

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC183407 Page: 1 of 21

DFS Test Report

FCC ID: XVG50-0103-AP-BT

Report No.	:	TB-FCC183407
Applicant	-	Amino Communications Ltd
Equipment Under Tes	st (E	EUT)
EUT Name	-	IPTV Receiver
Model No.	-	Amigo 7X V2,
Series Model No.	:	Amigo 7X V3, Amigo 7Xzzzzzzz(zzzzzzz can be combination of A~Z, a~z, 0~9, "-", "/", "blank" for marketing purpose)
Brand Name	÷	AMINO, Camino
Sample ID	:	20210821-21-01#& 20210821-21-2#
Receipt Date	:	2021-08-23
Test Date		2021-08-23 to 2021-09-11
Issue Date	:	2021-09-11
Standards		KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r02
Test Method	:	ANSI C63.10: 2013
Conclusions	:	PASS
		In the configuration tested, the EUT complied with the standards specified above
Test/Witness Enginee	er	: Seven Wu
Test/Witness Engine	r	· TAIRA CI

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CON	NTENTS	1
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	
	1.2 General Description of EUT (Equipment Under Test)	4
	1.5 Test Facility	6
2.	TEST SOFTWARE	
3.	TEST EQUIPMENT	7
4.	U-NII DFS RULE REQUIREMENTS	8
	4.1. Applicability of DFS requirements	8
	4.2. Test Limits and Radar Signal Parameters	9
5.	CALIBRATION OF RADAR WAVEFORM	
	5.1. Test Procedure	
	5.2. Conducted Calibration Test Setup	15
	5.3. Deviation from Test Standard	
	5.4. Radar Waveform Calibration Result	
6.	U-NII DFS TESTING	
	6.1. Test Procedure	
	6.2. Test Setup	16
7.	TESTING RESULTS	
	7.1. Summary of Test Results	
	7.2. DFS Detection Threshold	
	7.3. Channel Closing Transmission Time	
	7.4. Non-occupancy Period	21

Revision History

Report No.	Version	Description	Issued Date
TB-FCC183407	Rev.01	Initial issue of report	2021-09-11
ROPP		ALL	mos-
	1000	A LONG	
EOS			MORT
	100		B
EBA	2 000	THE PARTY OF THE P	0081
	2	The second second	
	TOP	ALL AND AND A	6033
FOR		AND AND	TOD'S
	TOPP	A CONTRACTOR	and and
		Law Market	MODY
	000		OB C

1. General Information about EUT

1.1 Client Information

Applicant	:	Amino Communications Ltd.			
Address		1010 Cambourne Business Park, Cambourne, Cambridge, CB23 6DP, United Kingdom.			
Manufacturer		Shenzhen SDMC Technology Co., Ltd.			
Address		19/F, Changhong Science & Technology Mansion, No.18, Keji South 12th Road, High-tech Industrial Park, Nanshan District, Shenzhen, China, 518022			

1.2 General Description of EUT (Equipment Under Test)

EUT Name		IPTV Receiver		
Models No.		Amigo 7X V2, Amigo 7X V3, Amigo 7Xzzzzzzz(zzzzzzz can be combination of A~Z, a~z, 0~9, "-", "/", "blank" for marketing purpose)		
Model Difference	:	All these models are identical in the same PCB, layout and electrical circuit, The only difference is model name.		
Operating		⊠ 5250-5350MHz		
Frequency Band	-	⊠ 5470-5700MHz		
TPC	•••	🖾 No 🗌 Yes		
Power Rating		Adapter 1#: DCT12W120100US-AO		
		Input: 100-240V~, 50/60Hz, 0.3A		
		Output: DC 12V1A, 12W		
TUD S	2	Adapter 2#:SA12BV-120100U		
		Input: 100-240V~, 50/60Hz, 0.4A		
		Output: DC 12V1A, 12W		
Software Version	:	10.2.1		
Hardware Version	:	V3		
Note	:	This device was functioned as a		
	81	Master		
The second		Slave device with radar detection		
THUS -		Slave device without radar detection		

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Antenna information provided by the applicant.

