Appendix C for KSCR2207001168AT

Calibration certificate

1．Dipole

D2450V2－SN 817（2022／04／01）
2．DAE
DAE4－SN 1305（2022／04／27）
3．Probe
EX3DV4－SN 7346（2022／03／30）

Page：$\quad 2$ of 40

1．Dipole

D2450V2－SN 817

中国•江苏•昆山市留学生创业园伟业路10号 邮编 $215300 \quad$ t（86－512）57355888 | f（86－512）／57370818 | sgs．china＠sgs．com |
| :--- | :--- | :--- | :--- |

Compliance Certification Services（Kunshan）Inc．

Report No．：KSCR220700116801
Page：$\quad 3$ of 40

Calibration is Performed According to the Following Standards：
a）IEC／IEEE 62209－1528，＂Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand－held and Body－mounted Wireless Communication Devices－Part 1528：Human Models，Instrumentation and Procedures（Frequency range of 4 MHz to 10 GHz ）＂，October 2020
b）KDB 865664 ，＂SAR Measurement Requirements for 100 MHz to 6 GHz ＂

Additional Documentation：

c）DASY4／5 System Handbook

Methods Applied and Interpretation of Parameters：

－Measurement Conditions：Further details are available from the Validation Report at the end of the certificate．All figures stated in the certificate are valid at the frequency indicated．
－Antenna Parameters with TSL：The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section，with the arms oriented parallel to the body axis．
－Feed Point Impedance and Return Loss：These parameters are measured with the dipole positioned under the liquid filled phantom．The impedance stated is transformed from the measurement at the SMA connector to the feed point．The Return Loss ensures low reflected power．No uncertainty required
－Electrical Delay：One－way delay between the SMA connector and the antenna feed point． No uncertainty required．
－SAR measured：SAR measured at the stated antenna input power．
－SAR normalized：SAR as measured，normalized to an input power of 1 W at the antenna connector．
－SAR for nominal TSL parameters：The measured TSL parameters are used to calculate the nominal SAR result．

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $\mathrm{k}=2$ ，which for a normal distribution Corresponds to a coverage probability of approximately 95% ．

Page：$\quad 4$ of 40

Report No.: KSCR220700116801
Page: $\quad 5$ of 40
$T 11^{\circ}$
In Collaboration with
s p e a g
CALIBRATION LABORATORY
Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com http://www.chinattl.cn
Measurement Conditions
DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10 .4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2450 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.2	$1.80 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$39.5 \pm 6 \%$	$1.79 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<1.0^{\circ} \mathrm{C}$	---	----

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.0 W/kg ± 18.8 \% ($k=2$)
SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 18.7 \% ($k=2$)

Page：$\quad 6$ of 40

Compliance Certification Services（Kunshan）Inc．

Report No．：KSCR220700116801
Page：$\quad 7$ of 40

Add：No． 52 HuaYuanBei Road，Haidian District，Beijing，100191，China
Tel：＋86－10－62304633－2079 Fax：＋86－10－62304633－2504
E－mail：cttl＠chinattl．com http：／／www．chinattl．cn
Appendix（Additional assessments outside the scope of CNAS L0570）

Antenna Parameters with Head TSL

Impedance，transformed to feed point	$52.1 \Omega+3.20 \mathrm{j} \Omega$
Return Loss	-28.5 dB

General Antenna Parameters and Design

Electrical Delay（one direction）	1.066 ns

After long term use with 100W radiated power，only a slight warming of the dipole near the feed－point can be measured．

The dipole is made of standard semirigid coaxial cable．The center conductor of the feeding line is directly connected to the second arm of the dipole．The antenna is therefore short－circuited for DC－signals．On some of the dipoles，small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the＂Measurement Conditions＂paragraph．The SAR data are not affected by this change．The overall dipole length is still according to the Standard No excessive force must be applied to the dipole arms，because they might bend or the soldered connections near the feed－point may be damaged．

Additional EUT Data

| Manufactured by | | SPEAG |
| :--- | :--- | :--- | :--- |

Report No．：KSCR220700116801
Page：$\quad 8$ of 40

In Collaboration with

CALIBRATION LABORATORY

Add：No． 52 HuaYuanBei Road，Haidian District，Beijing，100191，China
Tel：＋86－10－62304633－2079 Fax：＋86－10－62304633－2504
E－mail：cttl＠chinattl．com http：／／www．chinattl．cn

DASY5 Validation Report for Head TSL

Date：2022－04－01
Test Laboratory：CTTL，Beijing，China
DUT：Dipole 2450 MHz ；Type：D2450V2；Serial：D2450V2－SN： 817
Communication System：UID 0，CW；Frequency： 2450 MHz ；Duty Cycle：1：1
Medium parameters used： $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.79 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=39.52 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section：Right Section
Measurement Standard：DASY5（IEEE／IEC／ANSI C63．19－2007）
DASY5 Configuration：
－Probe：EX3DV4－SN7307；ConvF（7．75，7．75，7．75）＠ 2450 MHz ；Calibrated： 2021－05－26
－Sensor－Surface： 1.4 mm （Mechanical Surface Detection）
－Electronics：DAE4 Sn1556；Calibrated：2022－01－12
－Phantom：MFP＿V5．1C（20deg probe tilt）；Type：QD 000 P51 Cx；Serial： 1062
－DASY52 52．10．4（1535）；SEMCAD X 14．6．14（7501）
Dipole Calibration／Zoom Scan（7x7x7）（7x7x7）／Cube 0：Measurement grid：$d x=5 \mathrm{~mm}$ ， $\mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=104.6 \mathrm{~V} / \mathrm{m}$ ；Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.2 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.15 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=49.2 \%$
Maximum value of SAR（measured）$=22.1 \mathrm{~W} / \mathrm{kg}$

