/m 100.0 90 80 70 [RF] FCC PART 15.407 [PEAK]-3 60 IRFLECC PART 15C(AVE)-3m 50 40 30

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10367.000	45.22	6.15	51.37	68.30	-16.93	peak	Р
2	13495.000	40.11	10.11	50.22	68.30	-18.08	peak	Р
3	14260.000	40.71	10.29	51.00	68.30	-17.30	peak	Р

31200.00 33400.00 35600.00 37800.00 40000.00

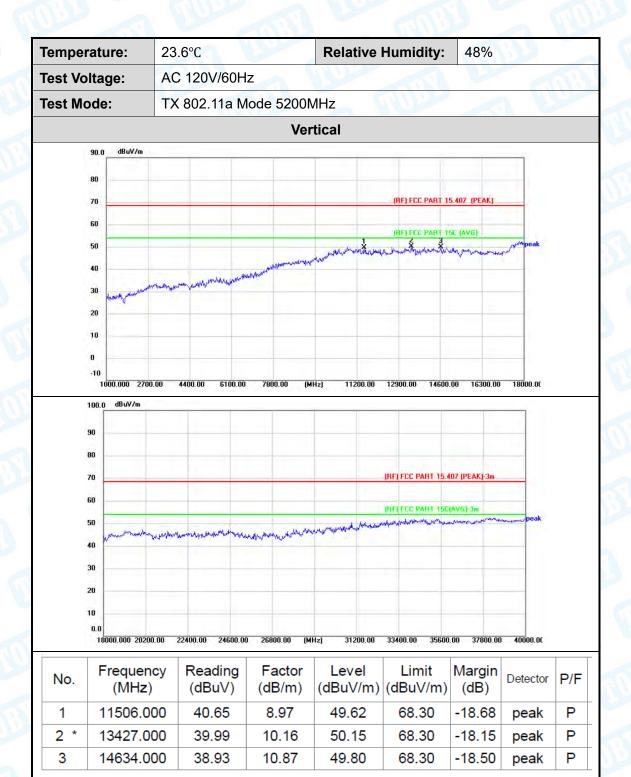
20

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)


18000.000 20200.00 22400.00 24600.00 26800.00 (MHz)

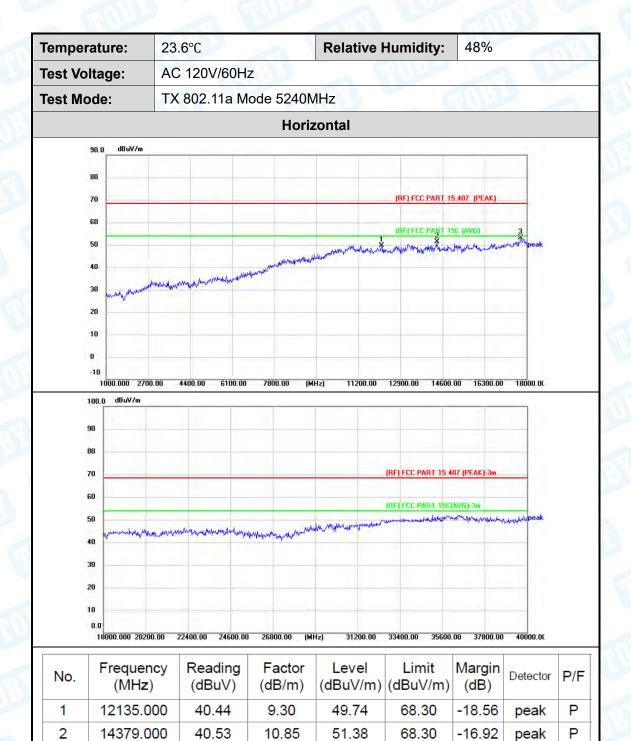
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.

Page: 32 of 564



- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.

Page: 33 of 564



- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 34 of 564

Remark

3 *

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

17762.000

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

36.66

4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).

53.07

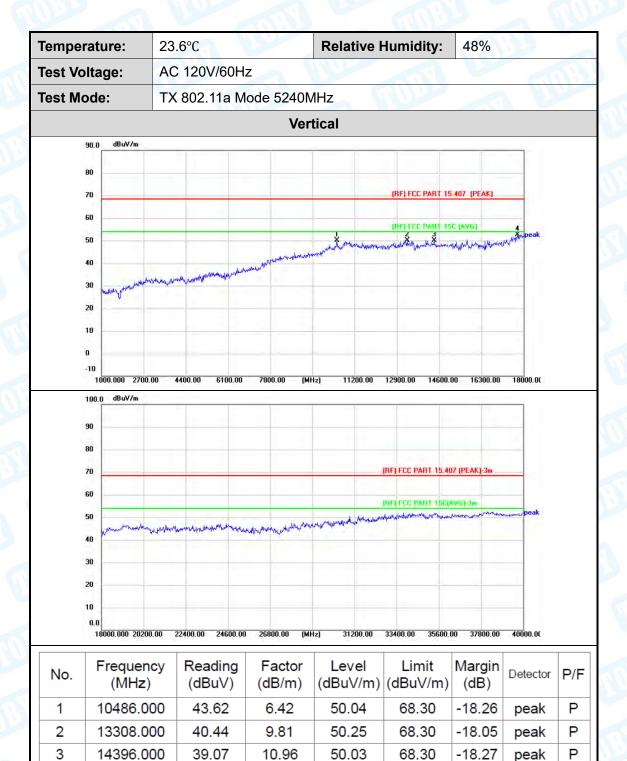
68.30

-15.23

5. No report for the emission which more than 20dB below the prescribed limit.

16.41

6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



Р

peak

Page: 35 of 564

Remark:

4

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

17762.000

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

36.32

4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).

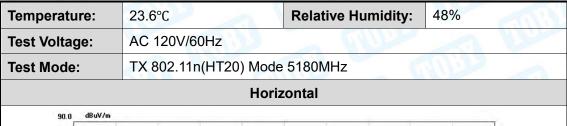
52.73

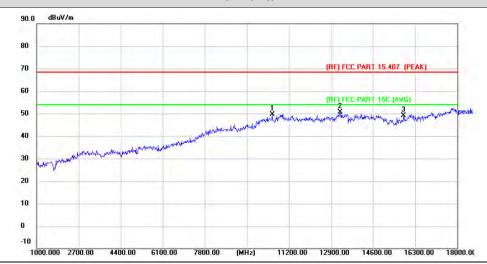
68.30

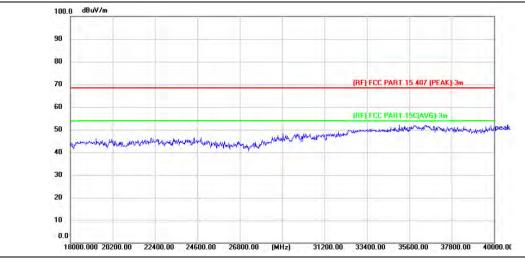
-15.57

peak

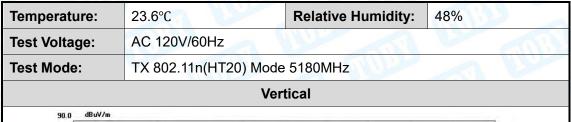
5. No report for the emission which more than 20dB below the prescribed limit.

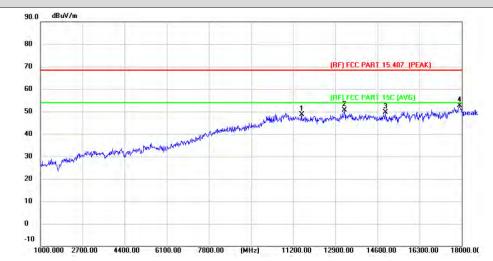

16.41

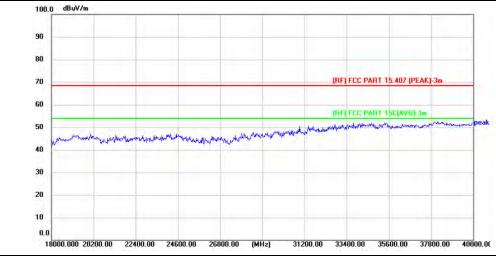

6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



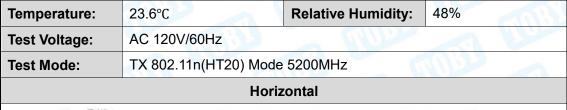
Page: 36 of 564

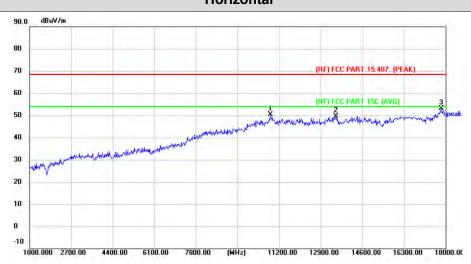

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10520.000	43.11	6.44	49.55	68.30	-18.75	peak	Р
2 *	13274.000	40.77	9.79	50.56	68.30	-17.74	peak	Р
3	15841.000	41.24	7.90	49.14	68.30	-19.16	peak	Р

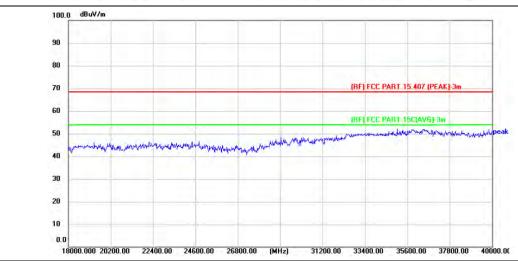

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



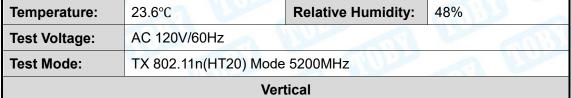
Page: 37 of 564

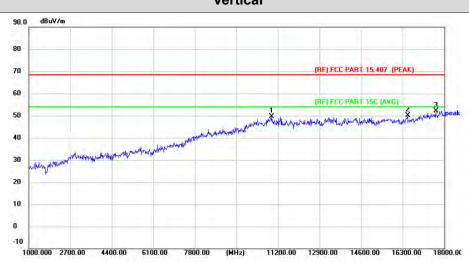

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11540.000	39.75	8.86	48.61	68.30	-19.69	peak	Р
2	13274.000	40.82	9.79	50.61	68.30	-17.69	peak	Р
3	14923.000	38.30	11.36	49.66	68.30	-18.64	peak	Р
4 *	17915.000	34.97	17.56	52.53	68.30	-15.77	peak	Р

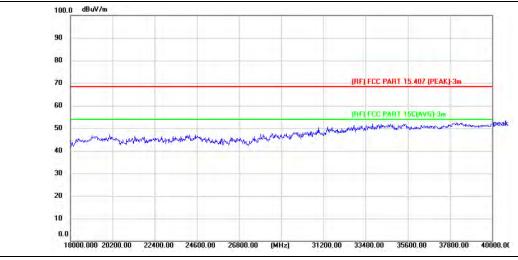

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



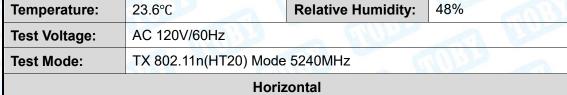
Page: 38 of 564

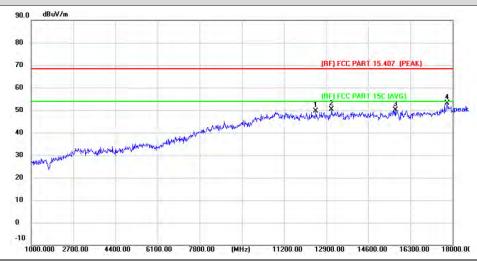

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10843.000	42.36	7.96	50.32	68.30	-17.98	peak	Р
2	13529.000	39.65	10.06	49.71	68.30	-18.59	peak	Р
3 *	17830.000	36.19	16.95	53.14	68.30	-15.16	peak	Р

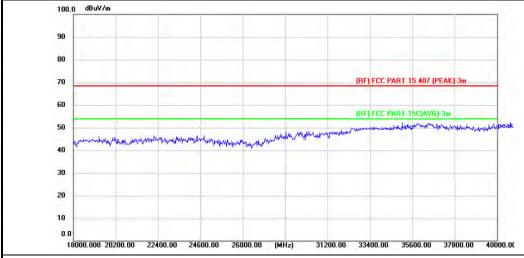

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



Page: 39 of 564


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10945.000	41.52	8.20	49.72	68.30	-18.58	peak	Р
2	16504.000	40.91	9.29	50.20	68.30	-18.10	peak	Р
3 *	17660.000	36.21	15.81	52.02	68.30	-16.28	peak	Р

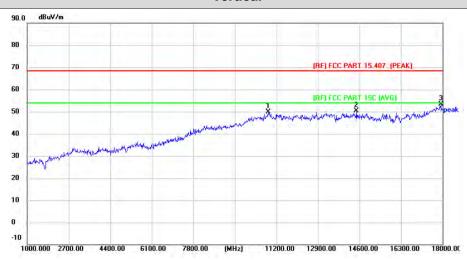

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

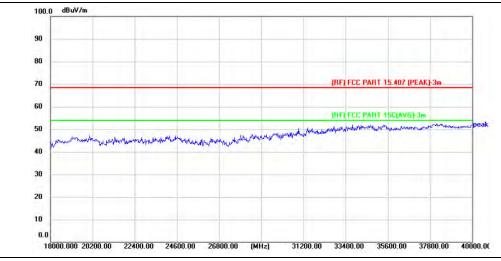


Page: 40 of 564

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12475.000	40.57	9.07	49.64	68.30	-18.66	peak	Р
2	13121.000	40.66	9.83	50.49	68.30	-17.81	peak	Р
3	15688.000	42.02	8.23	50.25	68.30	-18.05	peak	Р
4 *	17779.000	36.52	16.54	53.06	68.30	-15.24	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.

