

Report No.: TBR-C-202302-0069-52 Page: 1 of 169

Radio Test Report FCC ID: XVG500106RTBT IC: 6800A-500106RTBT

Report No.	3	TBR-C-202302-0069-52
Applicant	:	Amino Communications Ltd
Equipment Under Tes	st (E	UT)
EUT Name	-	IPTV Receiver
Model(s) No.	•	Amigo 7Y, AMIGO 7Y, Amigo 7Yzzzzzzz, AMIGO 7Yzzzzzzz (zzzzzzz can be combination of A-Z, a-z, 0-9, "-", "/", "blank" for marketing purpose)
Brand Name	-	AMINO
Sample ID	:	202302-0069-5-1#&202302-0069-5-2#
Receipt Date	*	2023-04-06
Test Date	÷	2023-04-07 to 2023-12-23
Issue Date	:	2023-12-25
Standards	3	FCC Part 15 Subpart C 15.247 RSS-247 Issue 3 August 2023 RSS-Gen Issue 5 Amendment 2 February 2021
Test Method	:	ANSI C63.10: 2013 KDB 558074 D01 15.247 Meas Guidance v05r02 KDB 662911 D01 Multiple Transmitter Output v02r01
Conclusions	:	PASS
		In the configuration tested, the EUT complied with the standards specified above.
Witness Engineer		: Seven Wu S
Engineer Supervisor		: Seven Wu Seven Wu Boy Low.
Engineer Manager		: Long Loi.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Ray Lai

U

Contents

CON	ITENTS	
1.	GENERAL INFORMATION ABOUT EUT	
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	13
	5.4 Deviation From Test Standard	14
	5.5 EUT Operating Mode	14
	5.6 Test Data	14
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	
	6.1 Test Standard and Limit	
	6.2 Test Setup	20
	6.3 Test Procedure	21
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	22
	6.6 Test Data	22
7.	RESTRICTED BANDS AND BAND EDGE REQUIREMENT	
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	
	7.6 Test Data	

TOBY Part of the Cotecne Group

Report No.: TBR-C-202302-0069-52 Page: 3 of 169

8.	BANDWIDTH TEST	
	8.1 Test Standard and Limit	
	8.2 Test Setup	137
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	
	8.6 Test Data	
9.	RF OUTPUT POWER	
	9.1 Test Standard and Limit	156
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Mode	
	9.6 Test Data	156
10.	POWER SPECTRAL DENSITY	
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	
	10.5 Antenna Connected Construction	
	10.6 Test Data	
11.	ANTENNA REQUIREMENT	
	11.1 Test Standard and Limit	
	11.2 Deviation From Test Standard	
	11.3 Antenna Connected Construction	
	11.4 Test Data	

Report No.: TBR-C-202302-0069-52 Page: 4 of 169

Report No.	Version	Description	Issued Date
TBR-C-202302-0069-52	Rev.01	Initial issue of report	2023-12-25
19 - 19		Contra Contra	a BU
	TOD -	The second	- man
my - rou		and the second	
and a	6000	A LAND	6081
8 000		The second	51 - G
	000	a long of the	and and a
TOD			00
A COM		The second second	and l
and a	a The	A LONG	600
		and the second	
	TOP	a la alla	and a

Revision History

1. General Information about EUT

1.1 Client Information

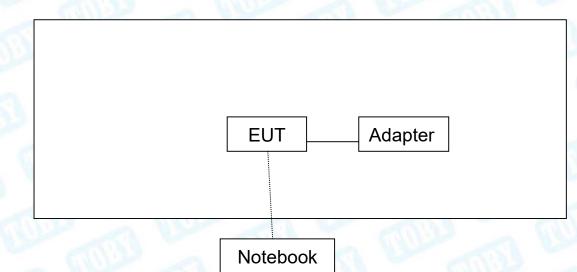
Applicant	:	Amino Communications Ltd		
Address	(3)	10 Cambourne Business Park, Cambourne, Cambridge, CB23 DP, United Kingdom.		
Manufacturer	-	henzhen SDMC Technology Co., Ltd.		
Address		Room 1022, Floor 10, Building A, Customs Building, No. 2, Xin'an 3rd Road, Dalang Community, Xin'an Street, Bao'an District, Shenzhen, China		

1.2 General Description of EUT (Equipment Under Test)

EUT Nar	ne 🔨	:	IPTV Receiver			
For IC	Model No.		AMIGO 7Y	AMIGO 7Y		
For FCC	Models No.	:	Amigo 7Y, Amigo 7Yzzzzzzz, AMIGO 7Yzzzzzzz (zzzzzzz can be combination of A-Z, a-z, 0-9, "-", "/", "blank" for marketing purpose) All these models are identical in the same PCB, layout and			
and the	Model Different	:	electrical circuit, The marketing purpose	he only difference is model name for		
DI CON CO			Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11ax(HE20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz 802.11ax(HE40): 2422MHz~2452MHz		
Product	Product		Number of Channel:	802.11b/g/n(HT20)/ax(HE20):11 channels 802.11n(HT40)/ax(HE40): 7 channels		
Descript	tion		Antenna Gain: 1.92dBi PIFA Antenna 1(A) 2.20dBi PIFA Antenna 2(B)			
TON			Modulation Type: 802.11b: DSSS (DQPSK, DBPSK, CCK) 802.11g: OFDM (BPSK, QPSK,16QAM, 64QAM 802.11n: OFDM (BPSK, QPSK,16QAM, 64QAM 802.11ax: OFDMA (BPSK, QPSK,16QAM, 64QAM, 256QAM, 1024QAM)			
Power Rating			AC Adapter 1# (Model: SA12BV-120100U SUNUN): Input: 100-240V~50/60Hz, 0.4A Output: 12.0V=1.0A 12W AC Adapter 2# (Model: DCT12W120100US-A0 DACHUAN): Input: 100-240V~50/60Hz, 0.3A Max. Output: 12.0V=1.0A 12W			
Softwar	e Version					
Hardwar	re Version		MB.024.B	and a star		

Remark:

(1) The antenna gain and adapter provided by the manufacturer, the verified for the RF conduction test provided by TOBY test lab.
(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual



(3)Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		
Note: CH 01~CH 1	1 for 802.11b/g/n(HT	20)			·
СН 03~СН (09 for 802.11n(HT40)				

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Equipment Information				
Name	Model	S/N	Manufacturer	Used "√"
Notebook	Inspiron 5493		DELL	\checkmark

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test(AC POWER)				
Final Test Mode	Description			
Mode 1	TX b Mode Channel 01			
For	Radiated and RF Conducted Test			
Final Test Mode Description				
Mode 2	TX Mode b Mode Channel 01/06/11			
Mode 3	TX Mode g Mode Channel 01/06/11			
Mode 4	TX Mode n(HT20) Mode Channel 01/06/11			
Mode 5	TX Mode n(HT40) Mode Channel 03/06/09			
Mode 6	TX Mode ax(HE20) Mode Channel 01/06/11			
Mode 7	TX Mode ax(HE40) Mode Channel 03/06/09			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK

802.11g Mode: OFDM

802.11n (HT20) Mode: MCS 8

802.11n (HT40) Mode: MCS 8

802.11ax (HE20) Mode: MCS 0

802.11ax(HE40) Mode: MCS 0

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Report No.: TBR-C-202302-0069-52 Page: 8 of 169

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software: adb command						
Test Mode: Continuously transmitting						
Mada	Data Data	Channel	Parameters			
Mode	Data Rate	Channel	Ant.1	Ant.2		
4000	CCK/ 1Mbps	01	18	18		
802.11b	CCK/ 1Mbps	06	18	18		
	CCK/ 1Mbps	11	18	18		
	OFDM/ 6Mbps	01	18	18		
802.11g	OFDM/ 6Mbps	06	18	18		
8 6	OFDM/ 6Mbps	11	18	18		
199	MCS 8	01	16	16		
802.11n(HT20)	MCS 8	06	16	16		
	MCS 8	11	16	16		
	MCS 8	03	15	15		
802.11n(HT40)	MCS 8	06	15	15		
The second	MCS 8	09	15	15		
	MCS 0	01	15	15		
802.11ax(HE20)	MCS 0	06	15	15		
3	MCS 0	11	15	15		
	MCS 0	03	15	15		
802.11ax(HE40)	MCS 0	06	15	15		
	MCS 0	09	15	15		

Note: 802.11n/ax Support MIMO.

TOBY

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

TOBY

Report No.: TBR-C-202302-0069-52 Page: 10 of 169

2. Test Summary

Standard Section		Test litere			_
FCC	IC	Test Item	Test Sample(s)	Judgment	Remark
FCC 15.207(a)	RSS-Gen 8.8	Conducted Emission	202302-0069-5-1#	PASS	N/A
FCC 15.209 & 15.247(d)	RSS-Gen 8.9 & RSS 247 5.5	Radiated Unwanted Emissions	202302-0069-5-1#	PASS	N/A
FCC 15.203	RSS-247 6.8	Antenna Requirement	202302-0069-5-2#	PASS	N/A
FCC 15.247(a)(2)	RSS-247 5.2(a)	6dB Bandwidth	202302-0069-5-1#	PASS	N/A
	RSS-Gen 6.7	99% Occupied bandwidth	202302-0069-5-1#	PASS	N/A
FCC 15.247(b)(3)	RSS-247 5.4(d)	RF Output Power and E.I.R.P	202302-0069-5-1#	PASS	N/A
FCC 15.247(e)	RSS-247 5.2(b)	Power Spectral Density	202302-0069-5-1#	PASS	N/A
FCC 15.247(d)	RSS-Gen 8.10& RSS-247 5.5	Band Edge Measurements	202302-0069-5-2#	PASS	N/A
FCC 15.207(a)	RSS-Gen 8.9 & RSS 247 5.5	Conducted Unwanted Emissions	202302-0069-5-2#	PASS	N/A
FCC 15.247(d)	RSS-Gen 8.10& RSS-247 5.5	Emissions in Restricted Bands	202302-0069-5-1#	PASS	N/A
		On Time and Duty Cycle	202302-0069-5-1#	/	N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

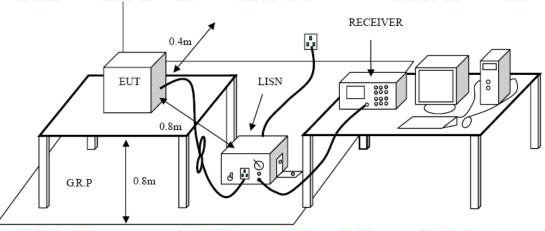
4. Test Equipment

Conducted Emissio	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
Radiation Emission	Test				-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 01, 2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 22, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 01, 2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 01, 2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 01, 2022	Aug. 31, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 22, 2023	Feb.22, 2024
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 01, 2022	Aug. 31, 2023
Spectrum Analyzer	KEYSIHGT	N9020B	MY60110172	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 01, 2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 01, 2022	Aug. 31, 2023
SIV.	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 01, 2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 01, 2022	Aug. 31, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