$0 \mathrm{~dB}=22.1 \mathrm{~W} / \mathrm{kg}=13.44 \mathrm{dBW} / \mathrm{kg}$

[^0]Page：$\quad 9$ of 40

Compliance Certification Services（Kunshan）Inc．

Report No．：KSCR220700116801
Page：$\quad 10$ of 40

In Collaboration with
s p e a g
CAICT

Add：No． 52 HuaYuanBei Road，Haidian District，Beijing，100191，China Tel：＋86－10－62304633－2079 Fax：＋86－10－62304633－2504 E－mail：cttl＠chinattl．com http：／／www．chinattl．cn

Impedance Measurement Plot for Head TSL

Page：$\quad 11$ of 40

2．DAE4－SN 1305

Unless otherwise agreed in writing，this document is issued by the Company subject to its General Conditions of Service printed
overleaf，available on request or accessible at http：／／www．sgs con overleaf，available on request or accessible at http：：／www．sgs．com／en／Terms－and－Conditions．aspx and，for electronic format documents，
subject to Terms and Conditions for Electronic Documents at http：／／www．sgs．com／en／Terms－and－Conditions／Terms－e－Document．aspx． subject to Terms and Conditions for Electronic Documents at h htp：／／www．sgs．com／en／Terms－and－Conditions／Terms－e－Document．aspx ．
Attention is drawn to the limitation of liability，indemnification and jurisdiction issues defined therein．Any holder of this document is advised that information contained hereon reflects the Company＇s findings at the time of its intervention only and within the limits of Client＇s instructions，if any．The Company＇s sole responsibility is to its Client and this document does not exonerate parties to a
transaction from exercising all their rights and obligations under the transaction documents．This document cannot be reproduced except in full，without prior written approval of the Company．Any unauthorized alteration，forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law．Unless otherwise stated the results shown in this test report refer only to the sample（s）tested and such sample（s）are retained for 30 days only．
Attention：To check the authenticity of testing／inspection report \＆certificate，please contact us at telephone：（86－755）8307 1443，
$\stackrel{\text { or email：}}{\text { No．}}$ ． 10 ，Weiye Road，Innovation Park，Kunshan，Jiangsu，China 215300 $\begin{array}{lllll}\text { 中国•江苏•昆山市留学生创业园伟业路10号 } & \text { 邮编 } 215300 & \mathrm{t}(86-512) 57355888 & \mathrm{f}(86-512) 57370818 & \text { www．sgsgroup．com．cm } \\ \mathrm{t}(86-512) 57355888 & \mathrm{f}(86-512) 57370818 & \text { sgs．china＠sgs．com }\end{array}$

Compliance Certification Services (Kunshan) Inc.

Report No.: KSCR220700116801
Page: $\quad 12$ of 40

CAICT

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

 DAE data acquisition electronicsConnector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Compliance Certification Services (Kunshan) Inc.

Report No.: KSCR220700116801
Page: $\quad 13$ of 40

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: $\quad 1 \mathrm{LSB}=\quad 6.1 \mu \mathrm{~V}, \quad$ full range $=\quad-100 \ldots+300 \mathrm{mV}$
Low Range: $\quad 1 \mathrm{LSB}=\quad 61 \mathrm{nV}, \quad$ full range $=\quad-1 \ldots \ldots+3 \mathrm{mV}$
DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

Calibration Factors	\mathbf{X}	\mathbf{Y}	Z
High Range	$403.836 \pm 0.15 \%(k=2)$	$404.000 \pm 0.15 \%(k=2)$	$404.320 \pm 0.15 \%(k=2)$
Low Range	$3.98123 \pm 0.7 \%(k=2)$	$3.99042 \pm 0.7 \%(k=2)$	$3.99606 \pm 0.7 \%(k=2)$