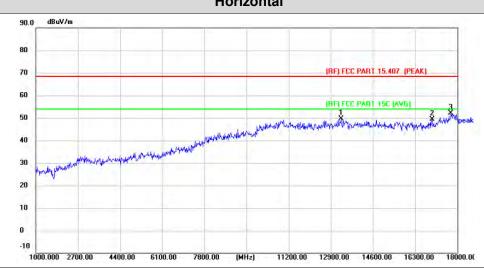


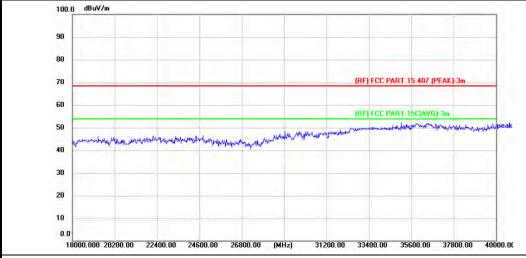


Page: 41 of 564

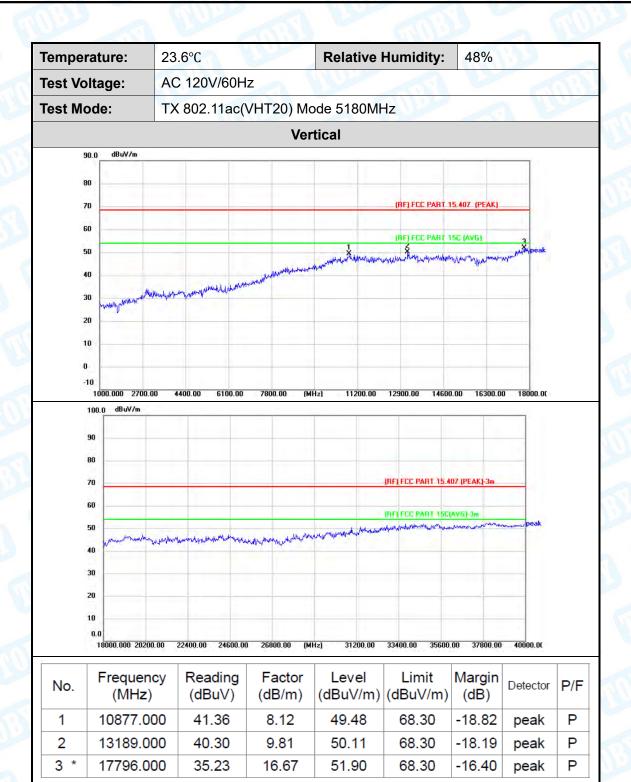
Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10860.000	41.92	8.03	49.95	68.30	-18.35	peak	Р
2	14481.000	39.77	10.73	50.50	68.30	-17.80	peak	Р
3 *	17932.000	35.83	17.61	53.44	68.30	-14.86	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

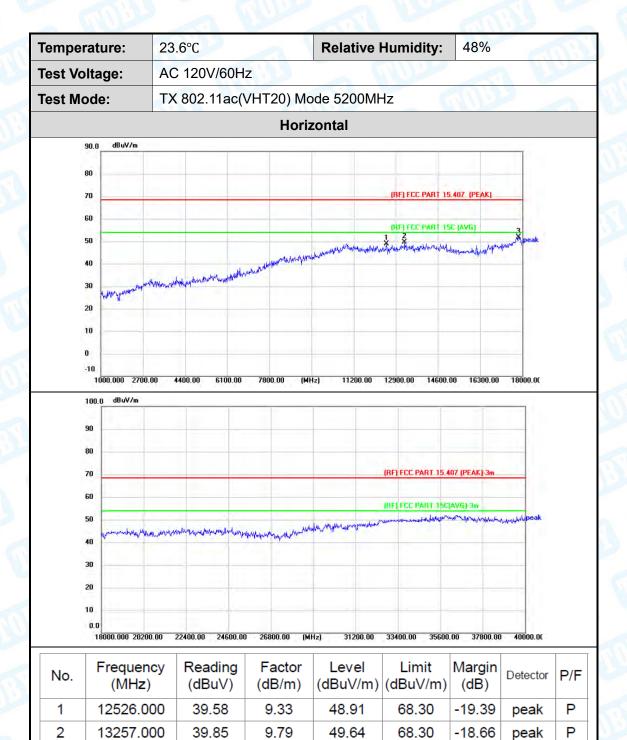


Page: 42 of 564


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	13308.000	39.94	9.81	49.75	68.30	-18.55	peak	Р
2	16980.000	37.88	11.50	49.38	68.30	-18.92	peak	Р
3 *	17745.000	35.96	16.28	52.24	68.30	-16.06	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 43 of 564



- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 44 of 564

3 * Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

17847.000

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

34.90

4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).

51.98

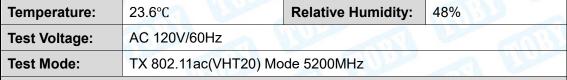
68.30

-16.32

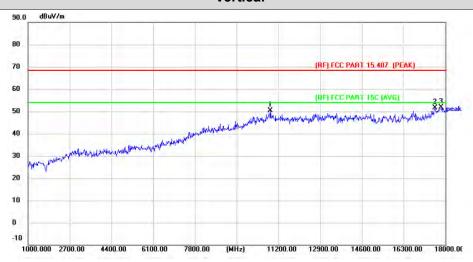
5. No report for the emission which more than 20dB below the prescribed limit.

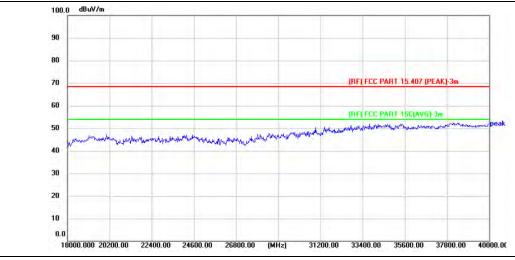
17.08

6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



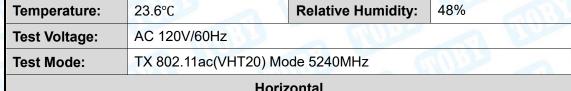
Р


peak



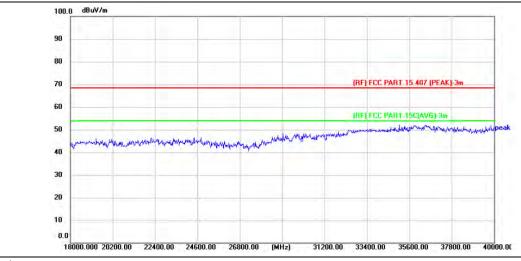
Page: 45 of 564

Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10877.000	42.24	8.12	50.36	68.30	-17.94	peak	Р
2	17575.000	36.22	15.49	51.71	68.30	-16.59	peak	Р
3 *	17830.000	34.91	16.95	51.86	68.30	-16.44	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



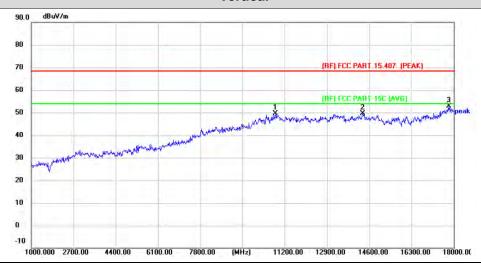


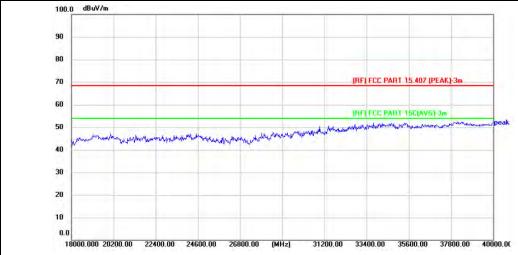
Page: 46 of 564

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12747.000	40.06	9.52	49.58	68.30	-18.72	peak	Р
2	16096.000	42.59	8.11	50.70	68.30	-17.60	peak	Р
3 *	17796.000	35.34	16.67	52.01	68.30	-16.29	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.

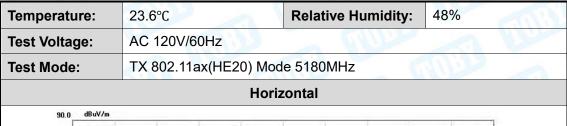


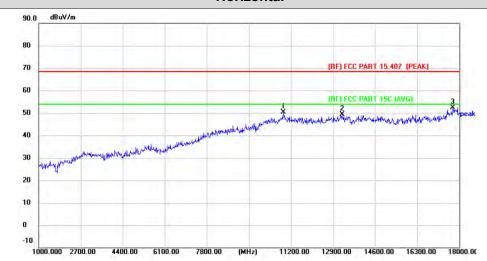

Page: 47 of 564

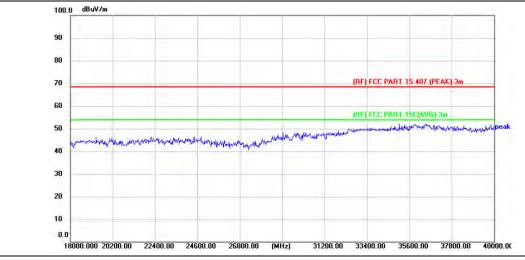
Test Voltage: AC 120V/60Hz

Test Mode: TX 802.11ac(VHT20) Mode 5240MHz

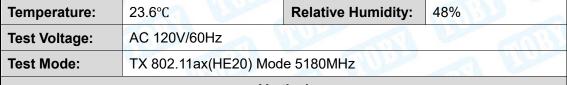
Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10826.000	41.73	7.88	49.61	68.30	-18.69	peak	Р
2	14328.000	39.26	10.49	49.75	68.30	-18.55	peak	Р
3 *	17796.000	36.11	16.67	52.78	68.30	-15.52	peak	Р

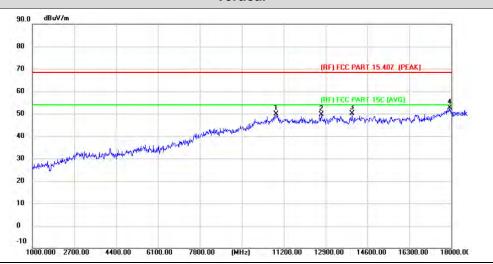

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

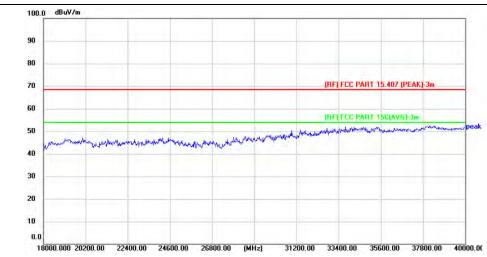


Page: 48 of 564


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10894.000	42.23	8.20	50.43	68.30	-17.87	peak	Р
2	13274.000	39.66	9.79	49.45	68.30	-18.85	peak	Р
3 *	17745.000	36.22	16.28	52.50	68.30	-15.80	peak	Р