Conducted Emissio	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
Radiation Emission	Test	-	-	÷	÷
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 22, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Nov. 13, 2023	Nov. 12, 2025
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 30, 2023	Aug. 29, 2024
Pre-amplifier	HP	8449B	3008A00849	Feb. 22, 2023	Feb.22, 2024
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conducted	d Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 30, 2023	Aug. 29, 2024
in the	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Aug. 30, 2023	Aug. 29, 2024
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Aug. 30, 2023	Aug. 29, 2024
NF FUWEI SENSOF	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Aug. 30, 2023	Aug. 29, 2024
COLOR I	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Aug. 30, 2023	Aug. 29, 2024
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 30, 2023	Aug. 29, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

5. Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - RSS-Gen 8.8
 - FCC Part 15.207
 - 5.1.2 Test Limit


Eroguopov	Maximum RF Line Voltage (dB μ V)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

● The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

● Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

● I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

- ●LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from

 Report No.: TBR-C-202302-0069-52

 Page:
 14 of 169

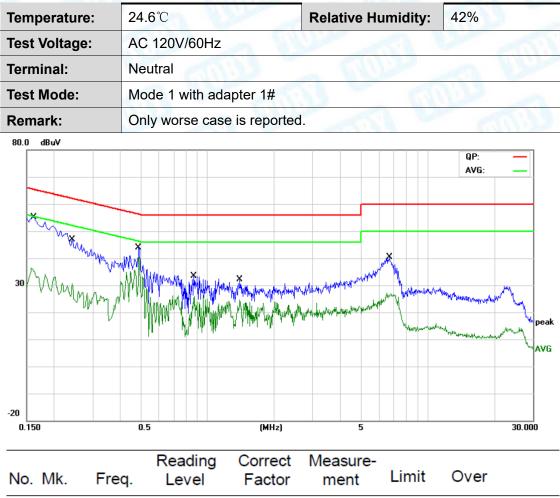
0.15MHz to 30MHz.

- 5.4 Deviation From Test Standard No deviation
- 5.5 EUT Operating Mode Please refer to the description of test mode.
- 5.6 Test Data

Please refer to the following pages.

---Test Data

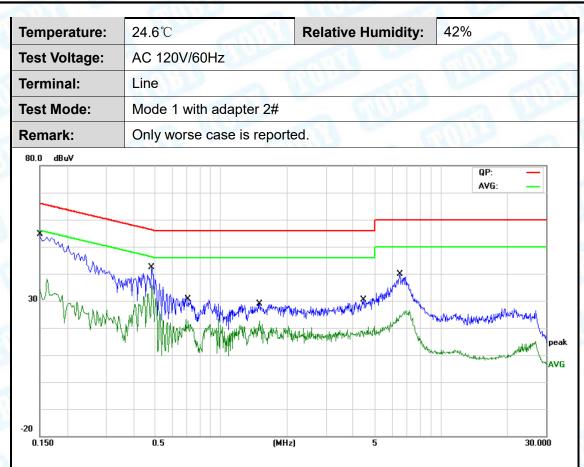
Temperature:	24.6℃	Relative Humidity	: 42%				
Test Voltage:	AC 120V/60Hz		-01				
Terminal:	Line	Line					
Test Mode:	Mode 1 with adapter 1#						
Remark:	Only worse case is	reported.	6003				
30 MMMMMM -20		All for a fo	QP:				


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	41.64	11.11	52.75	66.00	-13.25	QP
2		0.1500	20.99	11.11	32.10	56.00	-23.90	AVG
3		0.1620	42.77	11.08	53.85	65.36	-11.51	QP
4		0.1620	23.79	11.08	34.87	55.36	-20.49	AVG
5		0.1980	37.33	11.01	48.34	63.69	-15.35	QP
6		0.1980	18.76	11.01	29.77	53.69	-23.92	AVG
7		0.4860	31.69	10.93	42.62	56.24	-13.62	QP
8	*	0.4860	24.95	10.93	35.88	46.24	-10.36	AVG
9		0.8620	13.71	10.77	24.48	56.00	-31.52	QP
10		0.8620	5.77	10.77	16.54	46.00	-29.46	AVG
11		6.8460	22.61	10.03	32.64	60.00	-27.36	QP
12		6.8460	13.92	10.03	23.95	50.00	-26.05	AVG

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

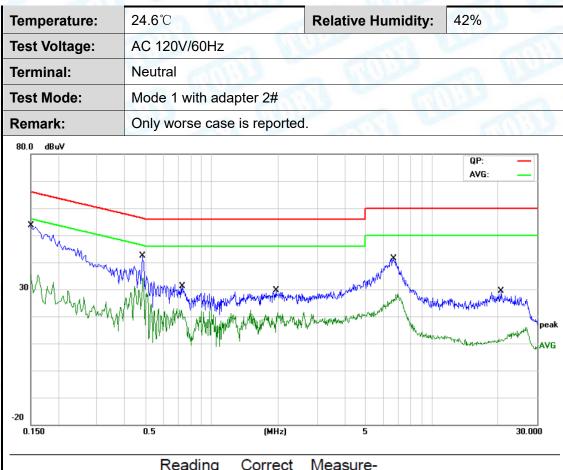
Report No.: TBR-C-202302-0069-52 Page: 16 of 169

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1620	41.87	11.08	52.95	65.36	-12.41	QP
2		0.1620	23.08	11.08	34.16	55.36	-21.20	AVG
3		0.2420	33.45	10.93	44.38	62.02	-17.64	QP
4		0.2420	15.69	10.93	26.62	52.02	-25.40	AVG
5		0.4860	30.65	10.93	41.58	56.24	-14.66	QP
6	*	0.4860	28.00	10.93	38.93	46.24	-7.31	AVG
7		0.8660	19.18	10.76	29.94	56.00	-26.06	QP
8		0.8660	10.82	10.76	21.58	46.00	-24.42	AVG
9		1.3980	17.03	10.61	27.64	56.00	-28.36	QP
10		1.3980	10.38	10.61	20.99	46.00	-25.01	AVG
11		6.6940	23.82	10.03	33.85	60.00	-26.15	QP
12		6.6940	14.36	10.03	24.39	50.00	-25.61	AVG


Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

Report No.: TBR-C-202302-0069-52 Page: 17 of 169


No. N	۸k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	40.32	11.11	51.43	66.00	-14.57	QP
2		0.1500	19.67	11.11	30.78	56.00	-25.22	AVG
3		0.4860	30.64	10.93	41.57	56.24	-14.67	QP
4 *	*	0.4860	24.86	10.93	35.79	46.24	-10.45	AVG
5		0.7100	16.07	10.87	26.94	56.00	-29.06	QP
6		0.7100	10.20	10.87	21.07	46.00	-24.93	AVG
7		1.4980	14.54	10.60	25.14	56.00	-30.86	QP
8		1.4980	9.00	10.60	19.60	46.00	-26.40	AVG
9		4.3940	13.05	10.06	23.11	56.00	-32.89	QP
10		4.3940	6.54	10.06	16.60	46.00	-29.40	AVG
11		6.4899	22.48	10.02	32.50	60.00	-27.50	QP
12		6.4899	12.74	10.02	22.76	50.00	-27.24	AVG
-								

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1499	13.41	11.11	24.52	66.01	-41.49	QP
2		0.1499	8.61	11.11	19.72	56.01	-36.29	AVG
3		0.4820	31.06	10.93	41.99	56.30	-14.31	QP
4	*	0.4820	22.69	10.93	33.62	46.30	-12.68	AVG
5		0.7420	13.18	10.85	24.03	56.00	-31.97	QP
6		0.7420	6.41	10.85	17.26	46.00	-28.74	AVG
7		1.9500	12.90	10.51	23.41	56.00	-32.59	QP
8		1.9500	4.15	10.51	14.66	46.00	-31.34	AVG
9		6.6819	23.08	10.03	33.11	60.00	-26.89	QP
10		6.6819	13.64	10.03	23.67	50.00	-26.33	AVG
11		20.6460	6.78	10.75	17.53	60.00	-42.47	QP
12		20.6460	-2.10	10.75	8.65	50.00	-41.35	AVG

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

6. Radiated and Conducted Unwanted Emissions

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard

RSS-Gen 8.9 & RSS 247 5.5

FCC Part 15.209 & FCC Part 15.247(d)

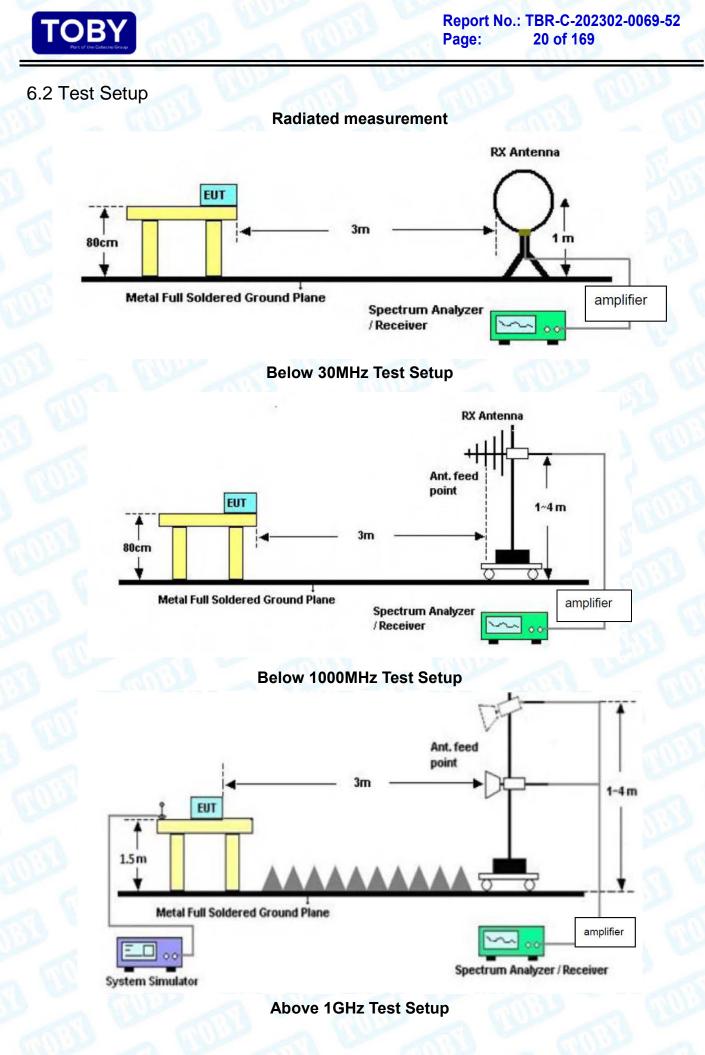
6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz					
Frequency (MHz)	Measurement Distance (meters)				
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
Notes 1 The emission li	mits for the ranges 0.00 kHz and 110.400 kH	Iz are based on measurements			

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field strength limits at frequencies above 30 MHz						
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

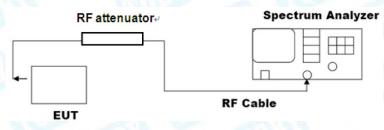
General field strength limits at frequencies Above 1000MHz				
Frequency	Distance of 3m (dBuV/m)			
(MHz)	Peak	Average		
Above 1000	74	54		


Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



Report No.: TBR-C-202302-0069-52 Page: 21 of 169

Conducted measurement

6.3 Test Procedure

---Radiated measurement

● The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

● If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

• Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Please refer to the following pages.