Connector Angle

Connector Angle to be used in DASY system	$97^{\circ} \pm 1^{\circ}$

Compliance Certification Services（Kunshan）Inc．

Report No．：KSCR220700116801
Page：$\quad 14$ of 40

3．EX3DV4－SN 7346

Primary Standards	10	Cal Date（Certificate No．）	Scheduled Calibration
Power meter NRP	SN： 104778	09－Apr－21（No．217－03291／03292）	Apr－22
Power sensor NRP－Z91	SN： 103244	09－Apr－21（No．217－03291）	Apr－22
Power sensor NRP－Z91	SN： 103245	09－Apr－21（No．217－03292）	Apr－22
Reference 20 dB Attenuator	SN：CC2552（20x）	09－Apr－21（No．217－03343）	Apr－22
DAE4	SN： 660	13－Oct－21（No．DAE4－660＿Oct21）	Oct－22
Reference Probe ES3DV2	SN： 3013	27－Dec－21（No．ES3－3013＿Dec21）	Dec－22
Secondary Standards	ID	Check Date（in house）	Scheduled Check
Power meter E4419B	SN：GB41293874	06－Apr－16（in house check Jun－20）	In house check：Jun－22
Power sensor E4412A	SN：MY41498087	06 －Apr－16（in house check Jun－20）	In house check：Jun－22
Power sensor E4412A	SN： 000110210	06 －Apr－16（in house check Jun－20）	In house check：Jun－22
RF generator HP 8648C	SN：US3642U01700	04－Aug－99（in house check Jun－20）	In house check：Jun－22
Network Analyzer E8358A	SN：US41080477	31－Mar－14（in house check Oct－20）	In house check：Oct－22
Calibrated by：	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by：	Sven Kühn	Deputy Manager	$5 . \angle 6$
This calibration certificate shal	be reproduced excep	hout written approval of the laboratory	Issued：March 31， 2022

Calibration Laboratory of Schmid \＆Partner
Engineering AG
Zeughausstrasse 43， 8004 Zurich，Switzerland

Accredited by the Swiss Accreditation Service（SAS）
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary：

TSL
NORM $x, y, z \quad$ tissue simulating liquid
ConvF sensitivity in free space
ConvF sensitivity in TSL／NORMx x, y
CF
A，B，C，D
Polarization φ
Polarization ϑ
Connector Angle
diode compression point
crest factor（1／duty＿cycle）of the RF signal modulation dependent linearization parameters φ modulation dependent linear
ϑ rotation around an axis that is in the plane normal to probe axis（at measurement center）， i．e．，$\vartheta=0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards：
a）IEC／IEEE 62209－1528，＂Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand－Held And Body－Worn Wireless Communication Devices－ Part 1528：Human Models，Instrumentation And Procedures（Frequency Range of 4 MHz to 10 GHz ）＂，October 2020.
b）KDB 865664，＂SAR Measurement Requirements for 100 MHz to 6 GHz ＂

Methods Applied and Interpretation of Parameters

－NORMx，y，z：Assessed for E－field polarization $\vartheta=0$（ $f \leq 900 \mathrm{MHz}$ in TEM－cell； $\mathrm{f}>1800 \mathrm{MHz}$ ：R22 waveguide）． NORM x, y, z are only intermediate values，i．e．，the uncertainties of NORM x, y, z does not affect the E^{2}－field uncertainty inside TSL（see below ConvF）．
－ $\operatorname{NORM}(f) x, y, z=\operatorname{NORMx,y,z}$＊frequency＿response（see Frequency Response Chart）．This linearization is implemented in DASY4 software versions later than 4．2．The uncertainty of the frequency response is included in the stated uncertainty of ConvF
－$D C P_{x, y, z:}$ DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal（no uncertainty required）．DCP does not depend on frequency nor media．
－PAR：PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
－Ax，y，z；$B x, y, z ; C x, y, z ; D x, y, z ; V R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal．The parameters do not depend on frequency nor media．VR is the maximum calibration range expressed in RMS voltage across the diode．
－ConvF and Boundary Effect Parameters：Assessed in flat phantom using E－field（or Temperature Transfer Standard for $\mathrm{f} \leq 800 \mathrm{MHz}$ ）and inside waveguide using analytical field distributions based on power measurements for $\mathrm{f}>800 \mathrm{MHz}$ ．The same setups are used for assessment of the parameters applied for boundary compensation（alpha，depth）of which typical uncertainty values are given．These parameters are used in DASY4 software to improve probe accuracy close to the boundary．The sensitivity in TSL corresponds to NORMx，y，z＊ConvF whereby the uncertainty corresponds to that given for ConvF．A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz ．
－Spherical isotropy（3D deviation from isotropy）：in a field of low gradients realized using a flat phantom exposed by a patch antenna．
－Sensor Offset：The sensor offset corresponds to the offset of virtual measurement center from the probe tip （on probe axis）．No tolerance required．
－Connector Angle：The angle is assessed using the information gained by determining the NORMX（no uncertainty required）．
中国•江苏•昆山市留学生创业园伟业路10号 邮编 $215300 \quad \mathrm{t}$（ $86-512$ ） 57355888 f（86－512）57370818 sgs．china＠sgs．com

Page：$\quad 16$ of 40

DASY／EASY－Parameters of Probe：EX3DV4－SN：7346
Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor Y	Sensor \mathbf{Z}	Unc $(\mathbf{k}=\mathbf{2})$
$\operatorname{Norm}\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.46	0.47	0.61	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	101.4	106.0	106.9	