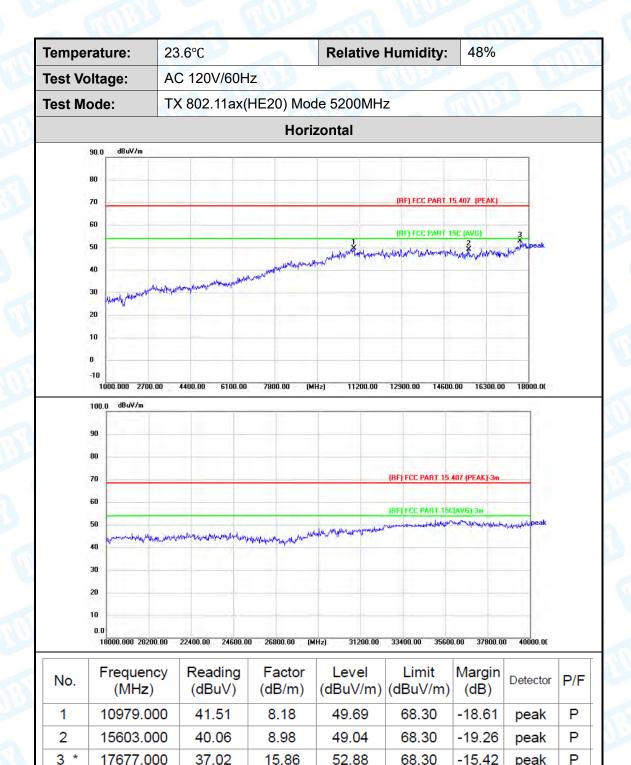
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.





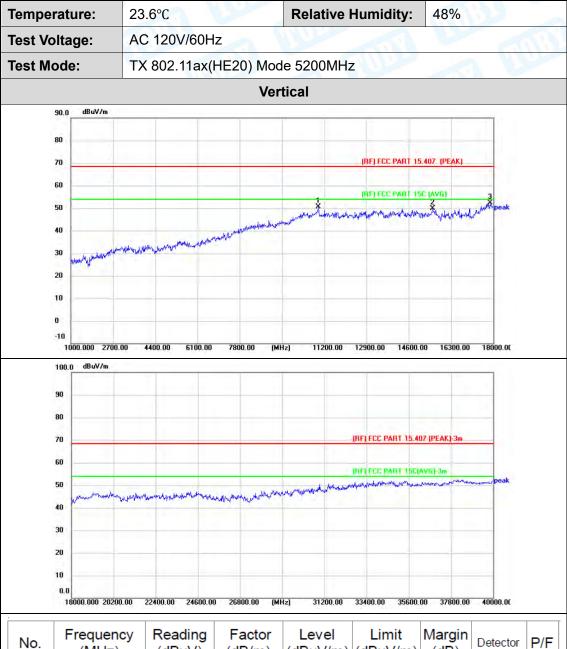
Page: 49 of 564

Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10894.000	41.67	8.20	49.87	68.30	-18.43	peak	Р
2	12730.000	40.14	9.56	49.70	68.30	-18.60	peak	Р
3	13971.000	39.45	10.59	50.04	68.30	-18.26	peak	Р
4 *	17949.000	34.88	17.66	52.54	68.30	-15.76	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 50 of 564

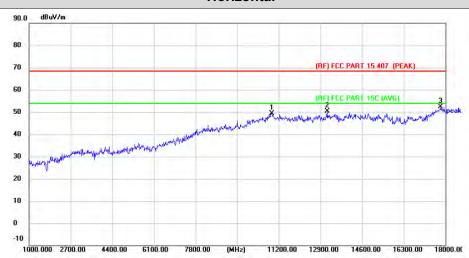


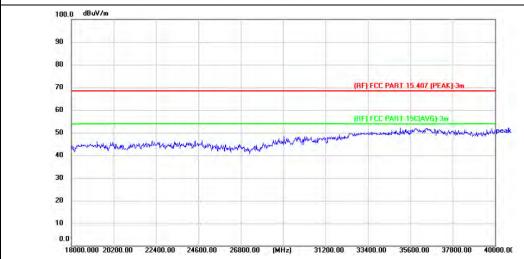
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 51 of 564

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10962.000	42.42	8.19	50.61	68.30	-17.69	peak	Р
2	15552.000	40.66	9.21	49.87	68.30	-18.43	peak	Р
3 *	17864.000	35.26	17.22	52.48	68.30	-15.82	peak	Р

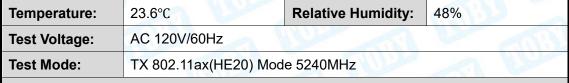
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.





Page: 52 of 564

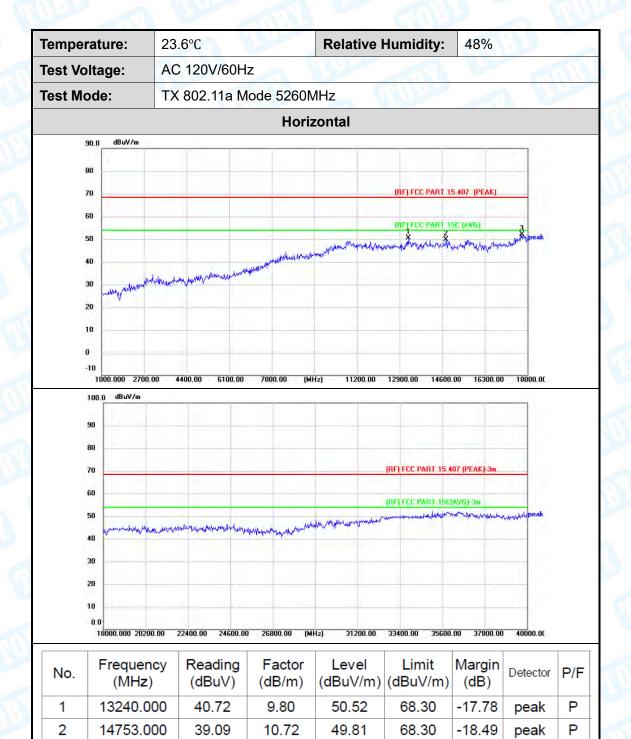
Horizontal


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10911.000	41.24	8.22	49.46	68.30	-18.84	peak	Р
2	13189.000	40.58	9.81	50.39	68.30	-17.91	peak	Р
3 *	17813.000	35.62	16.81	52.43	68.30	-15.87	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 53 of 564

Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10843.000	41.77	7.96	49.73	68.30	-18.57	peak	Р
2	14294.000	39.35	10.30	49.65	68.30	-18.65	peak	Р
3 *	17847.000	35.02	17.08	52.10	68.30	-16.20	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 54 of 564

3 *

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

17779.000

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

35.53

4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).

52.07

68.30

-16.23

peak

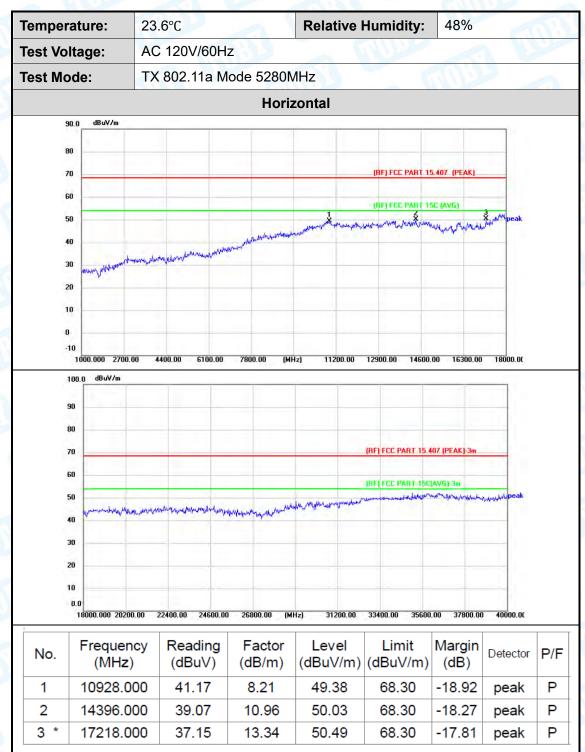
5. No report for the emission which more than 20dB below the prescribed limit.

16.54

6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 55 of 564

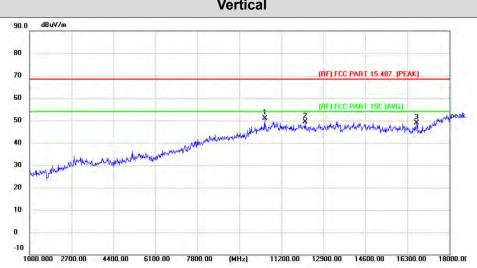
Temperature: 23.6°C **Relative Humidity:** 48% **Test Voltage:** AC 120V/60Hz **Test Mode:** TX 802.11a Mode 5260MHz **Vertical** dBuV/m (RF) FCC PART 15.407 (PEAK) 20 10 -10 1000.000 2700.00 6100.00 7800.00 (MHz) 11200.00 12900.00 14600.00 16300.00 18000.00 dBuV/m 100.0 90 80 70 [RF] FCC PART 15.407 [PEAK]-3 60 50 40 30 20 18000.000 20200.00 22400.00 24600.00 26800.00 (MHz) 31200.00 33400.00 35600.00 37800.00 40000.00

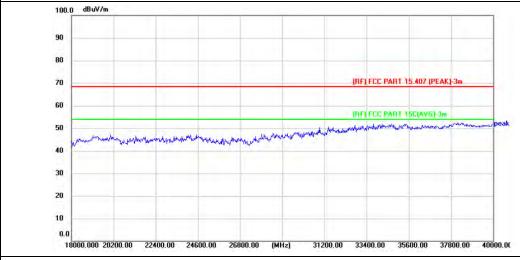

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10520.000	43.12	6.44	49.56	68.30	-18.74	peak	Р
2	14311.000	39.54	10.37	49.91	68.30	-18.39	peak	Р
3 *	17847.000	35.60	17.08	52.68	68.30	-15.62	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 56 of 564

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



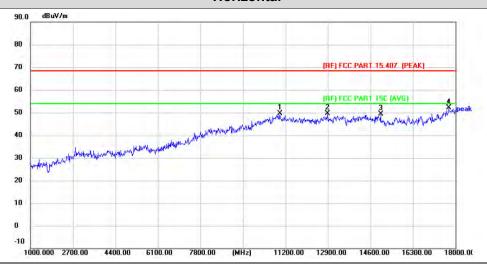

Page: 57 of 564

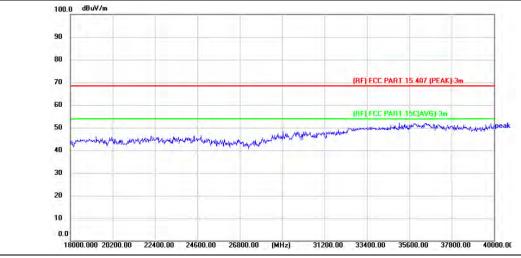
Test Voltage: AC 120V/60Hz

Test Mode: TX 802.11a Mode 5280MHz

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10520.000	44.34	6.44	50.78	68.30	-17.52	peak	Р
2	12152.000	40.21	9.24	49.45	68.30	-18.85	peak	Р
3	16674.000	38.64	10.13	48.77	68.30	-19.53	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



Page: 58 of 564

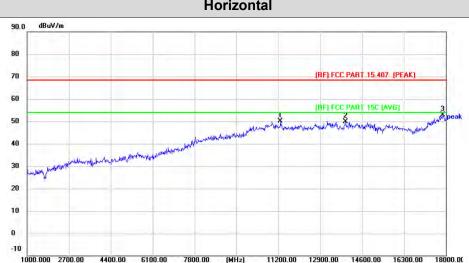
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10979.000	41.55	8.18	49.73	68.30	-18.57	peak	Р
2	12883.000	40.51	9.09	49.60	68.30	-18.70	peak	Р
3	15008.000	37.87	11.39	49.26	68.30	-19.04	peak	Р
4 *	17728.000	35.86	16.15	52.01	68.30	-16.29	peak	Р

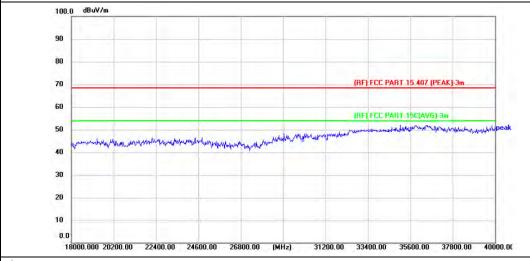
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.