----Radiated Unwanted Emissions

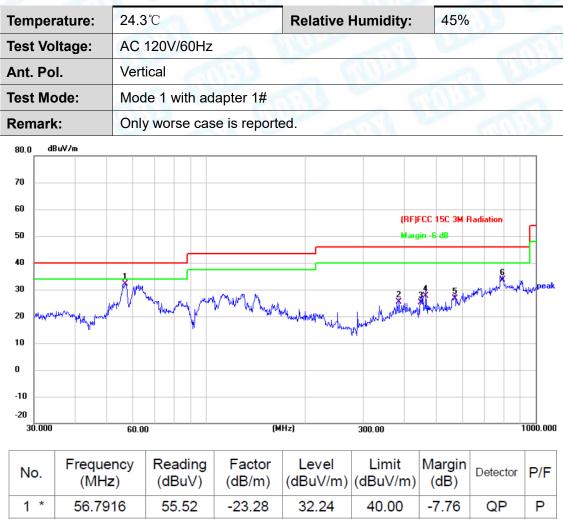
9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	24.3 ℃		Relative Humidity:	45%			
Fest Voltage:	AC 120V/	60Hz					
Ant. Pol.	Horizontal			1			
Test Mode:	Mode 1 w	th adapter 1#	CON SI -	aure			
Remark:	Only wors	e case is reporte	d.	5 . 6			
80.0 dBuV/m							
70							
60			(RF)FCC	15C 3M Radiation			
50			Margin -6	dB			
40							
30	*	nHL	on the second	up the top of the second			
20 million and and and and and and and and and an	man and the man	- MARINE MARINA MARINA	en and the second of the second and the second s				
10							
0							
-10							
-20 30.000		(МН	z) 300.00	1000.			

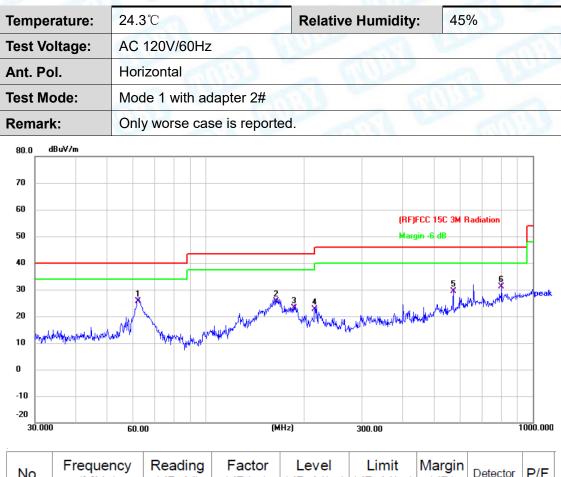
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	61.9949	48.38	-23.80	24.58	40.00	-15.42	QP	Р
2	215.2675	46.27	-24.16	22.11	43.50	-21.39	QP	Р
3	570.6100	41.07	-13.56	27.51	46.00	-18.49	QP	Р
4	661.1503	39.32	-11.78	27.54	46.00	-18.46	QP	Р
5	682.3482	37.14	-11.51	25.63	46.00	-20.37	QP	Ρ
6	801.7862	37.46	-9.02	28.44	46.00	-17.56	QP	Ρ


Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
1 *	56.7916	55.52	-23.28	32.24	40.00	-7.76	QP	Р
2	383.9318	43.81	-18.37	25.44	46.00	-20.56	QP	Р
3	447.9821	41.81	-16.67	25.14	46.00	-20.86	QP	Р
4	463.9696	43.83	-16.29	27.54	46.00	-18.46	QP	Р
5	568.6126	40.15	-13.61	26.54	46.00	-19.46	QP	Р
6	793.3958	42.75	-9.24	33.51	46.00	-12.49	QP	Ρ

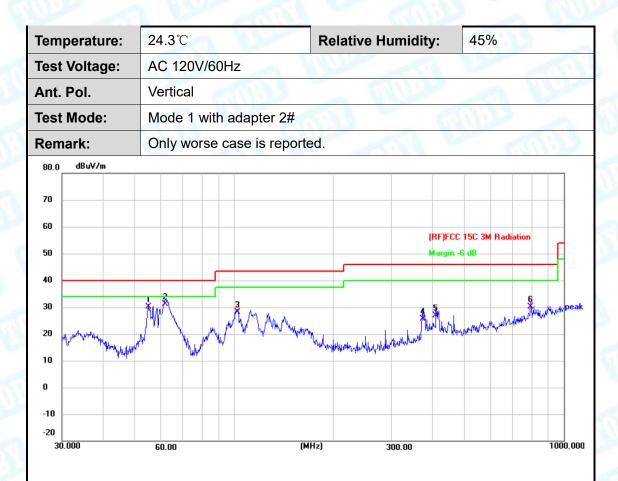

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

TOBY

Report No.: TBR-C-202302-0069-52 Page: 25 of 169

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	61.9951	49.34	-23.80	25.54	40.00	-14.46	QP	Р
2	163.7550	48.00	-22.46	25.54	43.50	-17.96	QP	Ρ
3	185.7882	47.43	-24.18	23.25	43.50	-20.25	QP	Ρ
4	215.2678	46.70	-24.16	22.54	43.50	-20.96	QP	Ρ
5	570.6100	43.04	-13.56	29.48	46.00	-16.52	QP	Ρ
6	801.7863	40.11	-9.02	31.09	46.00	-14.91	QP	Ρ


Remark:

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	54.8348	53.21	-23.06	30.15	40.00	-9.85	QP	Р
2 *	61.7781	54.84	-23.79	31.05	40.00	-8.95	QP	Р
3	102.3597	53.65	-25.47	28.18	43.50	-15.32	QP	Р
4	373.3112	44.33	-18.68	25.65	46.00	-20.35	QP	Р
5	408.9460	44.55	-17.67	26.88	46.00	-19.12	QP	Р
6	793.3960	39.49	-9.24	30.25	46.00	-15.75	QP	Ρ

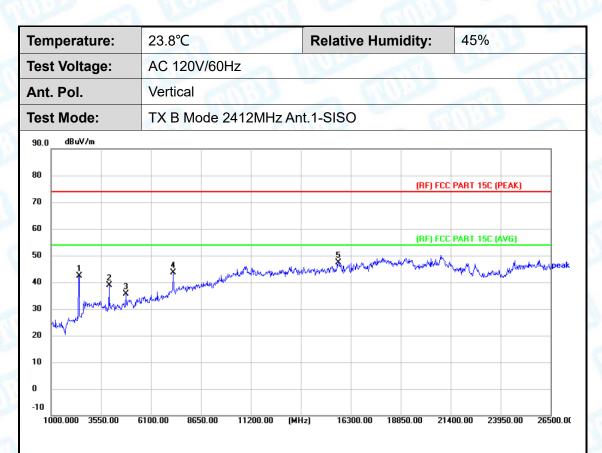
Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Above 1GHz

Temperature:	23.8°C	R	elative Humidity:	45%	
Fest Voltage:	AC 120V/60	Hz	-01	13	120
Ant. Pol.	Horizontal	M.R.	A 12	-	
Fest Mode:	TX B Mode	2412MHz Ant.	1-SISO	V.C.p.s.	
90.0 dBuV/m					
BO					
70				(RF) FCC PART 15	L (PEAK)
50				(RF) FCC PART 15	
50 1.		a manual mark	mm. Marine Manus and an and	Mum Marinet Marine	Market Market Market Pea
1. MAN	In when we want and service	hall general the first	mm. Anna Anna anna		
0					
10 1000.000 3550.00	6100.00 8650	.00 11200.00 (N	HHz) 16300.00 1885	0.00 21400.00	23950.00 26500.
No Freq	uency Read	ling Factor	Level Lir	nit Margin	Detector P/

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2402.500	61.08	-19.63	41.45	74.00	-32.55	peak	Ρ
2	4825.000	50.54	-13.98	36.56	74.00	-37.44	peak	Ρ
3	10817.500	42.33	3.83	46.16	74.00	-27.84	peak	Ρ
4	14948.500	39.21	7.37	46.58	74.00	-27.42	peak	Ρ
5 *	16580.500	42.08	5.82	47.90	74.00	-26.10	peak	Ρ


Remark:

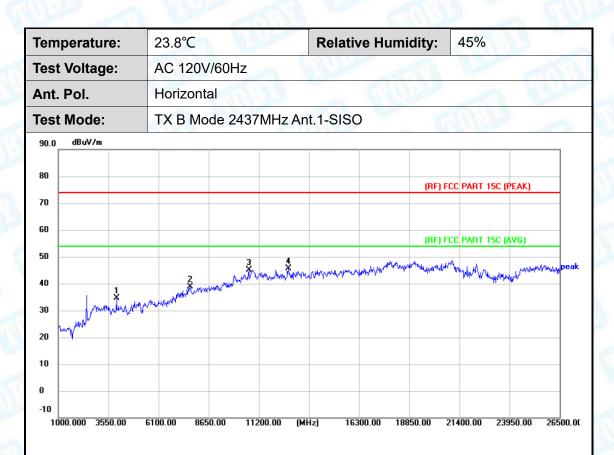
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected. 5. No report for the reliance which more then 20dB below the prescribed limit

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2428.000	61.96	-19.54	42.42	74.00	-31.58	peak	Р
2	3958.000	55.57	-16.81	38.76	74.00	-35.24	peak	Р
3	4825.000	49.54	-13.98	35.56	74.00	-38.44	peak	Р
4	7247.500	52.38	-8.72	43.66	74.00	-30.34	peak	Р
5 *	15662.500	42.85	4.46	47.31	74.00	-26.69	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	51.45	-16.81	34.64	74.00	-39.36	peak	Р
2	7706.500	45.74	-6.95	38.79	74.00	-35.21	peak	Р
3	10690.000	42.27	2.96	45.23	74.00	-28.77	peak	Р
4 *	12704.500	40.03	5.63	45.66	74.00	-28.34	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