Calibration Results for Modulation Response

UID	Communication System Name		$\begin{gathered} \mathrm{A} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~dB} \vee \mu \mathrm{~V} \end{gathered}$	C	$\begin{gathered} \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \text { VR } \\ & \mathrm{mV} \end{aligned}$	Max dev．	Max UncE （ $k=2$ ）
0	CW	X	0.00	0.00	1.00	0.00	143.5	± 3.0 \％	± 4.7 \％
		Y	0.00	0.00	1.00		135.3		
		Z	0.00	0.00	1.00		139.0		
$\begin{aligned} & 10352- \\ & \text { AAA } \end{aligned}$	Pulse Waveform（ $200 \mathrm{~Hz}, 10 \%$ ）	X	3.33	68.90	11.66	10.00	60.0	± 3.5 \％	± 9.6 \％
		Y	4.03	70.70	12.35		60.0		
		Z	1.63	61.25	6.76		60.0		
$\begin{aligned} & \text { 10353- } \\ & \text { AAA } \end{aligned}$	Pulse Waveform（ 200 Hz ，20\％）	X	3.00	70.65	11.31	6.99	80.0	± 2.4 \％	± 9.6 \％
		Y	11.51	81.32	14.72		80.0		
		Z	0.83	60.00	5.11		80.0		
10354-AAA	Pulse Waveform（ $200 \mathrm{~Hz}, 40 \%$ ）	X	7.41	78.85	12.51	3.98	95.0	± 2.7 \％	± 9.6 \％
		Y	20.00	87.62	15.51		95.0		
		Z	0.18	138.38	0.01		95.0		
$\begin{aligned} & \text { 10355- } \\ & \text { AAA } \end{aligned}$	Pulse Waveform（ $200 \mathrm{~Hz}, 60 \%$ ）	X	2.27	72.13	9.52	2.22	120.0	± 1.7 \％	± 9.6 \％
		Y	20.00	91.58	16.29		120.0		
		Z	7.94	159.51	16.87		120.0		
$10387-$AAA	QPSK Waveform， 1 MHz	X	1.47	64.88	13.82	1.00	150.0	± 4.2 \％	± 9.6 \％
		Y	1.56	66.24	14.70		150.0		
		Z	0.45	61.88	11.05		150.0		
10388－ AAA	QPSK Waveform， 10 MHz	X	1.96	66.27	14.65	0.00	150.0	± 1.1 \％	± 9.6 \％
		Y	2.06	67.33	15.38		150.0		
		Z	1.21	64.75	13.18		150.0		
$\begin{aligned} & \text { 10396- } \\ & \text { AAA } \end{aligned}$	64－QAM Waveform， 100 kHz	X	2.63	69.51	18.25	3.01	150.0	± 1.0 \％	± 9.6 \％
		Y	2.74	70.83	19.16		150.0		
		Z	1.70	64.72	15.99		150.0		
$\begin{aligned} & \text { 10399- } \\ & \text { AAA } \end{aligned}$	64－QAM Waveform， 40 MHz	X	3.34	66.39	15.25	0.00	150.0	± 2.0 \％	± 9.6 \％
		Y	3.38	66.82	15.56		150.0		
		Z	2.70	65.72	14.74		150.0		
$10414-$ AAA	WLAN CCDF， $64-\mathrm{QAM}, 40 \mathrm{MHz}$	X	4.71	65.35	15.27	0.00	150.0	± 3.6 \％	± 9.6 \％
		Y	4.70 3.83	65.54	15.41 15.28		150.0 150.0		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$ ，which for a normal distribution corresponds to a coverage probability of approximately 95% ．
${ }^{A}$ The uncertainties of Norm X，Y，Z do not affect the E^{2}－field uncertainty inside TSL（see Pages 5 and 6 ）．
${ }^{3}$ Numerical linearization parameter：uncertainty not required．
field value．

Compliance Certification Services（Kunshan）Inc．

Report No．：KSCR220700116801
Page：$\quad 17$ of 40

DASY／EASY－Parameters of Probe：EX3DV4－SN：7346
Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	\mathbf{a} $\mathbf{V}^{\mathbf{- 1}}$	T1 $\mathbf{m s .} \mathbf{V}^{-\mathbf{2}}$	T2 $\mathbf{m s .} . \mathbf{V}^{-\mathbf{1}}$	T3 $\mathbf{m s}$	T4 $\mathbf{V}^{-\mathbf{2}}$	T5 \mathbf{V}^{-1}	T6
\mathbf{X}	39.3	291.80	35.10	5.63	0.03	5.02	1.42	0.12	1.01
Y	37.1	270.84	34.12	8.29	0.00	5.01	1.62	0.05	1.01
Z	9.7	69.74	33.37	4.96	0.00	4.94	0.61	0.00	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle $\left(^{\circ}\right.$ ）	-166.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note：Measurement distance from surface can be increased to 3－4 mm for an Area Scan job．