Page: 59 of 564

Temperature: 23.6°C **Relative Humidity:** 48% **Test Voltage:** AC 120V/60Hz **Test Mode:** TX 802.11a Mode 5320MHz **Vertical** dBuV/m 80 (RF) FCC PART 15.407 (PEAK) 70 60 50 40 10 1000.000 2700.00 6100.00 7800.00 (MHz) 11200.00 12900.00 14600.00 16300.00 18000.00 dBuV/m 100.0 90 80 70 [RF] FCC PART 15.407 [PEAK]-3 60 50 40 30 20 18000.000 20200.00 22400.00 24600.00 26800.00 (MHz) 31200.00 33400.00 35600.00 37800.00 40000.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11438.000	40.66	8.99	49.65	68.30	-18.65	peak	Р
2	14379.000	38.06	10.85	48.91	68.30	-19.39	peak	Р
3 *	17762.000	35.90	16.41	52.31	68.30	-15.99	peak	Р

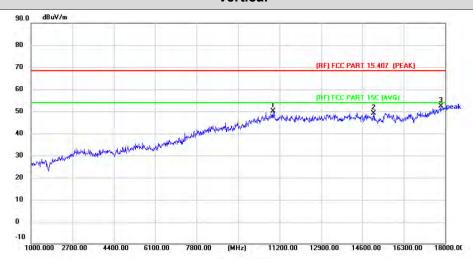

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.

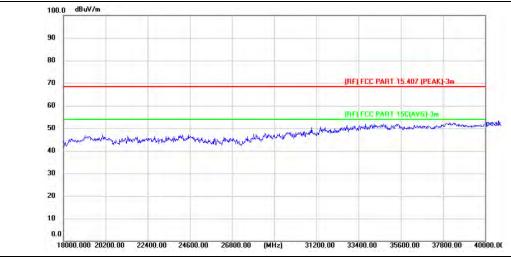


Page: 60 of 564

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11285.000	41.47	8.71	50.18	68.30	-18.12	peak	Р
2	13937.000	38.99	10.80	49.79	68.30	-18.51	peak	Р
3 *	17881.000	35.58	17.36	52.94	68.30	-15.36	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

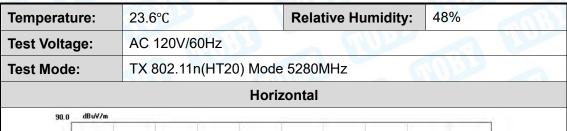


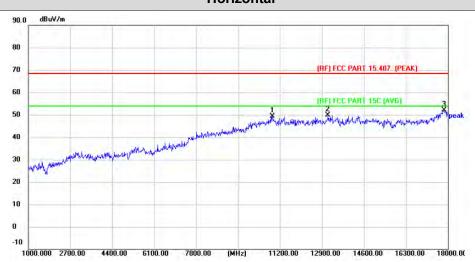


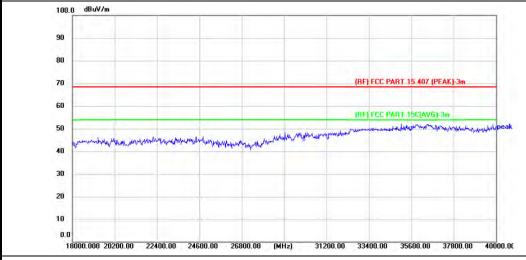
Page: 61 of 564

Temperature:23.6°CRelative Humidity:48%Test Voltage:AC 120V/60HzTest Mode:TX 802.11n(HT20) Mode 5260MHz

Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10928.000	41.80	8.21	50.01	68.30	-18.29	peak	Р
2	15059.000	37.68	11.52	49.20	68.30	-19.10	peak	Р
3 *	17830.000	35.31	16.95	52.26	68.30	-16.04	peak	Р

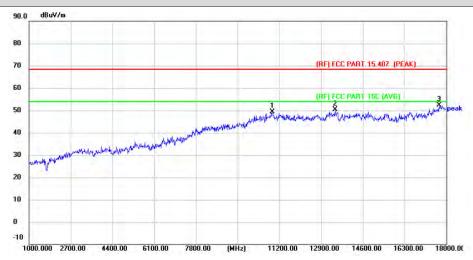

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

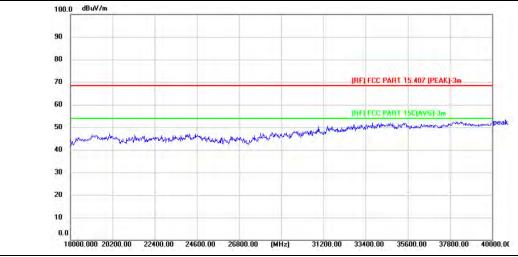


Page: 62 of 564

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10894.000	41.08	8.20	49.28	68.30	-19.02	peak	Р
2	13138.000	40.13	9.83	49.96	68.30	-18.34	peak	Р
3 *	17847.000	35.03	17.08	52.11	68.30	-16.19	peak	Р

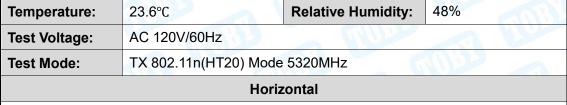
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

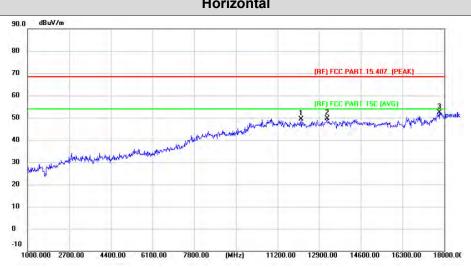


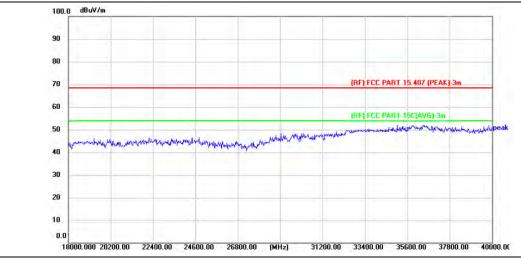


Page: 63 of 564

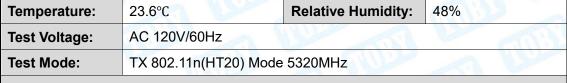
Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10911.000	41.05	8.22	49.27	68.30	-19.03	peak	Р
2	13478.000	40.24	10.13	50.37	68.30	-17.93	peak	Р
3 *	17711.000	36.43	16.02	52.45	68.30	-15.85	peak	Р

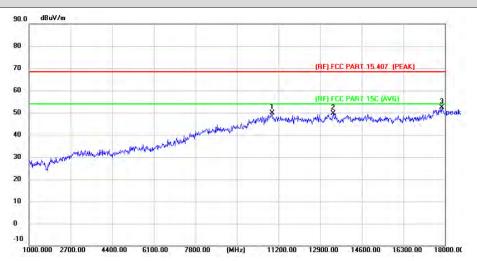

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

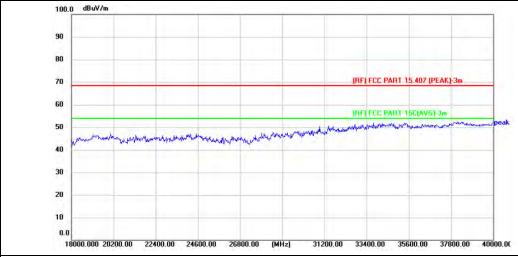


Page: 64 of 564


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12152.000	40.21	9.24	49.45	68.30	-18.85	peak	Р
2	13223.000	39.80	9.79	49.59	68.30	-18.71	peak	Р
3 *	17813.000	35.46	16.81	52.27	68.30	-16.03	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



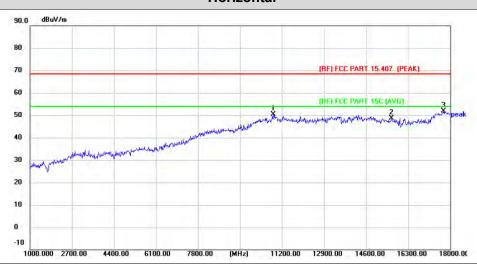


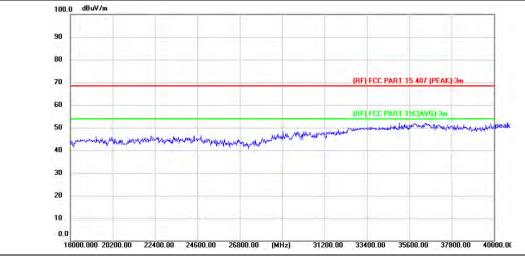
Page: 65 of 564

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10928.000	41.58	8.21	49.79	68.30	-18.51	peak	Р
2	13427.000	39.43	10.16	49.59	68.30	-18.71	peak	Р
3 *	17864.000	35.09	17.22	52.31	68.30	-15.99	peak	Р

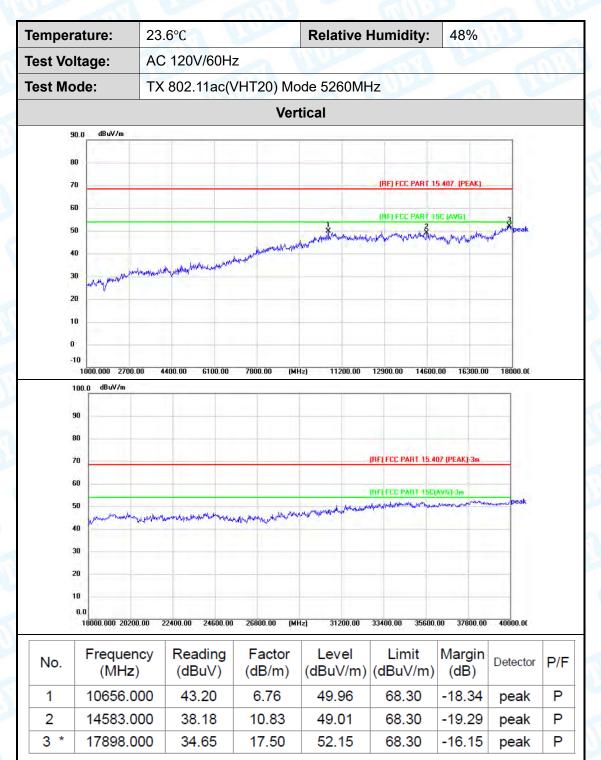
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.