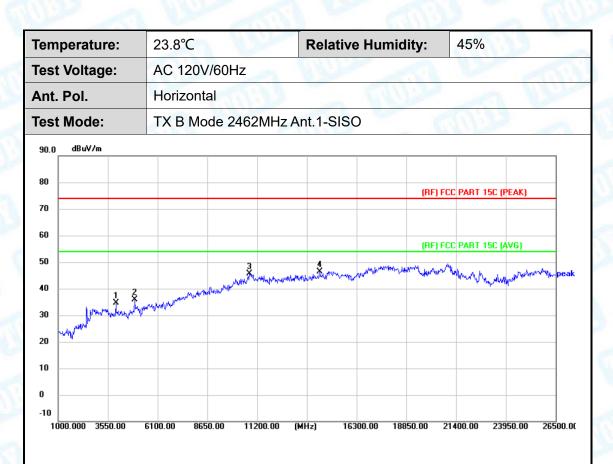
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

emperature:	23.8°C	Relative Humidity:	45%
est Voltage:	AC 120V/60Hz	The state	
nt. Pol.	Vertical	The second	1
est Mode:	TX B Mode 2437MH	z Ant.1-SISO	TOD S
90.0 dBuV/m			
70		(RF) Fi	CC PART 15C (PEAK)
50			
50		(BF) F0	
10 12 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12	and the full of the stand of th	man provident the man shared and	· Www.
20			
10			
-10			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	54.48	-16.81	37.67	74.00	-36.33	peak	Р
2	4876.000	49.76	-13.89	35.87	74.00	-38.13	peak	Р
3	7298.500	49.87	-8.63	41.24	74.00	-32.76	peak	Р
4	10945.000	40.98	4.20	45.18	74.00	-28.82	peak	Р
5 *	16121.500	43.50	4.06	47.56	74.00	-26.44	peak	Ρ


1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

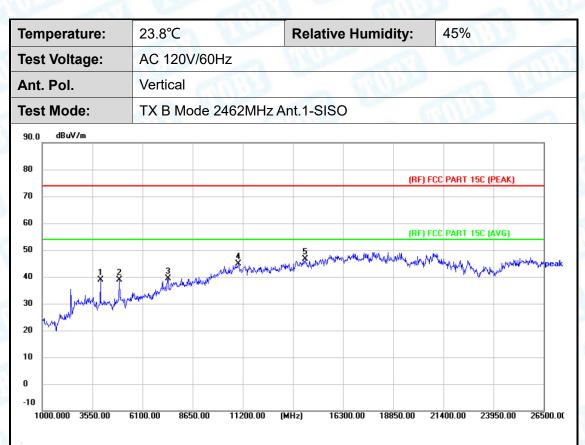
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected. 5. No report for the emission which more than 20dB below the prescribed limit.

- 6. The peak value < average limit, So only show the peak value.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	51.37	-16.81	34.56	74.00	-39.44	peak	Ρ
2	4927.000	49.63	-13.76	35.87	74.00	-38.13	peak	Ρ
3	10817.500	41.85	3.83	45.68	74.00	-28.32	peak	Ρ
4 *	14413.000	39.48	6.94	46.42	74.00	-27.58	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

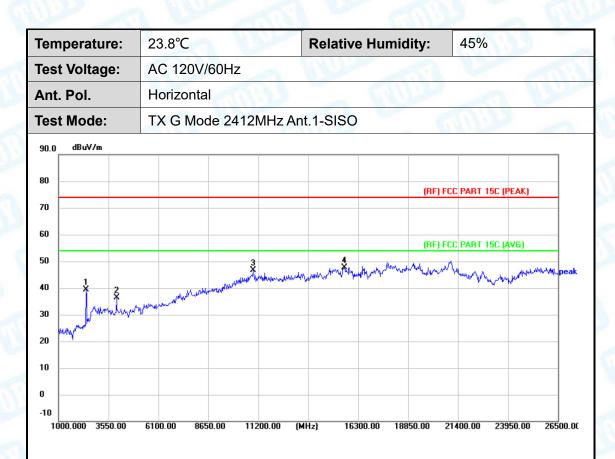
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	3958.000	55.73	-16.81	38.92	74.00	-35.08	peak	Р
2	4927.000	52.57	-13.76	38.81	74.00	-35.19	peak	Р
3	7400.500	47.74	-8.44	39.30	74.00	-34.70	peak	Р
4	10970.500	40.80	4.18	44.98	74.00	-29.02	peak	Р
5 *	14362.000	39.79	6.73	46.52	74.00	-27.48	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

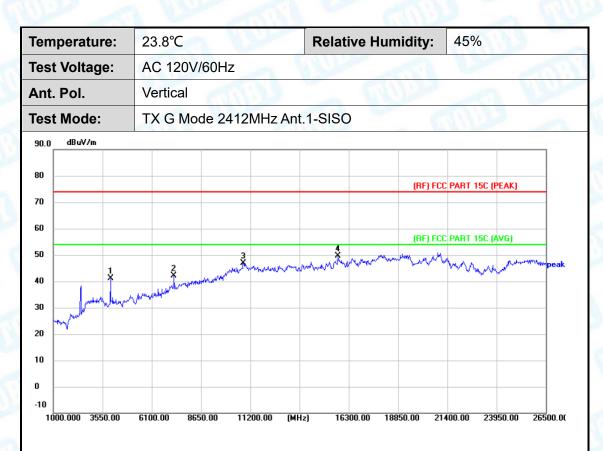
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2402.500	59.10	-19.63	39.47	74.00	-34.53	peak	Р
2	3958.000	53.28	-16.81	36.47	74.00	-37.53	peak	Р
3	10945.000	42.37	4.20	46.57	74.00	-27.43	peak	Р
4 *	15611.500	42.77	4.90	47.67	74.00	-26.33	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

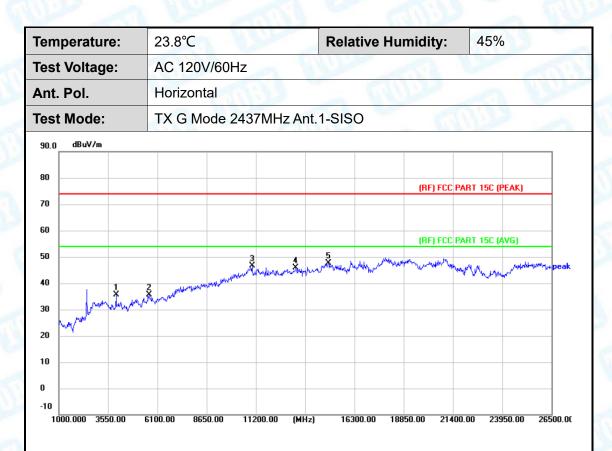
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	57.92	-16.81	41.11	74.00	-32.89	peak	Р
2	7247.500	50.73	-8.72	42.01	74.00	-31.99	peak	Р
3	10843.000	43.02	3.96	46.98	74.00	-27.02	peak	Р
4 *	15739.000	45.51	4.18	49.69	74.00	-24.31	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

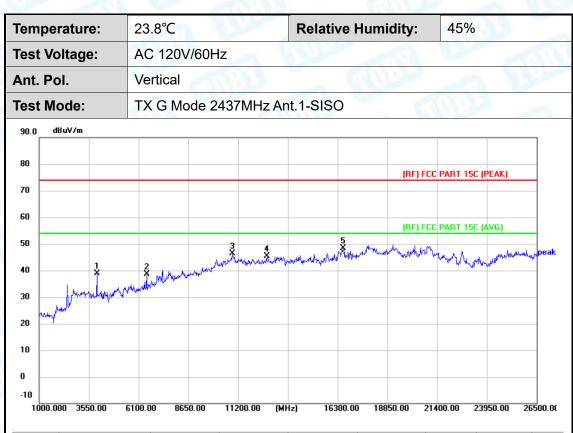
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	52.38	-16.81	35.57	74.00	-38.43	peak	Р
2	5666.500	47.88	-12.37	35.51	74.00	-38.49	peak	Р
3	10996.000	42.57	4.18	46.75	74.00	-27.25	peak	Ρ
4	13240.000	40.07	5.80	45.87	74.00	-28.13	peak	Р
5 *	14948.500	40.20	7.37	47.57	74.00	-26.43	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

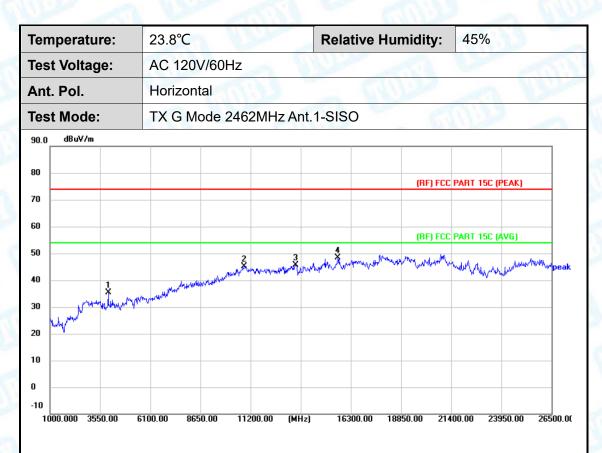
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3960.961	55.61	-16.80	38.81	74.00	-35.19	peak	Ρ
2	6513.514	49.37	-10.79	38.58	74.00	-35.42	peak	Р
3	10903.904	42.07	4.22	46.29	74.00	-27.71	peak	Ρ
4	12716.216	39.75	5.60	45.35	74.00	-28.65	peak	Ρ
5 *	16596.096	42.32	5.94	48.26	74.00	-25.74	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

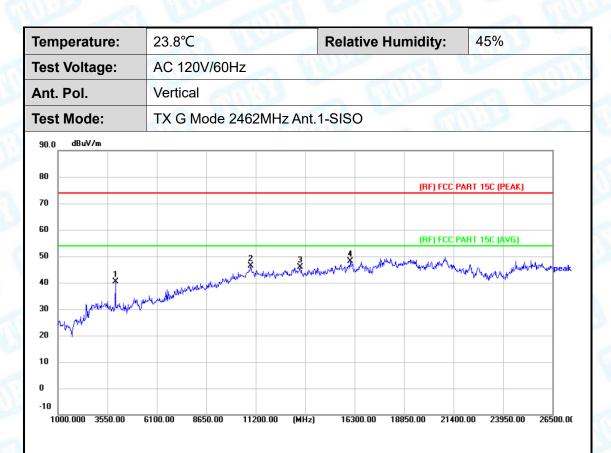
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	52.22	-16.81	35.41	74.00	-38.59	peak	Р
2	10868.500	41.12	4.07	45.19	74.00	-28.81	peak	Р
3	13495.000	39.59	6.11	45.70	74.00	-28.30	peak	Р
4 *	15637.000	43.61	4.67	48.28	74.00	-25.72	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

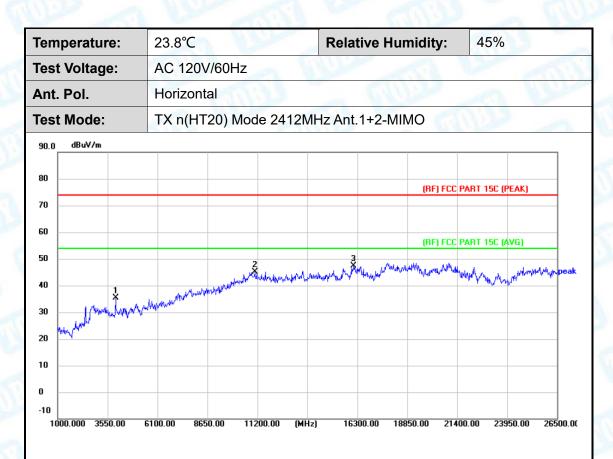
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	57.10	-16.81	40.29	74.00	-33.71	peak	Р
2	10945.000	42.15	4.20	46.35	74.00	-27.65	peak	Р
3	13495.000	39.68	6.11	45.79	74.00	-28.21	peak	Р
4 *	16070.500	44.11	3.91	48.02	74.00	-25.98	peak	Р