Report No．：KSCR220700116801
Page： 18 of 40

DASY／EASY－Parameters of Probe：EX3DV4－SN：7346

Calibration Parameter Determined in Head Tissue Simulating Media

$f(\mathrm{MHz})^{\text {c }}$	Relative Permittivity ${ }^{F}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	Depth ${ }^{6}$ （mm）	$\begin{aligned} & \text { Unc } \\ & (\mathbf{k}=2) \end{aligned}$
750	41.9	0.89	10.56	10.56	10.56	0.55	0.85	± 12.0 \％
835	41.5	0.90	10.12	10.12	10.12	0.42	0.96	± 12.0 \％
900	41.5	0.97	10.10	10.10	10.10	0.53	0.80	± 12.0 \％
1450	40.5	1.20	9.26	9.26	9.26	0.50	0.80	± 12.0 \％
1750	40.1	1.37	8.83	8.83	8.83	0.34	0.86	± 12.0 \％
1900	40.0	1.40	8.48	8.48	8.48	0.35	0.86	$\pm 12.0 \%$
2000	40.0	1.40	8.35	8.35	8.35	0.34	0.86	± 12.0 \％
2300	39.5	1.67	7.86	7.86	7.86	0.39	0.90	± 12.0 \％
2450	39.2	1.80	7.63	7.63	7.63	0.41	0.90	± 12.0 \％
2600	39.0	1.96	7.33	7.33	7.33	0.44	0.90	± 12.0 \％
3300	38.2	2.71	7.15	7.15	7.15	0.30	1.35	± 13.1 \％
3500	37.9	2.91	7.14	7.14	7.14	0.30	1.35	± 13.1 \％
3700	37.7	3.12	6.85	6.85	6.85	0.30	1.35	$\pm 13.1 \%$
3900	37.5	3.32	6.71	6.71	6.71	0.40	1.60	± 13.1 \％
4100	37.2	3.53	6.58	6.58	6.58	0.40	1.60	$\pm 13.1 \%$
4200	37.1	3.63	6.30	6.30	6.30	0.40	1.70	± 13.1 \％
4400	36.9	3.84	6.24	6.24	6.24	0.40	1.70	$\pm 13.1 \%$
4600	36.7	4.04	6.11	6.11	6.11	0.40	1.70	$\pm 13.1 \%$
4800	36.4	4.25	6.08	6.08	6.08	0.40	1.80	± 13.1 \％
4950	36.3	4.40	5.84	5.84	5.84	0.40	1.80	± 13.1 \％
5200	36.0	4.66	5.25	5.25	5.25	0.40	1.80	$\pm 13.1 \%$
5300	35.9	4.76	5.12	5.12	5.12	0.40	1.80	$\pm 13.1 \%$
5500	35.6	4.96	4.85	4.85	4.85	0.40	1.80	$\pm 13.1 \%$
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	± 13.1 \％
5800	35.3	5.27	4.75	4.75	4.75	0.40	1.80	± 13.1 \％

${ }^{\text {c }}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY $v 4.4$ and higher（see Page 2），else it is restricted to $\pm 50 \mathrm{MHz}$ ．The
uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band．Frequency validity 6 MHz is 4 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively．Validity of ConvF assessed at 6 MHz is $4-9 \mathrm{MHz}$ ，and ConvF assessed at 13 MHz is $9-19 \mathrm{MHz}$ ．Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$ ．
At frequencies
the ConvF uncertainty for indicated target tissue parameters．
always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary．
中国•江苏•昆山市留学生创业园伟业路10号 邮编 215300 t（86－512）57355888 f（86－512）57370818 sgs．china＠sgs．com

Compliance Certification Services (Kunshan) Inc.

Report No.: KSCR220700116801
Page: $\quad 19$ of 40

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7346

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathbf{f (M H z}^{\text {c }}$	Relative Permittivity $^{\text {F }}$	Conductivity $\left(\mathbf{S} / \mathbf{m}^{\text {F }}\right.$	ConvF X	ConvF Y	ConvF Z	Alpha $^{\text {G }}$	Depth $(\mathbf{m m})$	Unc $(\mathbf{k}=2)$
6500	34.5	6.07	5.30	5.30	5.30	0.20	2.50	$\pm 18.6 \%$

${ }^{c}$ Frequency validity above 6 GHz is $\pm 700 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for
the indicated frequency band.
${ }^{F}$ At frequencies $6-10 \mathrm{GHz}$, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz ; below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$; and below $\pm 4 \%$ for frequencies between $6-10$ GHz at any distance larger than half the probe tip diameter from the boundary

Compliance Certification Services（Kunshan）Inc．

Report No．：KSCR220700116801
Page： 21 of 40

Frequency Response of E－Field
（TEM－Cell：ifi110 EXX，Waveguide：R22）

Uncertainty of Frequency Response of E－field：$\pm 6.3 \%(k=2)$

Compliance Certification Services（Kunshan）Inc．

Report No．：KSCR220700116801
Page： 23 of 40

Page：$\quad 24$ of 40

SGS

Compliance Certification Services（Kunshan）Inc．

Report No．：KSCR220700116801
Page：$\quad 25$ of 40

Dynamic Range $f\left(\right.$ SAR $\left._{\text {nead }}\right)$ （TEM cell ，feval $=1900 \mathrm{MHz}$ ）