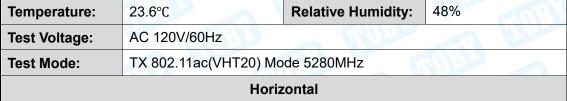
Page: 66 of 564

Horizontal

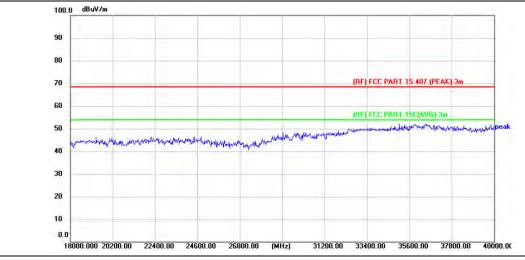

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10843.000	42.49	7.96	50.45	68.30	-17.85	peak	Р
2	15637.000	40.07	8.67	48.74	68.30	-19.56	peak	Р
3 *	17728.000	35.75	16.15	51.90	68.30	-16.40	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

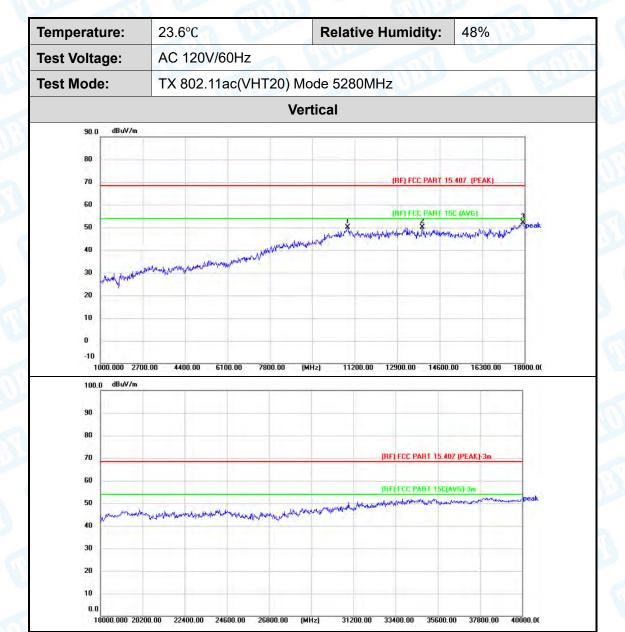
Page: 67 of 564




- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

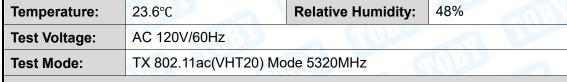


Page: 68 of 564

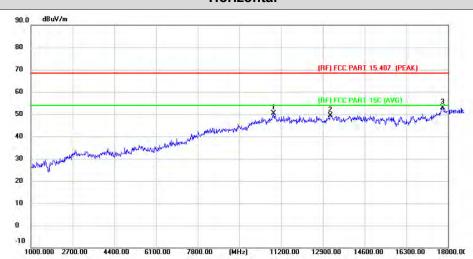

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10860.000	42.03	8.03	50.06	68.30	-18.24	peak	Р
2	14362.000	39.61	10.73	50.34	68.30	-17.96	peak	Р
3 *	17847.000	35.53	17.08	52.61	68.30	-15.69	peak	Р

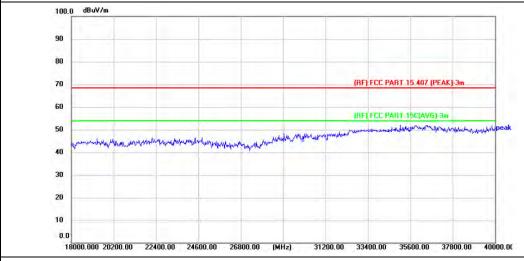
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 69 of 564


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10911.000	41.82	8.22	50.04	68.30	-18.26	peak	Р
2	13903.000	39.21	11.01	50.22	68.30	-18.08	peak	Р
3 *	17932.000	34.57	17.61	52.18	68.30	-16.12	peak	Р

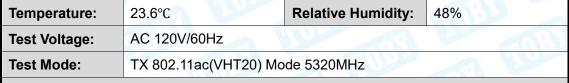
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



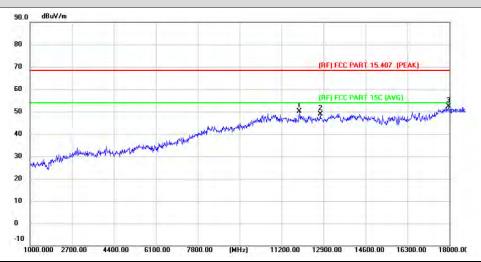


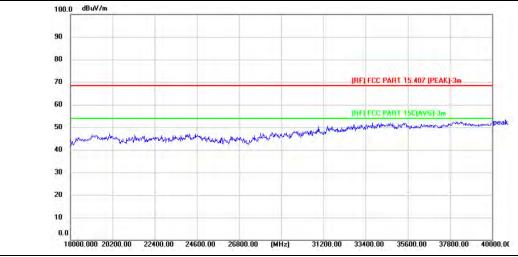
Page: 70 of 564

Horizontal


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10894.000	42.19	8.20	50.39	68.30	-17.91	peak	Р
2	13206.000	39.58	9.80	49.38	68.30	-18.92	peak	Р
3 *	17779.000	36.24	16.54	52.78	68.30	-15.52	peak	Р

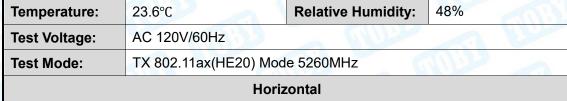
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

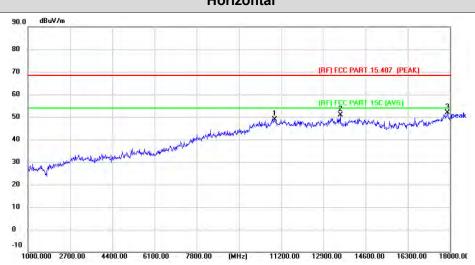


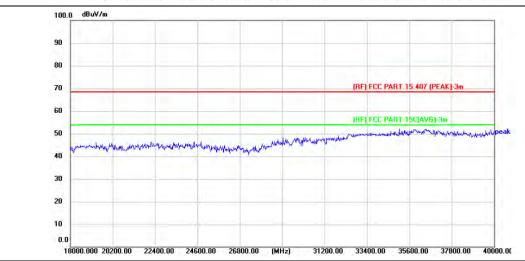


Page: 71 of 564

Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11914.000	41.30	8.90	50.20	68.30	-18.10	peak	Р
2	12764.000	39.44	9.46	48.90	68.30	-19.40	peak	Р
3 *	17966.000	34.78	17.71	52.49	68.30	-15.81	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

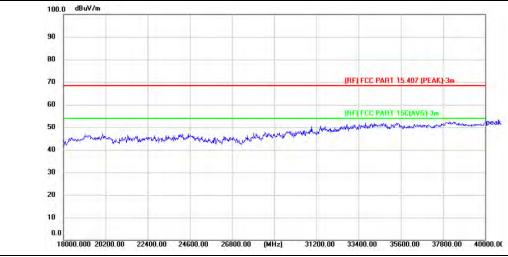


Page: 72 of 564

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10945.000	40.67	8.20	48.87	68.30	-19.43	peak	Р
2	13580.000	40.83	9.97	50.80	68.30	-17.50	peak	Р
3 *	17898.000	34.41	17.50	51.91	68.30	-16.39	peak	Р

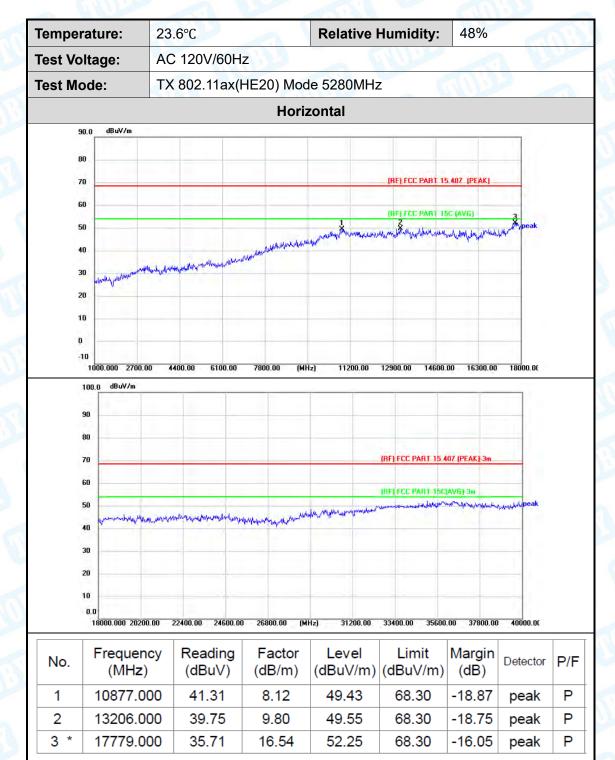
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.





Page: 73 of 564

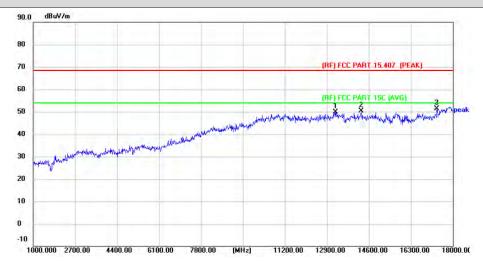
Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10656.000	42.94	6.76	49.70	68.30	-18.60	peak	Р
2	13546.000	39.55	10.02	49.57	68.30	-18.73	peak	Р
3 *	17847.000	33.40	17.08	50.48	68.30	-17.82	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 74 of 564

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

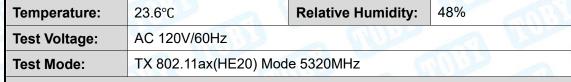

Page: 75 of 564


Temperature: 23.6°C Relative Humidity: 48%

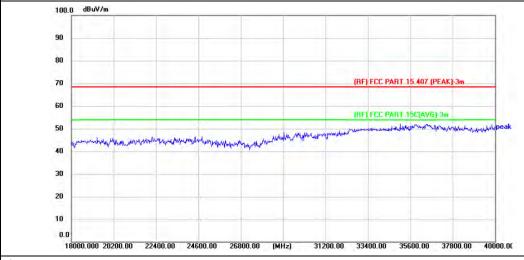
Test Voltage: AC 120V/60Hz

Test Mode: TX 802.11ax(HE20) Mode 5280MHz

Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13240.000	40.18	9.80	49.98	68.30	-18.32	peak	Р
2	14294.000	39.96	10.30	50.26	68.30	-18.04	peak	Р
3 *	17354.000	37.14	14.18	51.32	68.30	-16.98	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

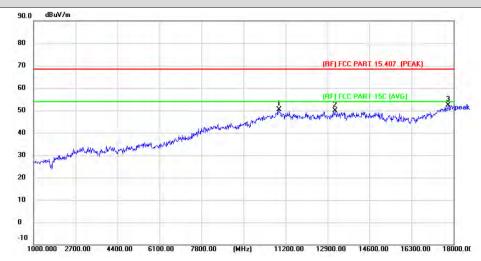


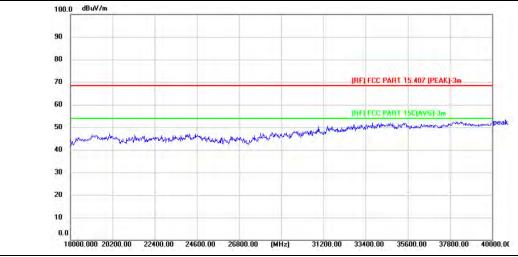
Page: 76 of 564

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10843.000	42.03	7.96	49.99	68.30	-18.31	peak	Р
2	13308.000	40.23	9.81	50.04	68.30	-18.26	peak	Р
3 *	17745.000	35.54	16.28	51.82	68.30	-16.48	peak	Р

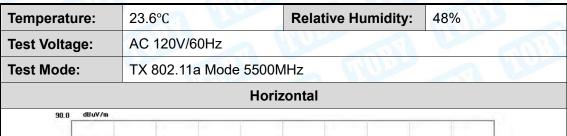
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



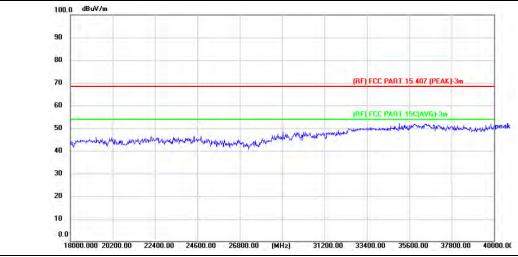


Page: 77 of 564

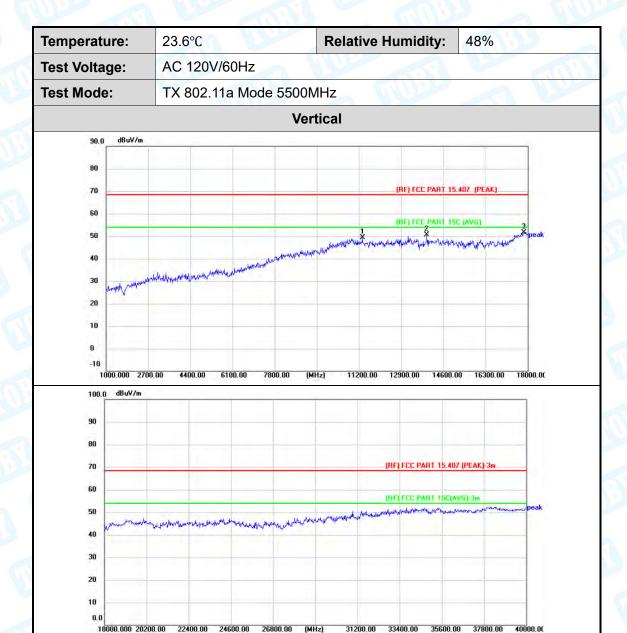
Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10928.000	42.25	8.21	50.46	68.30	-17.84	peak	Р
2	13206.000	40.19	9.80	49.99	68.30	-18.31	peak	Р
3 *	17779.000	35.72	16.54	52.26	68.30	-16.04	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.