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

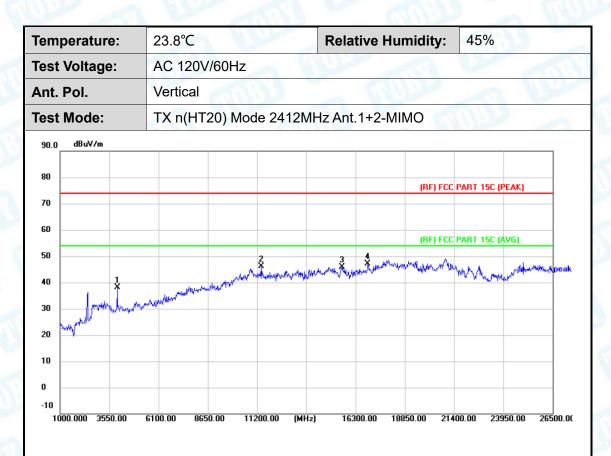
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	52.15	-16.81	35.34	74.00	-38.66	peak	Р
2	11072.500	41.36	3.87	45.23	74.00	-28.77	peak	Р
3 *	16121.500	43.23	4.06	47.29	74.00	-26.71	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

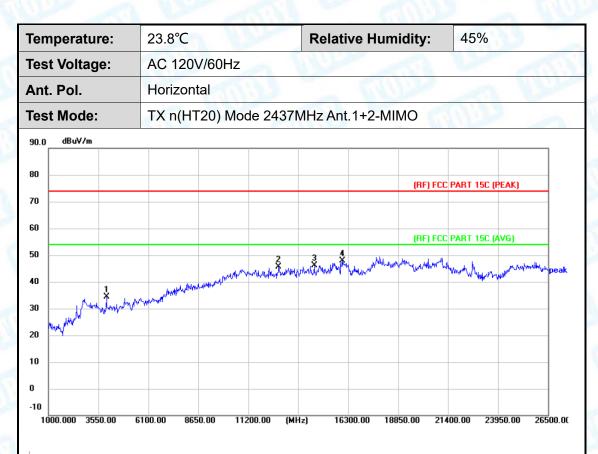
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	54.86	-16.81	38.05	74.00	-35.95	peak	Р
2	11404.000	41.08	4.98	46.06	74.00	-27.94	peak	Р
3	15611.500	40.94	4.90	45.84	74.00	-28.16	peak	Р
4 *	16937.500	39.92	7.23	47.15	74.00	-26.85	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

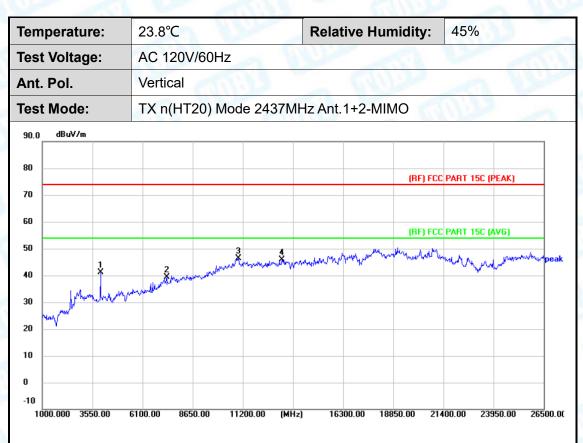
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	51.29	-16.81	34.48	74.00	-39.52	peak	Р
2	12755.500	40.09	5.49	45.58	74.00	-28.42	peak	Р
3	14566.000	39.25	6.79	46.04	74.00	-27.96	peak	Р
4 *	15994.000	44.48	3.39	47.87	74.00	-26.13	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

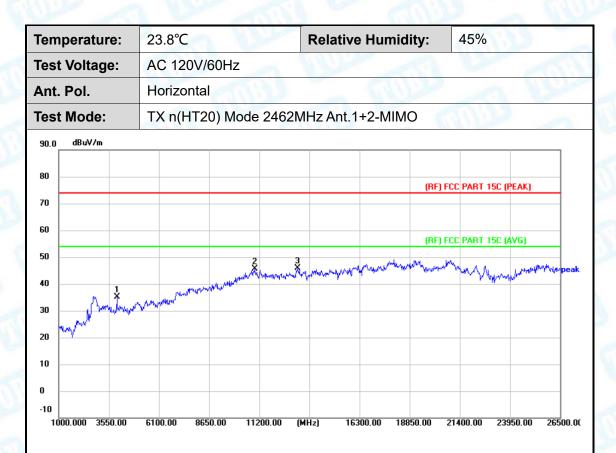
5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	57.98	-16.81	41.17	74.00	-32.83	peak	Р
2	7324.000	47.95	-8.59	39.36	74.00	-34.64	peak	Р
3 *	10970.500	42.18	4.18	46.36	74.00	-27.64	peak	Р
4	13189.000	40.09	5.81	45.90	74.00	-28.10	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

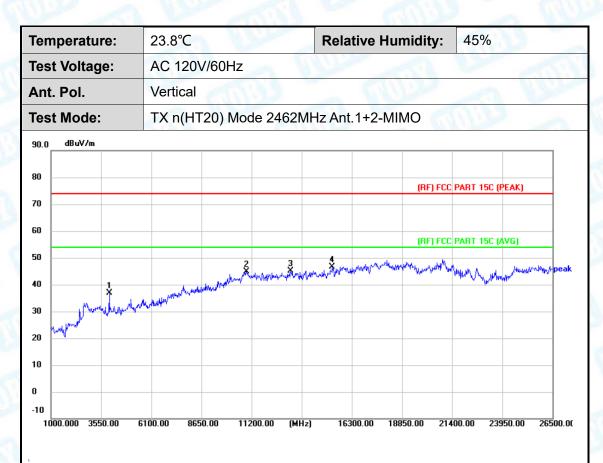
Report No.: TBR-C-202302-0069-52 Page: 43 of 169

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	52.04	-16.81	35.23	74.00	-38.77	peak	Р
2	10970.500	41.40	4.18	45.58	74.00	-28.42	peak	Р
3 *	13138.000	39.94	5.83	45.77	74.00	-28.23	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

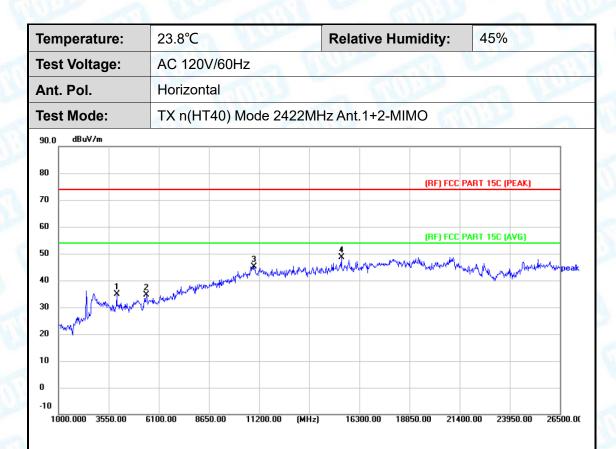
5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	53.79	-16.81	36.98	74.00	-37.02	peak	Р
2	10945.000	40.64	4.20	44.84	74.00	-29.16	peak	Ρ
3	13189.000	39.30	5.81	45.11	74.00	-28.89	peak	Ρ
4 *	15305.500	40.13	6.51	46.64	74.00	-27.36	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

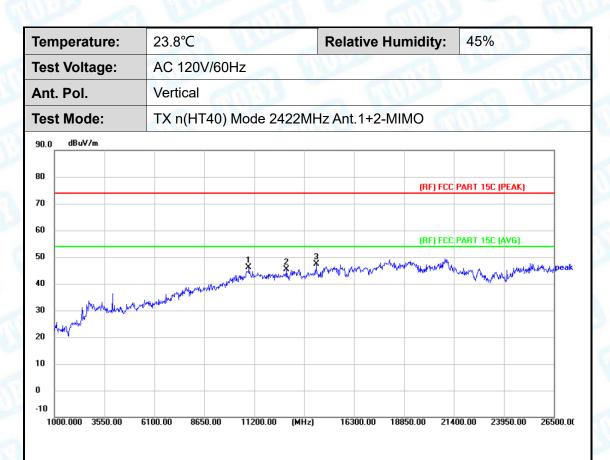
Report No.: TBR-C-202302-0069-52 Page: 45 of 169

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	51.68	-16.81	34.87	74.00	-39.13	peak	Р
2	5462.500	47.14	-12.39	34.75	74.00	-39.25	peak	Р
3	10945.000	41.02	4.20	45.22	74.00	-28.78	peak	Р
4 *	15382.000	42.60	5.98	48.58	74.00	-25.42	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

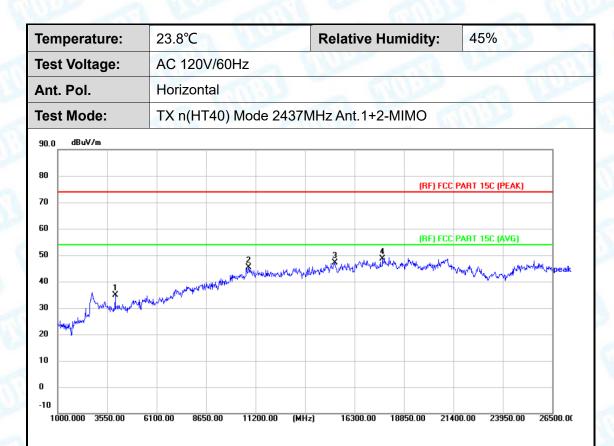
5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10919.500	42.00	4.21	46.21	74.00	-27.79	peak	Ρ
2	12857.500	40.12	5.18	45.30	74.00	-28.70	peak	Р
3 *	14362.000	40.58	6.73	47.31	74.00	-26.69	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

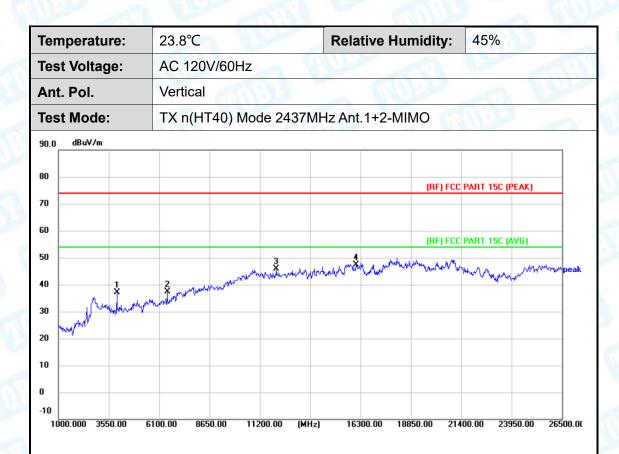
Report No.: TBR-C-202302-0069-52 Page: 47 of 169