Antenna Gain:
5180MHz~5240MHz 2.47dBi FPC Antenna A
5260MHz~5320MHz 2.61dBi FPC Antenna A
5500MHz~5700MHz 3.70dBi FPC Antenna A
5745MHz~5825MHz 2.50dBi FPC Antenna A
5180MHz~5240MHz 3.28dBi FPC Antenna B
5260MHz~5320MHz 3.47dBi FPC Antenna B
5500MHz~5700MHz 4.31dBi FPC Antenna B
5745MHz~5825MHz 3.08dBi FPC Antenna B

(3) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5260~5320 MHz (U-NII-2A)	52	5260 MHz	60	5300 MHz
	54	5270 MHz	62	5310MHz
	56	5280MHz	64	5320 MHz
	58	5290MHz		

For 20 MHz Bandwidth, use channel 52, 56, 60, 64. For 40 MHz Bandwidth, use channel 54, 62.

For 80 MHz Bandwidth, use channel 58.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5500~5720 MHz	108	5540 MHz	134	5670 MHz
(U-NII-2C)	110	5550 MHz	136	5680 MHz
	112	5560 MHz	138	5610 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5700 MHz
	122	5610 MHz		

For 20 MHz Bandwidth, use channel 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144

For 40 MHz Bandwidth, use channel 102, 110, 118, 126, 134, 142

For 80 MHz Bandwidth, use channel 106, 122, 138.

Note: For the protection of Environment, the 5600-5650MHz band restricted in Canada. So the CH 188/120/122/124/126/128 was restricted use in Canada.

1.5 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Software

	er version No.
) MWRFtest	V2.0.0.0
) MWRFtest

3. Test Equipment

Antenna	Conducted	Emission
Antenna	oonaactea	LIIII33IOII

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2020	Sep. 02, 2022
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 03, 2020	Sep. 02, 2022
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 03, 2020	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 03, 2020	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 03, 2020	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 03, 2020	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 03, 2020	Sep. 02, 2022

4. U-NII DFS Rule Requirements

4.1. Applicability of DFS requirements

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

	Operational Mode				
Requirement	Master	Client without radar detection	Client with radar detection		
Non-Occupancy Period		Not required			
DFS Detection Threshold		Not required	1		
Channel Availability Check Time	T.	Not required	Not required		
Uniform Spreading	~	Not required	Not required		
U-NII Detection Bandwidth		Not required	~		

Table 3: Applicability of DFS requirements prior to use a channel

Table 4: Applicability of DFS requirements during normal operation

	Operational Mode					
Requirement	Master	Client without radar detection	Client with radar detection			
DFS Detection Threshold	~	Not required				
Channel Closing Transmission Time	~	× DBY	× 10			
Channel Move Time	1	~				
U-NII Detection Bandwidth	~	Not required	× 1010			

Additional requirements for devices with multiple bandwidth modesMaster Device or Client with Radar Detection	Client without Detection
Detection Bandwidth andAll BW modes must beStatistical Performance Checktested	e Not required
Channel Move Time and Channel Closing Transmission mode available Time	Test using widest BW mode available
All other tests Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20MHz channels and the channel center frequency.

4.2. Test Limits and Radar Signal Parameters

DETECTION THRESHOLD VALUES

Table 5: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection.

Maximum Transmit Power	Value (See Notes 1 and 2)		
EIRP≥ 200 milliwatt	-64 Bm		
EIRP < 200 milliwatt and	-62 dBm		
Power pectral density < 10 dBm/MHz	-62 (18)11		
EIRP < 200 milliwatt that do not meet the	64 dBm		
power spectral density requirement	-04 0611		

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Parameter	Value	
Non-occupancy period	Minimum 30 minutes	
Channel Availability Check Time	60 seconds	2
Channel Move Time	10 seconds See Note 1.	
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.	
U-NII Detection Bandwidth	Minimum 100% of the UNII 99% transmission power bandwidth. See Note 3.	

Table 6: DFS Response Requirement Values

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Туре	Width	(µsec)		Percentage of	Number
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique	$\left(\left(1 \right) \right)$	60%	30
		PRI values	$(\frac{360}{360})$.		
		randomly selected	Roundup		
		from the list of 23	(19.10^{6})		
		PRI values in	PRI		
		Table 5a	(())		
		Test B: 15 unique			
		PRI values			
		randomly selected			
		within the range			
		of 518-3066 µsec,			
		with a minimum			
		increment of 1			
		µsec, excluding			
		PRI values			
		selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types	1-4)		80%	120
Note 1: She	ort Pulse Rada	ar Type 0 should be u	used for the detection ba	ndwidth test, ch	annel move
time, and c	hannel closing	g time tests.			