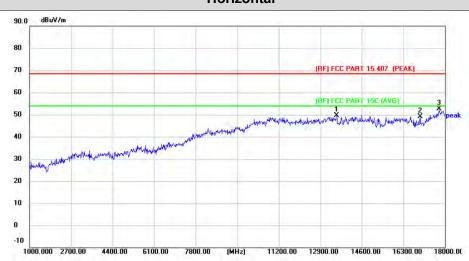
Page: 78 of 564

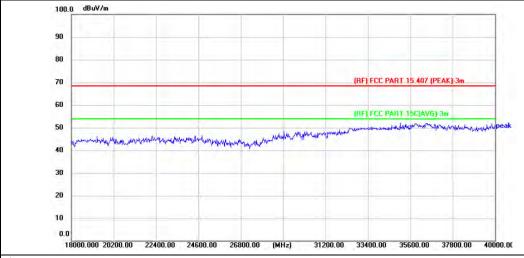

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11285.000	40.42	8.71	49.13	68.30	-19.17	peak	Р
2	14940.000	37.81	11.37	49.18	68.30	-19.12	peak	Р
3 *	17813.000	35.68	16.81	52.49	68.30	-15.81	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.

Page: 79 of 564

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11336.000	40.42	8.90	49.32	68.30	-18.98	peak	Р
2	13937.000	39.78	10.80	50.58	68.30	-17.72	peak	Р
3 *	17847.000	34.58	17.08	51.66	68.30	-16.64	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.



Page: 80 of 564

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	13563.000	39.62	9.99	49.61	68.30	-18.69	peak	Р
2	16980.000	37.62	11.50	49.12	68.30	-19.18	peak	Р
3 *	17762.000	36.27	16.41	52.68	68.30	-15.62	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 81 of 564

Temperature: 23.6°C **Relative Humidity:** 48% **Test Voltage:** AC 120V/60Hz **Test Mode:** TX 802.11a Mode 5580MHz **Vertical** dBuV/m (RF) FCC PART 15.407 (PEAK) 20 10 0 1000.000 2700.00 6100.00 7800.00 (MHz) 11200.00 12900.00 14600.00 16300.00 18000.00 dBuV/m 100.0 90 80 70 [RF] FCC PART 15.407 [PEAK]-3 60 50 40 30 20 18000.000 20200.00 22400.00 24600.00 26800.00 (MHz) 31200.00 33400.00 35600.00 37800.00 Frequency Reading Factor Level Limit Margin Detector P/F No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 10962.000 40.93 8.19 49.12 68.30 Ρ -19.18peak

3 *

2

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

13240.000

17898.000

- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

39.62

34.35

4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).

49.42

51.85

68.30

68.30

-18.88

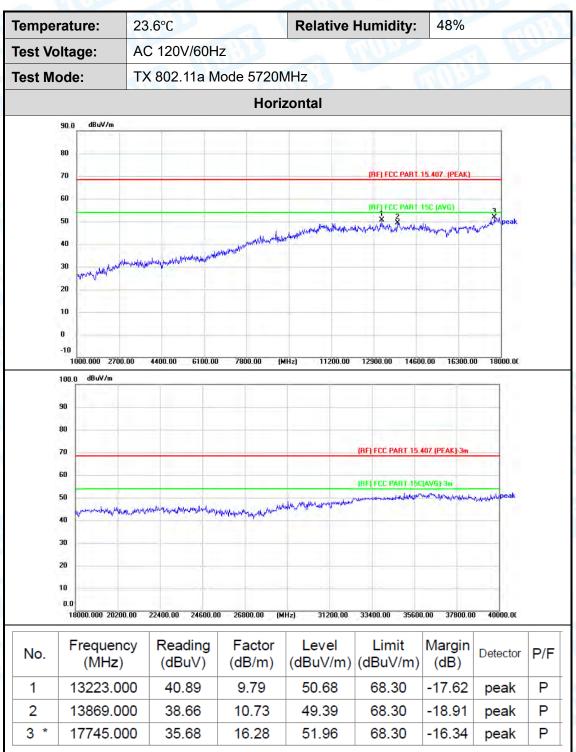
-16.45

5. No report for the emission which more than 20dB below the prescribed limit.

9.80

17.50

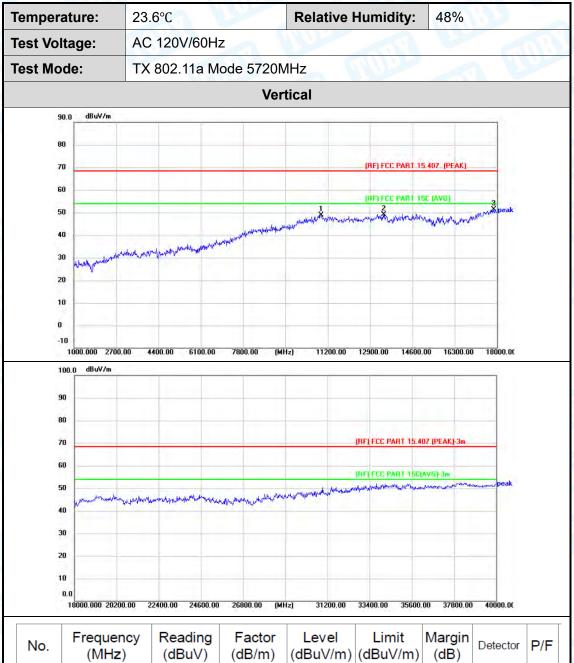
6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.


Ρ

peak

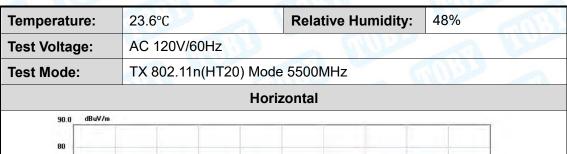
peak

Page: 82 of 564

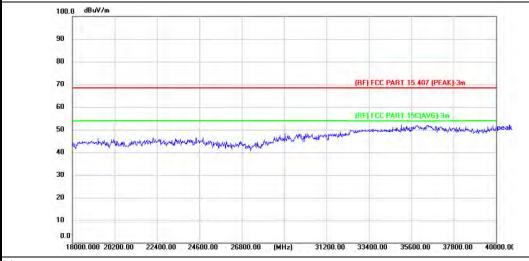


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 83 of 564


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10945.000	40.72	8.20	48.92	68.30	-19.38	peak	Р
2	13444.000	38.88	10.15	49.03	68.30	-19.27	peak	Р
3 *	17881.000	33.93	17.36	51.29	68.30	-17.01	peak	Р

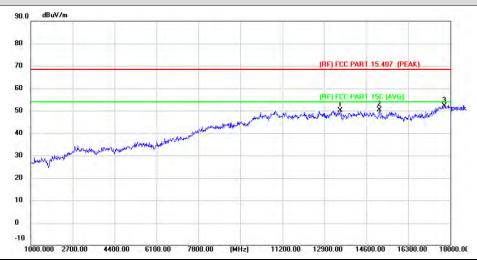
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

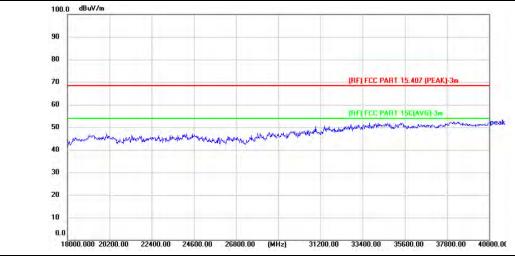


Page: 84 of 564

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10962.000	41.92	8.19	50.11	68.30	-18.19	peak	Р
2	15671.000	42.20	8.38	50.58	68.30	-17.72	peak	Р
3 *	17830.000	36.05	16.95	53.00	68.30	-15.30	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



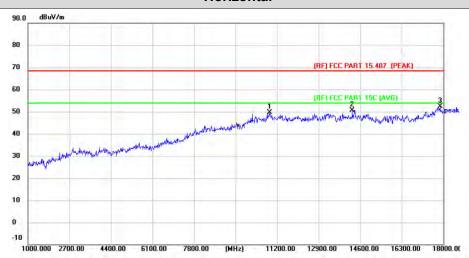


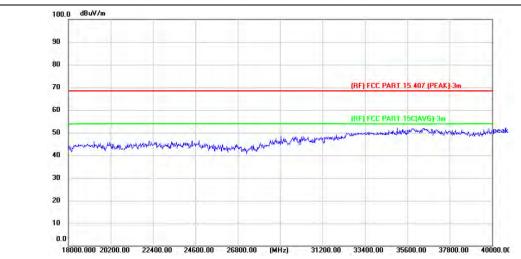
Page: 85 of 564

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	13546.000	40.06	10.02	50.08	68.30	-18.22	peak	Р
2	15127.000	39.26	11.24	50.50	68.30	-17.80	peak	Р
3 *	17762.000	35.63	16.41	52.04	68.30	-16.26	peak	Р

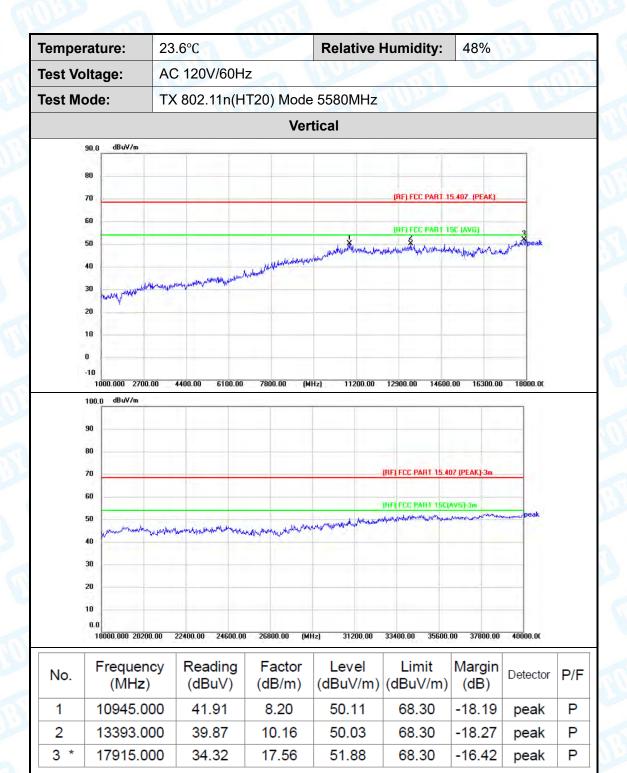
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.