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	51.68	-16.81	34.87	74.00	-39.13	peak	Ρ
2	10843.000	41.39	3.96	45.35	74.00	-28.65	peak	Ρ
3	15280.000	40.53	6.48	47.01	74.00	-26.99	peak	Р
4 *	17753.500	36.41	12.34	48.75	74.00	-25.25	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	53.88	-16.81	37.07	74.00	-36.93	peak	Ρ
2	6508.000	48.10	-10.81	37.29	74.00	-36.71	peak	Р
3	12041.500	40.53	5.28	45.81	74.00	-28.19	peak	Р
4 *	16070.500	43.57	3.91	47.48	74.00	-26.52	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

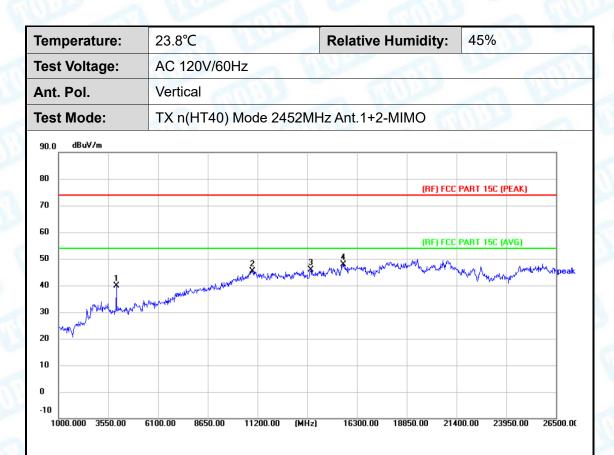
Report No.: TBR-C-202302-0069-52 Page: 49 of 169

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11633.500	40.31	4.68	44.99	74.00	-29.01	peak	Ρ
2	13469.500	38.88	6.13	45.01	74.00	-28.99	peak	Ρ
3 *	16453.000	41.55	4.85	46.40	74.00	-27.60	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

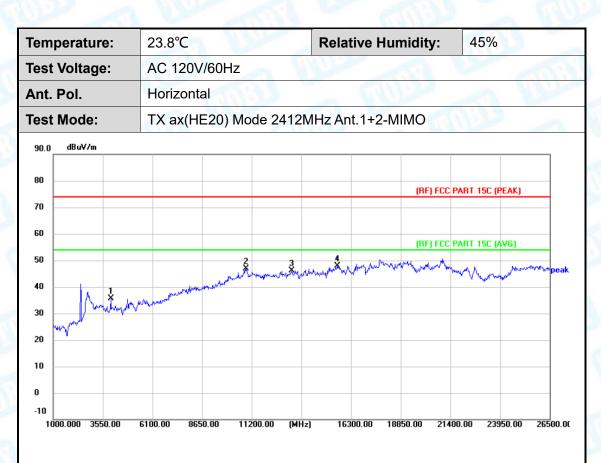
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	56.81	-16.81	40.00	74.00	-34.00	peak	Р
2	10945.000	41.27	4.20	45.47	74.00	-28.53	peak	Р
3	13928.500	39.04	6.85	45.89	74.00	-28.11	peak	Р
4 *	15586.000	42.87	5.06	47.93	74.00	-26.07	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

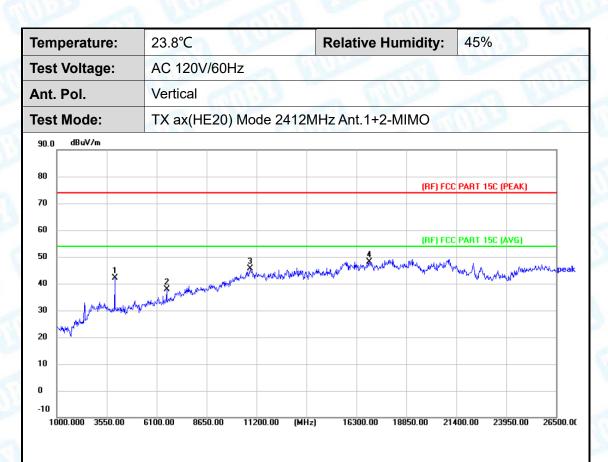
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	52.50	-16.81	35.69	74.00	-38.31	peak	Р
2	10894.000	42.71	4.20	46.91	74.00	-27.09	peak	Р
3	13265.500	40.41	5.80	46.21	74.00	-27.79	peak	Р
4 *	15611.500	42.94	4.90	47.84	74.00	-26.16	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

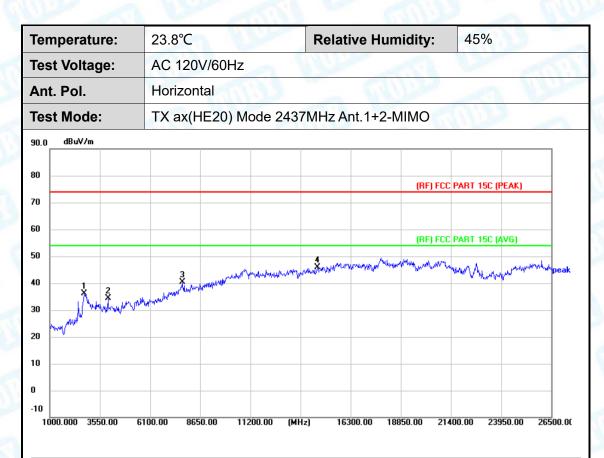
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	59.05	-16.81	42.24	74.00	-31.76	peak	Р
2	6610.000	48.21	-10.41	37.80	74.00	-36.20	peak	Р
3	10868.500	41.52	4.07	45.59	74.00	-28.41	peak	Р
4 *	16963.000	40.65	7.39	48.04	74.00	-25.96	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

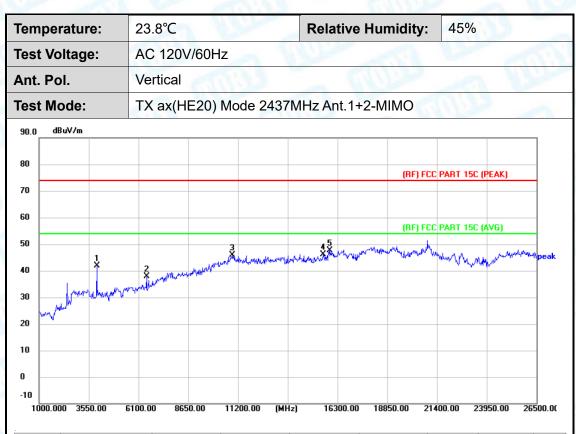
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2734.000	54.69	-18.67	36.02	74.00	-37.98	peak	Р
2	3958.000	51.30	-16.81	34.49	74.00	-39.51	peak	Р
3	7732.000	47.28	-6.92	40.36	74.00	-33.64	peak	Р
4 *	14617.000	39.09	6.86	45.95	74.00	-28.05	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

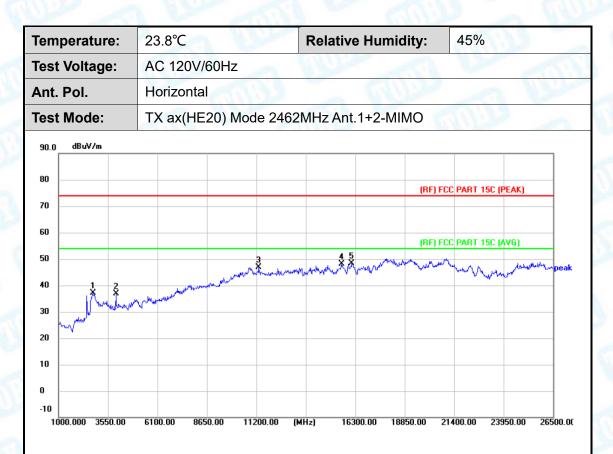
5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	58.60	-16.81	41.79	74.00	-32.21	peak	Р
2	6508.000	48.79	-10.81	37.98	74.00	-36.02	peak	Ρ
3	10894.000	41.69	4.20	45.89	74.00	-28.11	peak	Р
4	15560.500	40.96	5.17	46.13	74.00	-27.87	peak	Ρ
5 *	15917.500	44.22	3.39	47.61	74.00	-26.39	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

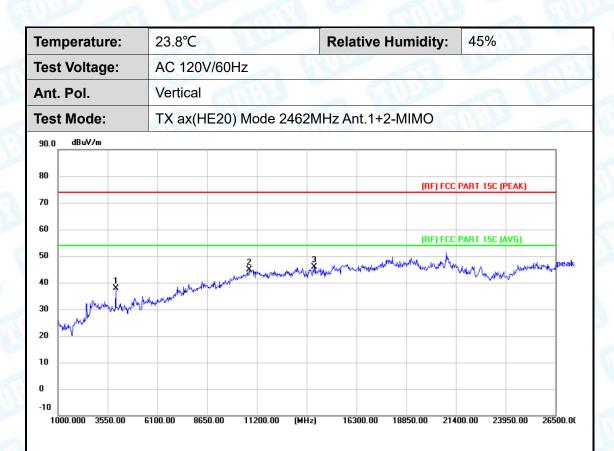
Report No.: TBR-C-202302-0069-52 Page: 55 of 169

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2785.000	55.62	-18.39	37.23	74.00	-36.77	peak	Р
2	3958.000	53.67	-16.81	36.86	74.00	-37.14	peak	Р
3	11327.500	41.89	4.89	46.78	74.00	-27.22	peak	Р
4	15586.000	43.15	5.06	48.21	74.00	-25.79	peak	Р
5 *	16121.500	44.26	4.06	48.32	74.00	-25.68	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

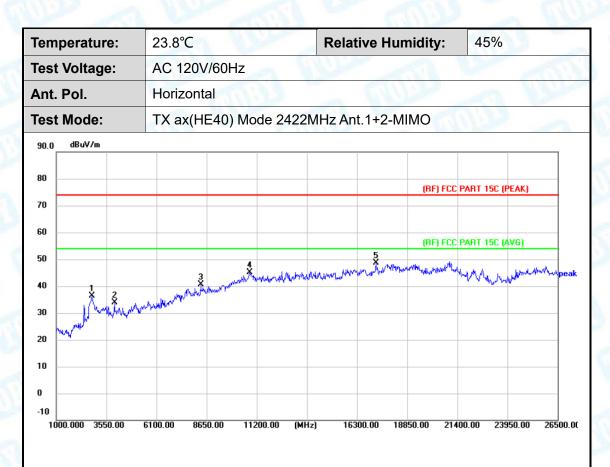
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	54.60	-16.81	37.79	74.00	-36.21	peak	Р
2	10817.500	40.94	3.83	44.77	74.00	-29.23	peak	Р
3 *	14132.500	39.59	6.19	45.78	74.00	-28.22	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