Uncertainty of Linearity Assessment：$\pm 0.6 \%(k=2)$

Compliance Certification Services（Kunshan）Inc．

Report No．：KSCR220700116801
Page： 26 of 40

Conversion Factor Assessment

Appendix：Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR （dB）	$\begin{aligned} & \text { Unc }^{\varepsilon} \\ & (\mathbf{k}=2) \end{aligned}$
0	－	CW	CW	0.00	± 4.7 \％
10010	CAA	SAR Validation（Square，100ms，10ms）	Test	10.00	± 9.6 \％
10011	CAB	UMTS－FDD（WCDMA）	WCDMA	2.91	± 9.6 \％
10012	CAB	IEEE 802．11b WiFi 2.4 GHz （DSSS， 1 Mbps ）	WLAN	1.87	± 9.6 \％
10013	CAB	IEEE 802．11g WiFi 2．4 GHz（DSSS－OFDM， 6 Mbps ）	WLAN	9.46	± 9.6 \％
10021	DAC	GSM－FDD（TDMA，GMSK）	GSM	9.39	± 9.6 \％
10023	DAC	GPRS－FDD（TDMA，GMSK，TN 0）	GSM	9.57	± 9.6 \％
10024	DAC	GPRS－FDD（TDMA，GMSK，TN 0－1）	GSM	6.56	± 9.6 \％
10025	DAC	EDGE－FDD（TDMA，8PSK，TN 0）	GSM	12.62	± 9.6 \％
10026	DAC	EDGE－FDD（TDMA，8PSK，TN 0－1）	GSM	9.55	$\pm 9.6 \%$
10027	DAC	GPRS－FDD（TDMA，GMSK，TN 0－1－2）	GSM	4.80	± 9.6 \％
10028	DAC	GPRS－FDD（TDMA，GMSK，TN 0－1－2－3）	GSM	3.55	± 9.6 \％
10029	DAC	EDGE－FDD（TDMA，8PSK，TN 0－1－2）	GSM	7.78	± 9.6 \％
10030	CAA	IEEE 802．15．1 Bluetooth（GFSK，DH1）	Bluetooth	5.30	± 9.6 \％
10031	CAA	IEEE 802．15．1 Bluetooth（GFSK，DH3）	Bluetooth	1.87	± 9.6 \％
10032	CAA	IEEE 802．15．1 Bluetooth（GFSK，DH5）	Bluetooth	1.16	± 9.6 \％
10033	CAA	IEEE 802．15．1 Bluetooth（PI／4－DQPSK，DH1）	Bluetooth	7.74	± 9.6 \％
10034	CAA	IEEE 802．15．1 Bluetooth（PI／4－DQPSK，DH3）	Bluetooth	4.53	± 9.6 \％
10035	CAA	IEEE 802．15．1 Bluetooth（PI／4－DQPSK，DH5）	Bluetooth	3.83	$\pm 9.6 \%$
10036	CAA	IEEE 802．15．1 Bluetooth（8－DPSK，DH1）	Bluetooth	8.01	± 9.6 \％
10037	CAA	IEEE 802．15．1 Bluetooth（8－DPSK，DH3）	Bluetooth	4.77	± 9.6 \％
10038	CAA	IEEE 802．15．1 Bluetooth（8－DPSK，DH5）	Bluetooth	4.10	± 9.6 \％
10039	CAB	CDMA2000（1xRTT，RC1）	CDMA2000	4.57	$\pm 9.6 \%$
10042	CAB	IS－54／IS－136 FDD（TDMA／FDM，P／／4－DQPSK，Halfrate）	AMPS	7.78	± 9.6 \％
10044	CAA	IS－91／EIA／TIA－553 FDD（FDMA，FM）	AMPS	0.00	± 9.6 \％
10048	CAA	DECT（TDD，TDMA／FDM，GFSK，Full Slot，24）	DECT	13.80	± 9.6 \％
10049	CAA	DECT（TDD，TDMA／FDM，GFSK，Double Slot，12）	DECT	10.79	$\pm 9.6 \%$
10056	CAA	UMTS－TDD（TD－SCDMA， 1.28 Mcps ）	TD－SCDMA	11.01	± 9.6 \％
10058	DAC	EDGE－FDD（TDMA，8PSK，TN 0－1－2－3）	GSM	6.52	± 9.6 \％
10059	CAB	IEEE 802．11b WiFi 2.4 GHz （DSSS， 2 Mbps ）	WLAN	2.12	± 9.6 \％
10060	CAB	IEEE 802．11b WiFi 2.4 GHz （DSSS， 5.5 Mbps ）	WLAN	2.83	± 9.6 \％
10061	CAB	IEEE 802．11b WiFi 2.4 GHz （DSSS， 11 Mbps ）	WLAN	3.60	± 9.6 \％
10062	CAD	IEEE 802．11a／h WiFi 5 GHz （OFDM， 6 Mbps ）	WLAN	8.68	± 9.6 \％
10063	CAD	IEEE 802．11a／h WiFi 5 GHz （OFDM， 9 Mbps ）	WLAN	8.63	± 9.6 \％
10064	CAD	IEEE 802．11a／h WiFi 5 GHz （OFDM， 12 Mbps ）	WLAN	9.09	± 9.6 \％
10065	CAD	IEEE 802．11a／h WiFi 5 GHz （OFDM， 18 Mbps ）	WLAN	9.00	$\pm 9.6 \%$
10066	CAD	IEEE 802．11a／h WiFi 5 GHz （OFDM， 24 Mbps ）	WLAN	9.38	± 9.6 \％
10067	CAD	IEEE 802．11a／h WiFi 5 GHz （OFDM， 36 Mbps ）	WLAN	10.12	± 9.6 \％
10068	CAD	IEEE 802．11a／h WiFi 5 GHz （OFDM， 48 Mbps ）	WLAN	10.24	± 9.6 \％
10069	CAD	IEEE 802．11a／h WiFi 5 GHz （OFDM， 54 Mbps ）	WLAN	10.56	± 9.6 \％
10071	CAB	IEEE 802.11 g WiFi 2.4 GHz （DSSS／OFDM， 9 Mbps ）	WLAN	9.83	± 9.6 \％
10072	CAB	IEEE 802.11 g WiFi 2.4 GHz （DSSS／OFDM， 12 Mbps ）	WLAN	9.62	± 9.6 \％
10073	CAB	IEEE 802.11 g Wifi 2.4 GHz （DSSS／OFDM， 18 Mbps ）	WLAN	9.94	± 9.6 \％
10074	CAB	IEEE 802．11g WiFi 2.4 GHz （DSSS／OFDM， 24 Mbps ）	WLAN	10.30	± 9.6 \％
10075	CAB	IEEE 802.11 g WiFi 2.4 GHz （DSSS／OFDM， 36 Mbps ）	WLAN	10.77	± 9.6 \％
10076	CAB	IEEE 802.11 g WiFi 2.4 GHz （DSSS／OFDM， 48 Mbps ）	WLAN	10.94	± 9.6 \％
10077	CAB	IEEE 802.11 g WiFi 2.4 GHz （DSSS／OFDM， 54 Mbps ）	WLAN	11.00	± 9.6 \％
10081	CAB	CDMA2000（1xRTT，RC3）	CDMA2000	3.97	± 9.6 \％
10082	CAB	IS－54／IS－136 FDD（TDMA／FDM，Pl／4－DQPSK，Fullrate）	AMPS	4.77	± 9.6 \％
10090	DAC	GPRS－FDD（TDMA，GMSK，TN 0－4）	GSM	6.56	± 9.6 \％
10097	CAB	UMTS－FDD（HSDPA）	WCDMA	3.98	± 9.6 \％
10098	CAB	UMTS－FDD（HSUPA，Subtest 2）	WCDMA	3.98	± 9.6 \％
10099	DAC	EDGE－FDD（TDMA，8PSK，TN 0－4）	GSM	9.55	± 9.6 \％