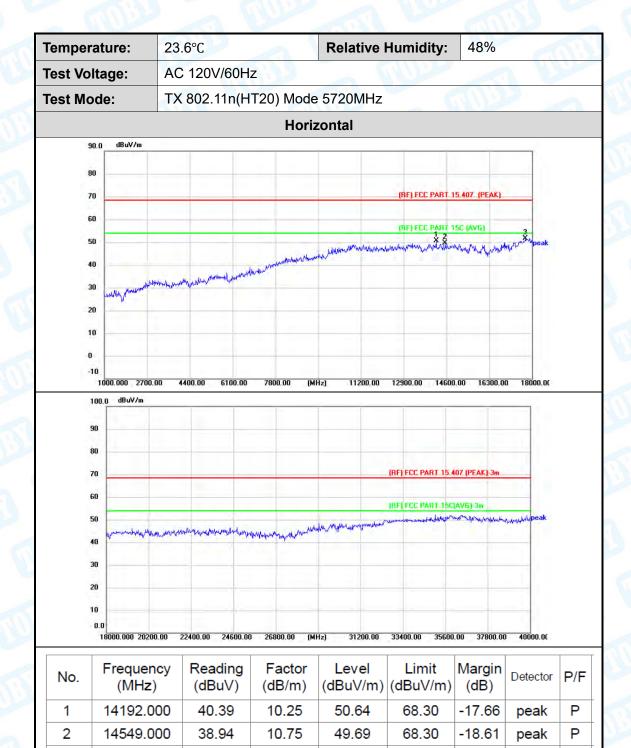
Page: 86 of 564

Horizontal


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10894.000	41.49	8.20	49.69	68.30	-18.61	peak	Р
2	14277.000	40.43	10.30	50.73	68.30	-17.57	peak	Р
3 *	17864.000	35.17	17.22	52.39	68.30	-15.91	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 87 of 564



- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 88 of 564

Remark:

3 *

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

17745.000

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

35.41

4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).

51.69

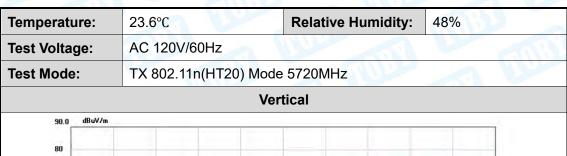
68.30

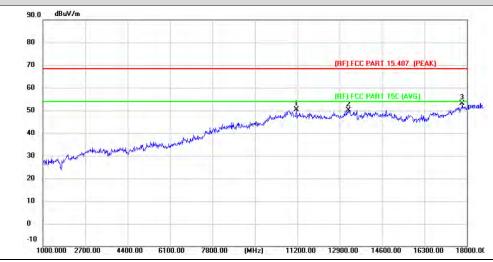
-16.61

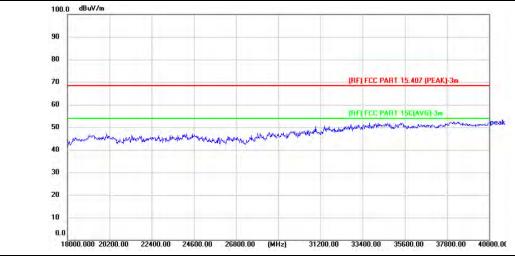
5. No report for the emission which more than 20dB below the prescribed limit.

16.28

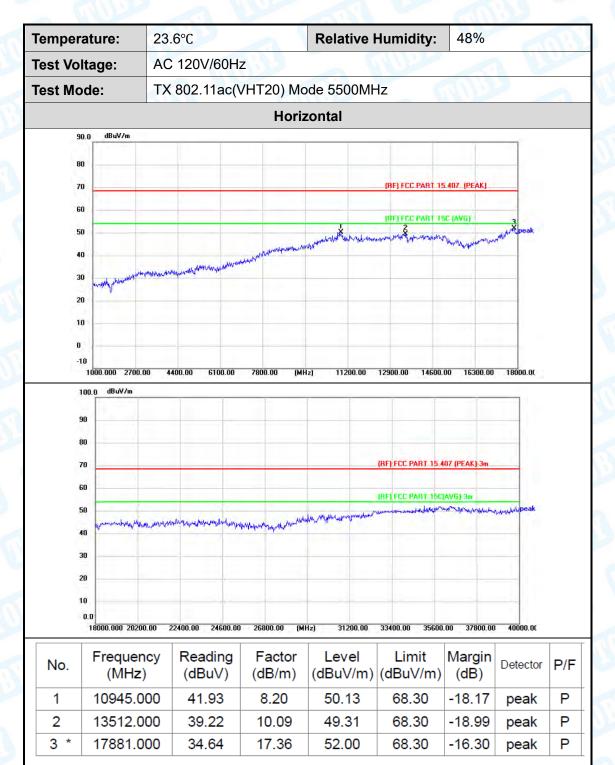
6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.




Ρ

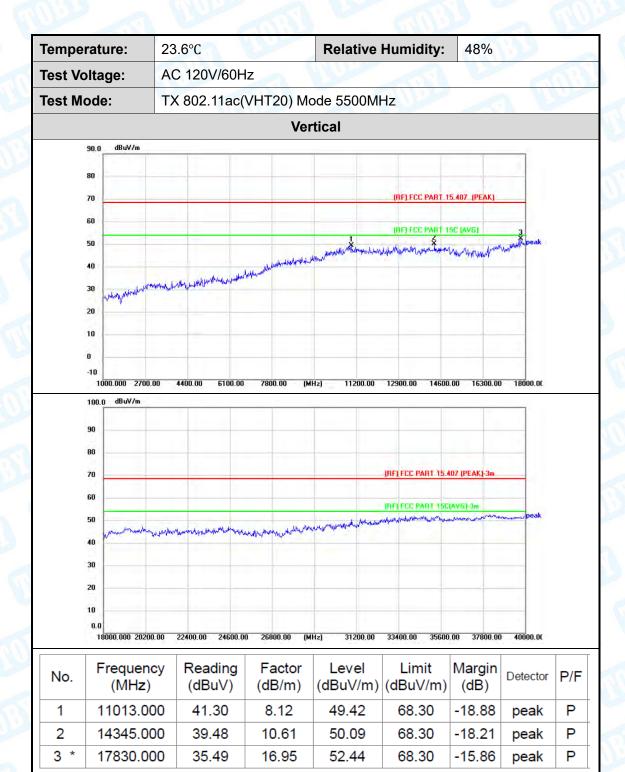

peak

Page: 89 of 564


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11166.000	42.64	7.86	50.50	68.30	-17.80	peak	Р
2	13240.000	40.45	9.80	50.25	68.30	-18.05	peak	Р
3 *	17813.000	36.37	16.81	53.18	68.30	-15.12	peak	Р

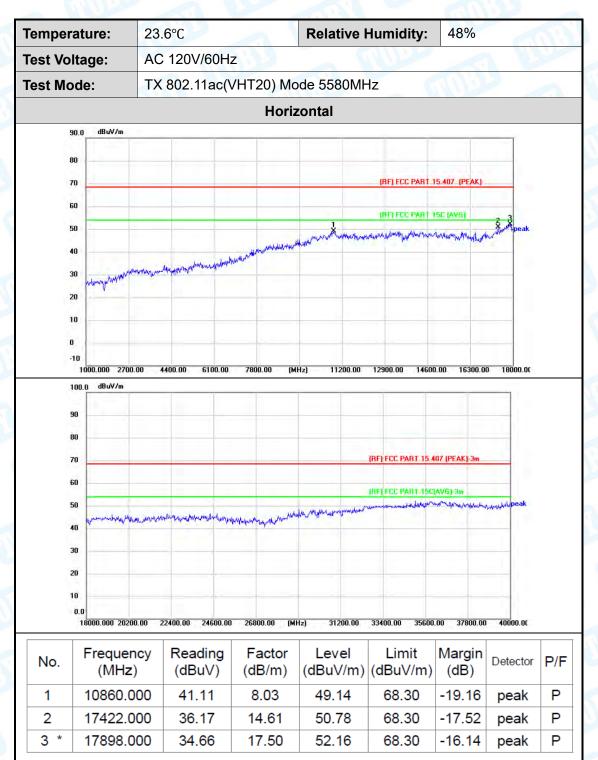
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 90 of 564



- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

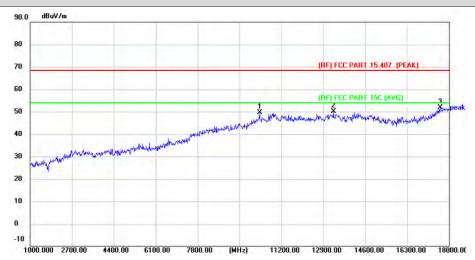
Page: 91 of 564

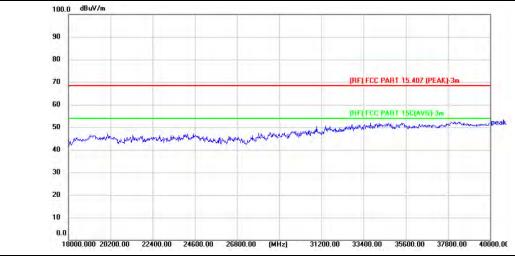


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 92 of 564

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.


Page: 93 of 564


Temperature: 23.6°C Relative Humidity: 48%

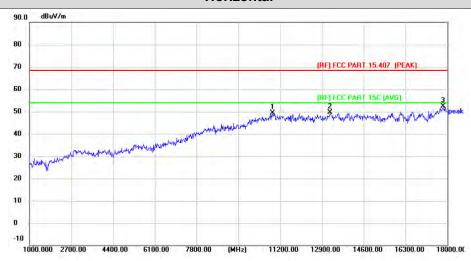
Test Voltage: AC 120V/60Hz

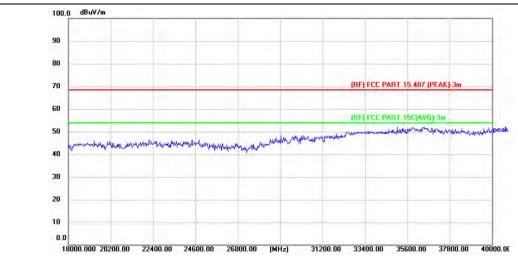
Test Mode: TX 802.11ac(VHT20) Mode 5580MHz

Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10316.000	43.60	5.97	49.57	68.30	-18.73	peak	Р
2	13308.000	40.42	9.81	50.23	68.30	-18.07	peak	Р
3 *	17643.000	36.12	15.76	51.88	68.30	-16.42	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



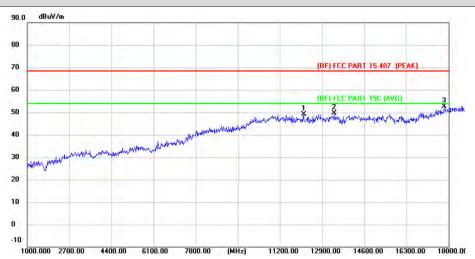


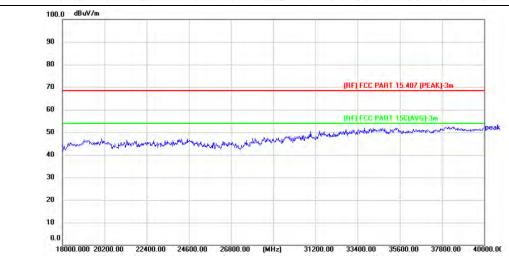
Page: 94 of 564

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10894.000	41.26	8.20	49.46	68.30	-18.84	peak	Р
2	13223.000	39.91	9.79	49.70	68.30	-18.60	peak	Р
3 *	17830.000	35.45	16.95	52.40	68.30	-15.90	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.

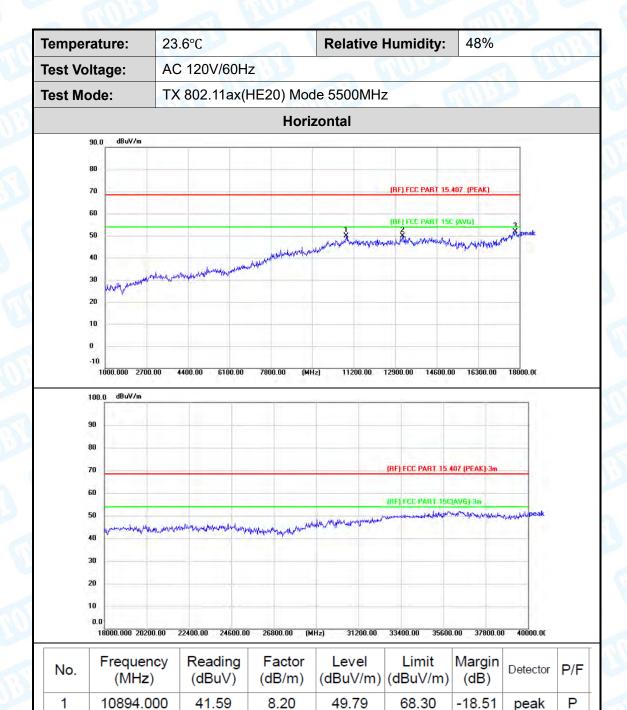

Page: 95 of 564


Temperature: 23.6°C Relative Humidity: 48%

Test Voltage: AC 120V/60Hz

Test Mode: TX 802.11ac(VHT20) Mode 5720MHz

Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12152.000	39.87	9.24	49.11	68.30	-19.19	peak	Р
2	13393.000	39.42	10.16	49.58	68.30	-18.72	peak	Р
3 *	17830.000	35.57	16.95	52.52	68.30	-15.78	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 96 of 564

Remark:

2

3 *

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

13206.000

17830.000

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

39.99

34.95

4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).