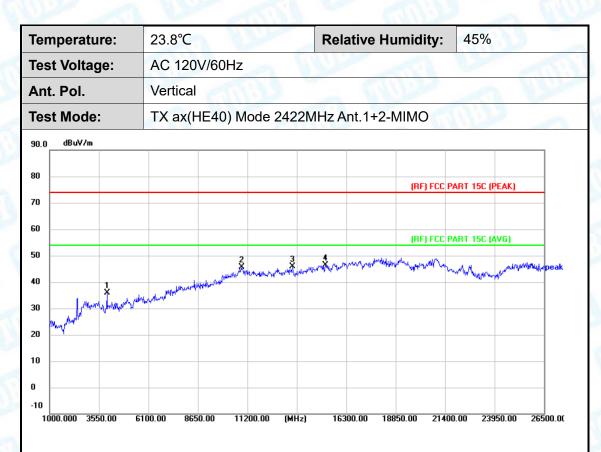
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2810.500	54.59	-18.27	36.32	74.00	-37.68	peak	Р
2	3958.000	50.80	-16.81	33.99	74.00	-40.01	peak	Р
3	8344.000	46.58	-5.84	40.74	74.00	-33.26	peak	Р
4	10843.000	41.18	3.96	45.14	74.00	-28.86	peak	Р
5 *	17269.000	38.92	9.65	48.57	74.00	-25.43	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

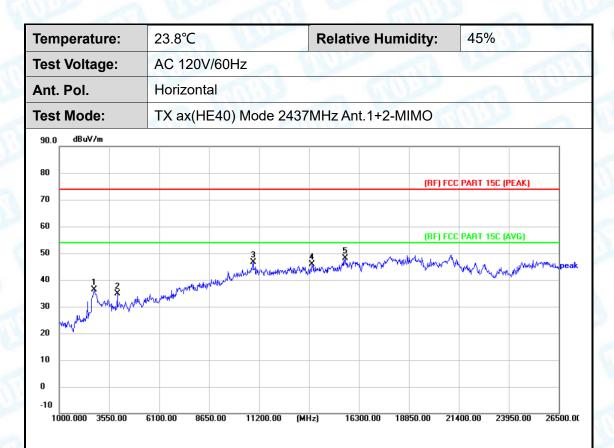
5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	52.79	-16.81	35.98	74.00	-38.02	peak	Р
2	10894.000	41.34	4.20	45.54	74.00	-28.46	peak	Р
3	13520.500	39.83	6.07	45.90	74.00	-28.10	peak	Р
4 *	15229.000	40.01	6.28	46.29	74.00	-27.71	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

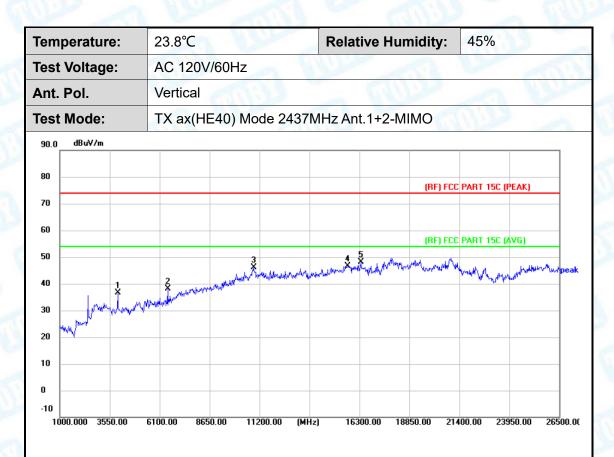
Report No.: TBR-C-202302-0069-52 Page: 59 of 169

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2785.000	54.65	-18.39	36.26	74.00	-37.74	peak	Р
2	3958.000	51.76	-16.81	34.95	74.00	-39.05	peak	Р
3	10894.000	42.48	4.20	46.68	74.00	-27.32	peak	Р
4	13903.000	38.76	7.01	45.77	74.00	-28.23	peak	Р
5 *	15586.000	42.95	5.06	48.01	74.00	-25.99	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

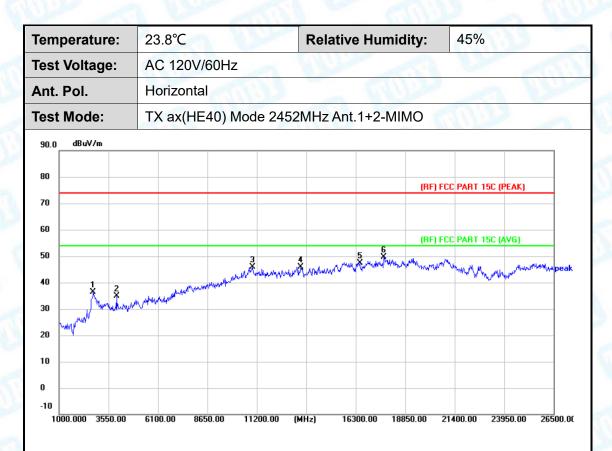
5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	53.35	-16.81	36.54	74.00	-37.46	peak	Ρ
2	6508.000	49.03	-10.81	38.22	74.00	-35.78	peak	Р
3	10894.000	42.03	4.20	46.23	74.00	-27.77	peak	Р
4	15688.000	42.46	4.23	46.69	74.00	-27.31	peak	Р
5 *	16376.500	43.74	4.37	48.11	74.00	-25.89	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

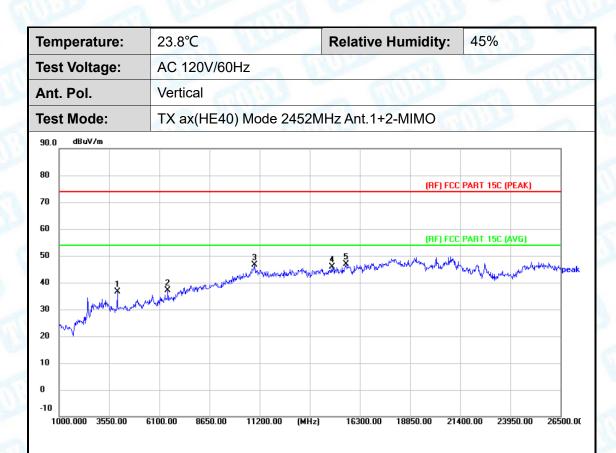
Report No.: TBR-C-202302-0069-52 Page: 61 of 169

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2759.500	54.99	-18.52	36.47	74.00	-37.53	peak	Р
2	3958.000	51.70	-16.81	34.89	74.00	-39.11	peak	Р
3	10970.500	41.75	4.18	45.93	74.00	-28.07	peak	Р
4	13469.500	39.85	6.13	45.98	74.00	-28.02	peak	Р
5	16504.000	42.12	5.29	47.41	74.00	-26.59	peak	Р
6 *	17753.500	37.39	12.34	49.73	74.00	-24.27	peak	Ρ

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)


3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3958.000	53.38	-16.81	36.57	74.00	-37.43	peak	Ρ
2	6533.500	47.94	-10.71	37.23	74.00	-36.77	peak	Р
3	10945.000	42.31	4.20	46.51	74.00	-27.49	peak	Р
4	14872.000	38.64	7.14	45.78	74.00	-28.22	peak	Р
5 *	15586.000	41.70	5.06	46.76	74.00	-27.24	peak	Ρ

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which more than 20dB below the prescribed limit.

Report No.: TBR-C-202302-0069-52 Page: 63 of 169

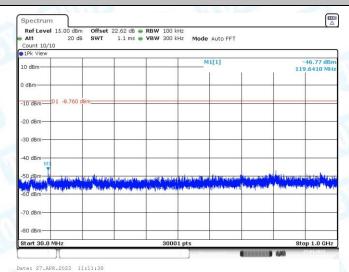
----Conducted Unwanted Emissions

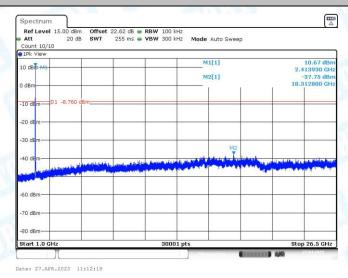
Test Mode	Antenna	Channel	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
	S	- C.U.S.	Reference	11.24	11.24		PASS
	Ant1	2412	30~1000	11.24	-46.77	≤-8.76	PASS
			1000~26500	11.24	-37.75	≤-8.76	PASS
	1000		Reference	10.67	10.67	12	PASS
	Ant2	2412	30~1000	10.67	-47.95	≤-9.33	PASS
			1000~26500	10.67	-38.32	≤-9.33	PASS
			Reference	10.95	10.95		PASS
	Ant1	2437	30~1000	10.95	-48.05	≤-9.05	PASS
			1000~26500	10.95	-38.52	≤-9.05	PASS
11B			Reference	10.32	10.32		PASS
	Ant2	2437	30~1000	10.32	-46.29	≤-9.68	PASS
	6		1000~26500	10.32	-38.08	≤-9.68	PASS
		5 B 5	Reference	11.26	11.26	N	PASS
	Ant1	2462	30~1000	11.26	-48.07	≤-8.74	PASS
	1 1 2		1000~26500	11.26	-39.13	≤-8.74	PASS
		1100	Reference	10.22	10.22		PASS
	Ant2	2462	30~1000	10.22	-47.81	≤-9.78	PASS
	100		1000~26500	10.22	-38.42	≤-9.78	PASS
0	1012		Reference	6.82	6.82		PASS
	Ant1	2412	30~1000	6.82	-47.16	≤-13.18	PASS
			1000~26500	6.82	-38.79	≤-13.18	PASS
			Reference	6.57	6.57		PASS
	Ant2	2412	30~1000	6.57	-47.47	≤-13.43	PASS
			1000~26500	6.57	-38.31	≤-13.43	PASS
	Ant1	2437	Reference	7.42	7.42		PASS
			30~1000	7.42	-47.85	≤-12.58	PASS
			1000~26500	7.42	-38.13	≤-12.58	PASS
11G	Ant2	2437	Reference	6.61	6.61		PASS
			30~1000	6.61	-47.81	≤-13.39	PASS
			1000~26500	6.61	-38.15	≤-13.39	PASS
	Ant1	1.164	Reference	7.21	7.21		PASS
		2462	30~1000	7.21	-47.56	≤-12.79	PASS
		2102	1000~26500	7.21	-38.91	≤-12.79	PASS
		2462	Reference	6.56	6.56		PASS
	Ant2		30~1000	6.56	-47.75	≤-13.44	PASS
	,		1000~26500	6.56	-38.36	≤-13.44	PASS
0.0			Reference	4.84	4.84		PASS
	Ant1	2412	30~1000	4.84	-47.59	≤-15.16	PASS
			1000~26500	4.84	-38.47	≤-15.16	PASS
			Reference	4.64	4.64		PASS
	Ant2	2412	30~1000	4.64	-47.14	≤-15.36	PASS
			1000~26500	4.64	-38.32	≤-15.36	PASS
		5000	Reference	5.30	5.30		PASS
	Ant1	2437	30~1000	5.30	-47.56	≤-14.7	PASS
			1000~26500	5.30	-38.6	≤-14.7	PASS
11N20MIMO	12	2437	Reference	4.81	4.81		PASS
	Ant2		30~1000	4.81	-46.75	≤-15.19	PASS
			1000~26500	4.81	-38.24	≤-15.19	PASS
	Ant1	2462	Reference	5.33	5.33		PASS
			30~1000	5.33	-47.18	≤-14.67	PASS
			1000~26500	5.33	-38.29	≤-14.67	PASS
			Reference	4.61	4.61		PASS
	Ant2	2462	30~1000	4.61	-48.22	≤-15.39	PASS
		2702	1000~26500	4.61	-40.22	≤-15.39	PASS
11N40MIMO	Ant1	2422	Reference	1.05	1.05		PASS
UNINIO	And	2422	I CELETELICE	1.05	1.00		FASS