Unless otherwise agreed in writing，this document is issued by the Company subject to its General Conditions of Service printed overleaf，available on request or accessible at $\mathrm{http}: / /$ www．sgs．com／en／
subject to Terms and Conditions for Electronic Documents at httt： subject to Terms and conditions for Electronic Documents at http：／www．sgs．com／en／Terms－and－Conditions／Terms－e－Document．aspx advised that information contained hereon reflects the Company＇s findings at the time of its intervention only and within the limits o transaction from exercising all their rights and obligations under the transaction documents．This document cannot be reproduced except in full，without prior written approval of the Company．Any unauthorized alteration，forgery or falsification of the content o
 results shown in this test report refer only to the sample（s）tested and such sample（s）are retained for 30 days only．
Attention：To check the authenticity of testing／inspection report \＆certificate，please contact us at telephone：（86－755） 83071443
No．10，Weiye Road，Innovation Park，Kunshan，Jiangsu，China $215300 \quad \mathrm{t}(86-512) 57355888 \quad \mathrm{f}(86-512) 57370818$ www．sgsgroup．com．cn
中国•江苏•昆山市留学生创业园伟业路10号 邮编 215300 t（86－512） 57355888 f（86－512）57370818 sgs．china＠sgs．com

10100	CAE	LTE－FDD（SC－FDMA，100\％RB， 20 MHz ，QPSK）	LTE－FDD	5.67	± 9.6 \％
10101	CAE	LTE－FDD（SC－FDMA， 100% RB， $20 \mathrm{MHz}, 16$－QAM）	LTE－FDD	6.42	± 9.6 \％
10102	CAE	LTE－FDD（SC－FDMA， 100% RB， 20 MHz ，64－QAM）	LTE－FDD	6.60	± 9.6 \％
10103	CAG	LTE－TDD（SC－FDMA， 100% RB， 20 MHz ，QPSK）	LTE－TDD	9.29	± 9.6 \％
10104	CAG	LTE－TDD（SC－FDMA， 100% RB， $20 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－TDD	9.97	± 9.6 \％
10105	CAG	LTE－TDD（SC－FDMA， 100% RB， $20 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－TDD	10.01	± 9.6 \％
10108	CAG	LTE－FDD（SC－FDMA， 100% RB， 10 MHz ，QPSK）	LTE－FDD	5.80	± 9.6 \％
10109	CAG	LTE－FDD（SC－FDMA， 100% RB， $10 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.43	± 9.6 \％
10110	CAG	LTE－FDD（SC－FDMA， 100% RB， 5 MHz ，QPSK）	LTE－FDD	5.75	± 9.6 \％
10111	CAG	LTE－FDD（SC－FDMA， 100% RB， $5 \mathrm{MHz}, 16$－QAM）	LTE－FDD	6.44	± 9.6 \％
10112	CAG	LTE－FDD（SC－FDMA， 100% RB， $10 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.59	$\pm 9.6 \%$
10113	CAG	LTE－FDD（SC－FDMA， 100% RB， $5 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.62	± 9.6 \％
10114	CAD	IEEE 802．11n（HT Greenfield， 13.5 Mbps ，BPSK）	WLAN	8.10	± 9.6 \％
10115	CAD	IEEE 802．11n（HT Greenfield， $81 \mathrm{Mbps}, 16$－QAM）	WLAN	8.46	± 9.6 \％
10116	CAD	IEEE 802．11n（HT Greenfield， 135 Mbps ，64－QAM）	WLAN	8.15	± 9.6 \％
10117	CAD	IEEE 802．11n（HT Mixed， 13.5 Mbps ，BPSK）	WLAN	8.07	± 9.6 \％
10118	CAD	IEEE 802．11n（HT Mixed， 81 Mbps ，16－QAM）	WLAN	8.59	± 9.6 \％
10119	CAD	IEEE 802．11n（HT Mixed， $135 \mathrm{Mbps}, 64-\mathrm{QAM}$ ）	WLAN	8.13	± 9.6 \％