49.79

51.90

68.30

68.30

-18.51

-16.40

5. No report for the emission which more than 20dB below the prescribed limit.

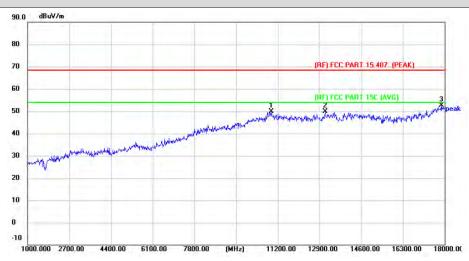
9.80

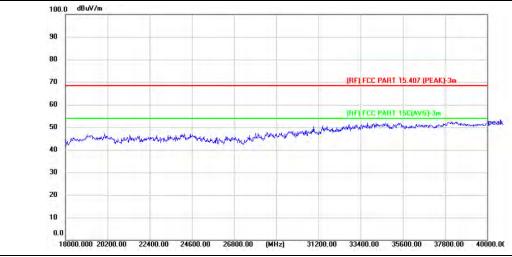
16.95

6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Ρ

peak

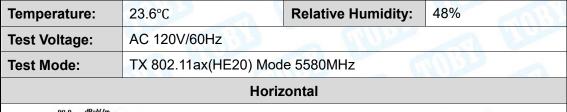

peak

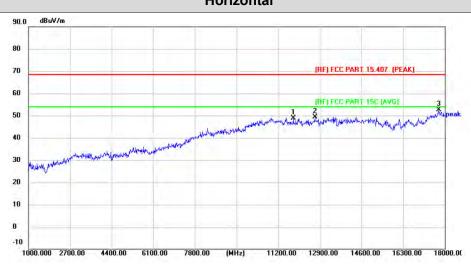


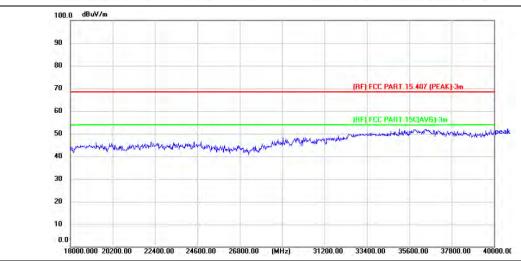
Page: 97 of 564

Temperature:23.6°CRelative Humidity:48%Test Voltage:AC 120V/60HzTest Mode:TX 802.11ax(HE20) Mode 5500MHz

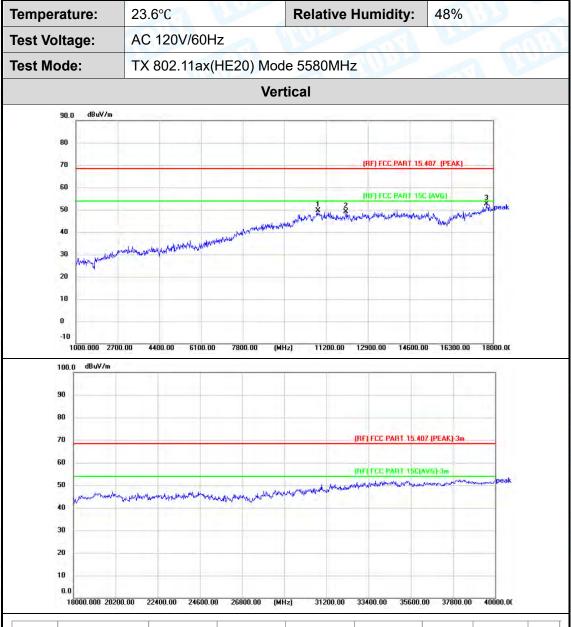
Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10945.000	41.66	8.20	49.86	68.30	-18.44	peak	Р
2	13138.000	40.11	9.83	49.94	68.30	-18.36	peak	Р
3 *	17864.000	35.44	17.22	52.66	68.30	-15.64	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



Page: 98 of 564

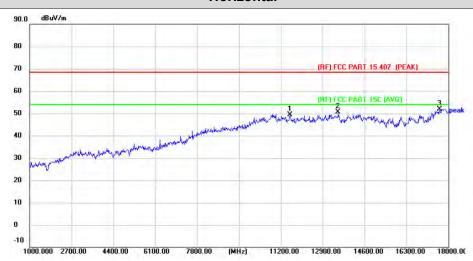

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11812.000	39.86	9.05	48.91	68.30	-19.39	peak	Р
2	12696.000	39.72	9.64	49.36	68.30	-18.94	peak	Р
3 *	17762.000	36.13	16.41	52.54	68.30	-15.76	peak	Р

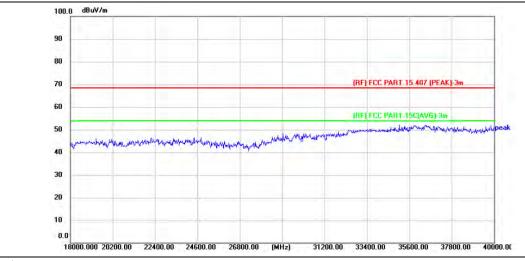
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

Page: 99 of 564

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10860.000	41.69	8.03	49.72	68.30	-18.58	peak	Р
2	11999.000	39.86	9.20	49.06	68.30	-19.24	peak	Р
3 *	17728.000	36.39	16.15	52.54	68.30	-15.76	peak	Р

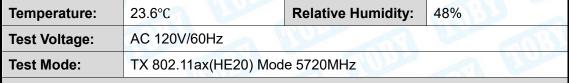
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



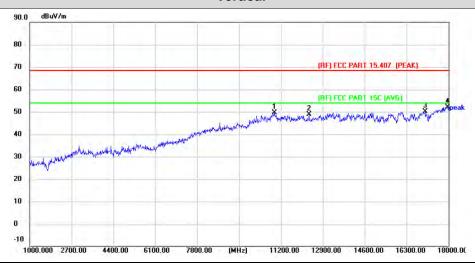


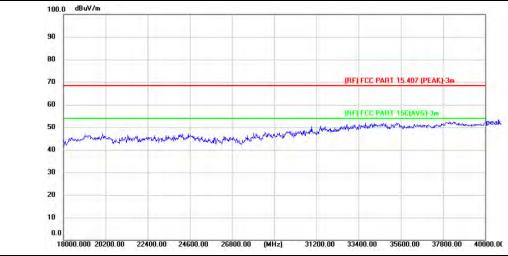
Page: 100 of 564

Horizontal


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11574.000	40.54	8.73	49.27	68.30	-19.03	peak	Р
2	13529.000	40.60	10.06	50.66	68.30	-17.64	peak	Р
3 *	17643.000	36.20	15.76	51.96	68.30	-16.34	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



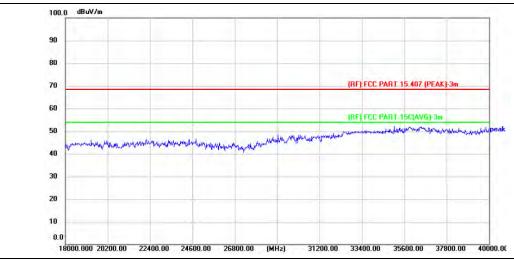


Page: 101 of 564

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10928.000	41.42	8.21	49.63	68.30	-18.67	peak	Р
2	12339.000	39.90	8.87	48.77	68.30	-19.53	peak	Р
3	17048.000	38.19	11.86	50.05	68.30	-18.25	peak	Р
4 *	17966.000	34.52	17.71	52.23	68.30	-16.07	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.


Page: 102 of 564

(MHz)

11200.00 12900.00 14600.00 16300.00 18000.00

7800.00

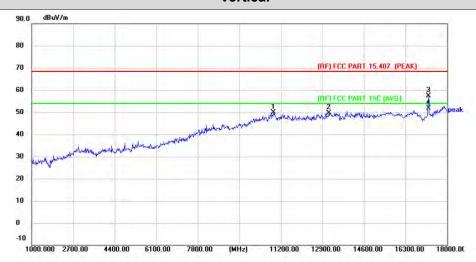
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10911.000	41.26	8.22	49.48	68.30	-18.82	peak	Р
2	13257.000	40.44	9.79	50.23	68.30	-18.07	peak	Р
3	17235.000	44.24	13.44	57.68	68.30	-10.62	peak	Р
4 *	17235.000	38.69	13.44	52.13	54.00	-1.87	AVG	Р

Remark:

-10

1000.000 2700.00

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value. and 18GHz-40GHz is the noise, No other signals were detected.

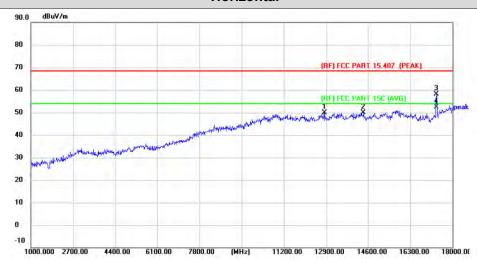


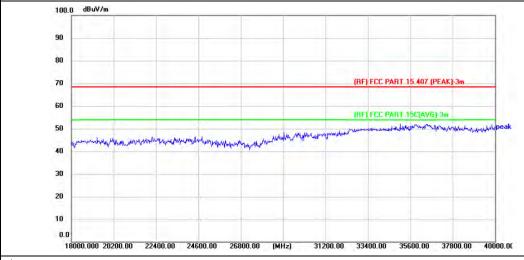
Page: 103 of 564

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10894.000	41.80	8.20	50.00	68.30	-18.30	peak	Р
2	13155.000	39.88	9.82	49.70	68.30	-18.60	peak	Р
3	17235.000	43.87	13.44	57.31	68.30	-10.99	peak	Р
4 *	17235.000	38.45	13.44	51.89	54.00	-2.11	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.



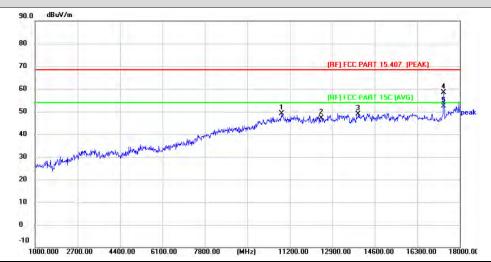


Page: 104 of 564

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12832.000	40.52	9.27	49.79	68.30	-18.51	peak	Р
2	14413.000	38.94	10.94	49.88	68.30	-18.42	peak	Р
3	17354.000	44.05	14.18	58.23	68.30	-10.07	peak	Р
4 *	17354.000	38.20	14.18	52.38	54.00	-1.62	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.





Page: 105 of 564

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10877.000	40.93	8.12	49.05	68.30	-19.25	peak	Р
2	12458.000	38.24	8.97	47.21	68.30	-21.09	peak	Р
3	13937.000	38.08	10.80	48.88	68.30	-19.42	peak	Р
4	17354.000	44.21	14.18	58.39	68.30	-9.91	peak	Р
5 *	17354.000	38.15	14.18	52.33	54.00	-1.67	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz. Test with highpass filter (Pass Frequency:8-25G).
- 5. No report for the emission which more than 20dB below the prescribed limit.
- 6. The peak value <average limit, So only show the peak value. and 18GHz-40GHz is the noise,No other signals were detected.