TOBY Port of the Cotecone Group


Report No.: TBR-C-202302-0069-52 Page: 64 of 169

			00,4000		T		
1111		3 03	30~1000	1.05	-47.75	≤-18.95	PASS
	-		1000~26500	1.05	-38.07	≤-18.95	PASS
			Reference	0.07	0.07		PASS
	Ant2	2422	30~1000	0.07	-46.9	≤-19.93	PASS
6110			1000~26500	0.07	-38.12	≤-19.93	PASS
			Reference	1.15	1.15		PASS
	Ant1	2437	30~1000	1.15	-47.32	≤-18.85	PASS
			1000~26500	1.15	-38.27	≤-18.85	PASS
		SHILL P	Reference	0.25	0.25	- AL	PASS
	Ant2	2437	30~1000	0.25	-47.79	≤-19.75	PASS
-			1000~26500	0.25	-38.83	≤-19.75	PASS
			Reference	1.16	1.16		PASS
	Ant1	2452	30~1000	1.16	-47.04	≤-18.84	PASS
			1000~26500	1.16	-38.59	≤-18.84	PASS
	100	1.1	Reference	0.15	0.15		PASS
190	Ant2	2452	30~1000	0.15	-47.24	≤-19.85	PASS
			1000~26500	0.15	-38.64	≤-19.85	PASS
		8 J	Reference	4.46	4.46		PASS
	Ant1	2412	30~1000	4.46	-48.1	≤-15.54	PASS
i dans	7 414 1	2712	1000~26500	4.46	-38.52	≤-15.54	PASS
			Reference	4.31	4.31	- 10.01	PASS
	Ant2	2412	30~1000	4.31	-48.05	≤-15.69	PASS
-			1000~26500	4.31	-38.16	≤-15.69	PASS
-			Reference	4.52	4.52		PASS
10/10/20	Ant1 Ant2	2437 2437	30~1000	4.52	-47.69	<u></u> ≤-15.48	PASS
1AX20MIMO			1000~26500	4.52	-38.68	≤-15.48	PASS
E Ban			Reference	4.21	4.21		PASS
			30~1000	4.21	-47.09	≤-15.79	PASS
- Internet	Ant1	2462 2462	1000~26500	4.21	-37.76	≤-15.79	PASS
			Reference	4.72	4.72		PASS
A 14			30~1000	4.72	-48.56	≤-15.28	PASS
			1000~26500	4.72	-38.2	≤-15.28	PASS
			Reference	4.04	4.04		PASS
-	Ant2		30~1000	4.04	-47.28	≤-15.96	PASS
11111			1000~26500	4.04	-38.5	≤-15.96	PASS
			Reference	0.81	0.81		PASS
2	Ant1	2422	30~1000	0.81	-47.42	≤-19.19	PASS
1000	1		1000~26500	0.81	-38.56	≤-19.19	PASS
21153	Ant2	2422	Reference	0.16	0.16		PASS
			30~1000	0.16	-44.84	≤-19.84	PASS
			1000~26500	0.16	-37.59	≤-19.84	PASS
	1300	2437	Reference	0.80	0.80		PASS
S 13 5	Ant1		30~1000	0.80	-47.78	≤-19.2	PASS
			1000~26500	0.80	-38.75	≤-19.2	PASS
1AX40MIMO		2437	Reference	0.20	0.20	6	PASS
	Ant2		30~1000	0.20	-47.9	≤-19.8	PASS
			1000~26500	0.20	-38.81	≤-19.8	PASS
		2452	Reference	0.92	0.92		PASS
	Ant1		30~1000	0.92	-46.8	≤-19.08	PASS
1150	/ ulti	2402	1000~26500	0.92	-38.97	≤-19.08	PASS
2 22				-0.04	-0.04		
	A 10	Ant2 2452	Reference			< 20.04	PASS
	Antz		30~1000	-0.04	-47.81	≤-20.04	PASS
			1000~26500	-0.04	-38.37	≤-20.04	PASS

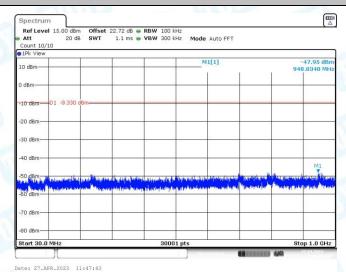


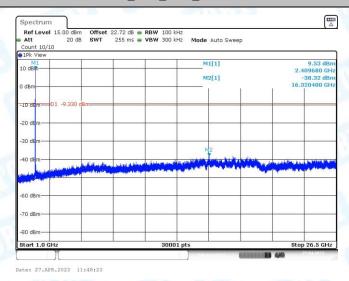

Report No.: TBR-C-202302-0069-52 Page: 65 of 169

11B_Ant1_2412_0~Reference

11B_Ant1_2412_30~1000

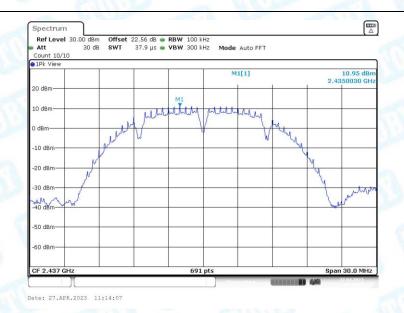
11B_Ant1_2412_1000~26500



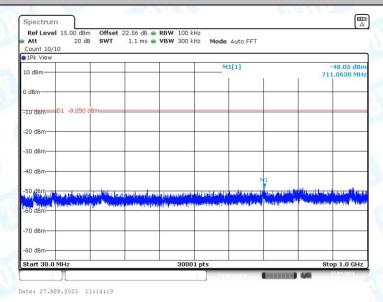

Report No.: TBR-C-202302-0069-52 Page: 66 of 169

11B_Ant2_2412_0~Reference

11B_Ant2_2412_30~1000

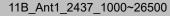


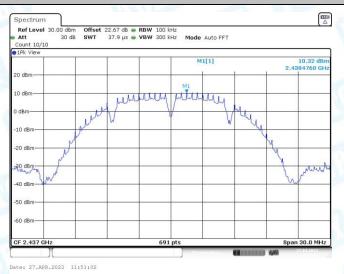
11B_Ant2_2412_1000~26500



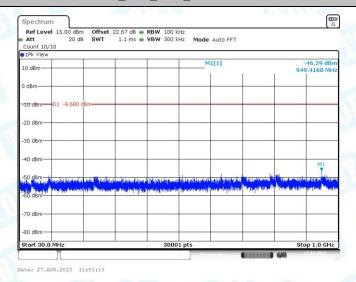
Report No.: TBR-C-202302-0069-52 Page: 67 of 169

11B_Ant1_2437_0~Reference

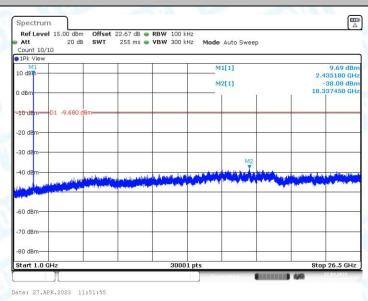



11B_Ant1_2437_30~1000

Att 20 dB Count 10/10	Offset 22.56 dB		ode Auto Sweep				
1Pk View	1 1	1	M1[1]		10.11 dBr		
10 dB			M1[1] M2[1]		2.437730 GH		
					-38.52 dBr 15.871600 GH		
0 dBm				Ĩ.	10.071000 0		
-10 demD1 -9.050 dBn	0		_		_		
-20 dBm							
-30 dBm							
10.47			M2				
-40 dBm	المغالية ومعرية ومعرفه والمعالية	والمتحدة التعاصية التحصيم	and a provide the second states	A second support	Carlos and the second		
Martin Martin Martin	and the state process of a second state of the		_				
-60 dBm							
-70 dBm	-						
-80 dBm							
Start 1.0 GHz		30001 pts			Stop 26.5 GHz		



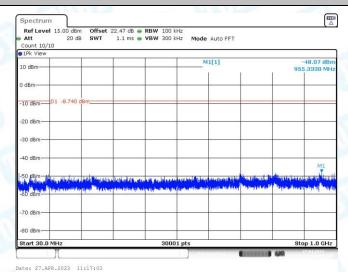
Report No.: TBR-C-202302-0069-52 Page: 68 of 169

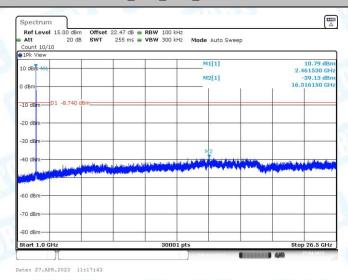


11B_Ant2_2437_0~Reference

11B_Ant2_2437_30~1000

11B_Ant2_2437_1000~26500

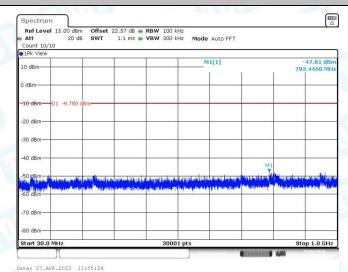


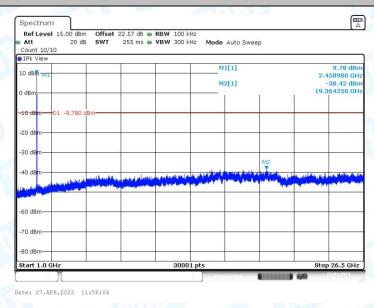

Report No.: TBR-C-202302-0069-52 Page: 69 of 169

11B_Ant1_2462_0~Reference

11B_Ant1_2462_30~1000

11B_Ant1_2462_1000~26500




Report No.: TBR-C-202302-0069-52 Page: 70 of 169

11B_Ant2_2462_0~Reference

11B_Ant2_2462_30~1000

11B_Ant2_2462_1000~26500