Table 7: Short Pulse Radar Test Waveforms.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

TOBY

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)		
	1930.5	518		
2	1858.7	538		
3	1792.1	558		
4	1730.1	578		
5	1672.2	598		
6	1618.1	618		
7	1567.4	638		
8	1519.8	658		
9	1474.9	678		
10	1432.7	698		
11	1392.8	718		
12	1355	738		
13	1319.3	758		
14	1285.3	778		
15	1253.1	798		
16	1222.5	818		
17	1193.3	838		
18	1165.6	858		
19	1139	878		
20	1113.6	898		
21	1089.3	918		
22	1066.1	938		
23	326.2	3066		

Table 7a: Pulse Repetition Intervals Values for Test A.

Table 8: Long Pulse Radar Test Waveform

				Number		Minimum	
Padar	Pulse	Chirp		of	Number	Percentage	Minimum
Tuno	Width	Width	PRI (µsec)	Pulses	of	of	Number
Type	(µsec)	(MHz)		per	Bursts	Successful	of Trials
				Burst		Detection	
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen (The center frequency for each of the 30 trials of the Bin 5 radar shall be randomly selected within 80% of the Occupied Bandwidth.) Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Table 9: Frequency Hopping Radar Test Waveform

5. Calibration of Radar Waveform

5.1. Test Procedure

- A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –62 dBm as measured on the spectrum analyzer.
- 2. Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.
- 3. The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.
- 4. Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

5.2. Conducted Calibration Test Setup

5.3. Deviation from Test Standard

No Deviation

5.4. Radar Waveform Calibration Result

6. U-NII DFS Testing

6.1. Test Procedure

TOBY

1. Master device and client device are set up by conduction method as the following configuration.

2. The client device is connected to notebook and to access a IP address on wireless connection with the master device.

3. Then the master device is connected to another notebook to access a IP address.

4. Finally, let the two IP addresses run traffic with each other through the Run flow software "Lan test" to reach 17% channel loading as below:

6.2. Test Setup

7. Testing Results

TOBY

7.1. Summary of Test Results

Clause	Test Parameter	Remarks	Pass/Fail
15.407	DFS Detection Threshold	No Applicable	N/A
15.407	Channel Availability Check Time	Not Applicable	N/A
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	Uniform Spreading	Not Applicable	N/A
15.407	15.407 U-NII Detection Bandwidth		N/A
	Test Mode	Con Bar	
The EUT is sla	ave equipment, it need a master device v	when testing.	
Master with in	iection at the Master, (Radar Test Waveford	orms are injected into	o the Master)

7.2. DFS Detection Threshold

Calibration:

For a detection threshold level of -62dBm and the master (Brand: ZTE, Model: ZXHN H389A,

FCC ID: Q78-ZXHNH389A) antenna gain is 3 dBi, required detection threshold is -59.00dBm= (-62+3.0)dBm.

Note: Maximum Transmit Power is less than 200 milliwatt in this report, so detection threshold level is -62dBm.

7.3. Channel Closing Transmission Time

	Channel Closing Transmission Time and Channel Move Time Result									
Mode	Frequency (MHz)	Channel Move Time (s)	Limit Channel Move Time (s)	Close Transmission Time (s)	Limit Close Transmission Time (s)	Close Transmission Time after 200ms(s)	Limit Close Transmission Time after 200ms (s)	Verdict		
ac80	5290	1.34	10	0.0156	0.26	0.0033	0.06	Pass		
ac80	5530	1.2098	10	0.0228	0.26	0.0009	0.06	Pass		

7.4. Non-occupancy Period

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

Non-Occupancy Period Result						
Medulation Meda		Non-Occupancy Period				
Modulation Mode	Freq. (MITZ)	Measured	Limit	Result		
acVHT80	5290	>30min	30min	Complied		
	5530	>30min	30min	Complied		

11ac 80MHz Mode 5290MHz

-----END OF REPORT-----