10140	CAE	LTE－FDD（SC－FDMA， 100% RB， $15 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.49	± 9.6 \％
10141	CAE	LTE－FDD（SC－FDMA， 100% RB， $15 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.53	± 9.6 \％
10142	CAE	LTE－FDD（SC－FDMA，100\％RB， 3 MHz ，QPSK）	LTE－FDD	5.73	± 9.6 \％
10143	CAE	LTE－FDD（SC－FDMA， 100% RB， $3 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.35	± 9.6 \％
10144	CAE	LTE－FDD（SC－FDMA， 100% RB， $3 \mathrm{MHz}, 64-$ QAM	LTE－FDD	6.65	± 9.6 \％
10145	CAF	LTE－FDD（SC－FDMA， 100% RB，1．4 MHz，QPSK）	LTE－FDD	5.76	± 9.6 \％
10146	CAF	LTE－FDD（SC－FDMA， 100% RB， $1.4 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.41	± 9.6 \％
10147	CAF	LTE－FDD（SC－FDMA， 100% RB， $1.4 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.72	± 9.6 \％
10149	CAE	LTE－FDD（SC－FDMA， 50% RB， 20 MHz ，16－QAM）	LTE－FDD	6.42	± 9.6 \％
10150	CAE	LTE－FDD（SC－FDMA， 50% RB， $20 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.60	± 9.6 \％
10151	CAG	LTE－TDD（SC－FDMA， 50% RB， 20 MHz ，QPSK）	LTE－TDD	9.28	± 9.6 \％
10152	CAG	LTE－TDD（SC－FDMA， 50% RB， 20 MHz ， $16-\mathrm{QAM}$ ）	LTE－TDD	9.92	± 9.6 \％
10153	CAG	LTE－TDD（SC－FDMA， 50% RB， $20 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－TDD	10.05	± 9.6 \％
10154	CAG	LTE－FDD（SC－FDMA， 50% RB， 10 MHz ，QPSK）	LTE－FDD	5.75	± 9.6 \％
10155	CAG	LTE－FDD（SC－FDMA， 50% RB， $10 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.43	± 9.6 \％
10156	CAG	LTE－FDD（SC－FDMA， 50% RB， 5 MHz ，QPSK）	LTE－FDD	5.79	± 9.6 \％
10157	CAG	LTE－FDD（SC－FDMA， 50% RB， $5 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.49	± 9.6 \％
10158	CAG	LTE－FDD（SC－FDMA， 50% RB， $10 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.62	± 9.6 \％
10159	CAG	LTE－FDD（SC－FDMA， 50% RB， $5 \mathrm{MHz}, 64$－QAM）	LTE－FDD	6.56	± 9.6 \％
10160	CAE	LTE－FDD（SC－FDMA， 50% RB， 15 MHz ，QPSK）	LTE－FDD	5.82	± 9.6 \％
10161	CAE	LTE－FDD（SC－FDMA， $50 \% \mathrm{RB}, 15 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.43	± 9.6 \％
10162	CAE	LTE－FDD（SC－FDMA， 50% RB， 15 MHz ，64－QAM）	LTE－FDD	6.58	± 9.6 \％
10166	CAF	LTE－FDD（SC－FDMA， 50% RB， 1.4 MHz ，QPSK）	LTE－FDD	5.46	± 9.6 \％
10167	CAF	LTE－FDD（SC－FDMA， 50% RB，1．4 MHz，16－QAM）	LTE－FDD	6.21	± 9.6 \％
10168	CAF	LTE－FDD（SC－FDMA， 50% RB， $1.4 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.79	± 9.6 \％
10169	CAE	LTE－FDD（SC－FDMA， 1 RB， 20 MHz ，QPSK）	LTE－FDD	5.73	± 9.6 \％
10170	CAE	LTE－FDD（SC－FDMA， 1 RB， $20 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.52	± 9.6 \％
10171	AAE	LTE－FDD（SC－FDMA， 1 RB， $20 \mathrm{MHz}, 64-$ QAM ）	LTE－FDD	6.49	± 9.6 \％
10172	CAG	LTE－TDD（SC－FDMA， $1 \mathrm{RB}, 20 \mathrm{MHz}$ ，QPSK）	LTE－TDD	9.21	± 9.6 \％
10173	CAG	LTE－TDD（SC－FDMA， 1 RB， 20 MHz ，16－QAM）	LTE－TDD	9.48	± 9.6 \％
10174	CAG	LTE－TDD（SC－FDMA， 1 RB， $20 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－TDD	10.25	± 9.6 \％
10175	CAG	LTE－FDD（SC－FDMA， 1 RB， 10 MHz, QPSK）	LTE－FDD	5.72	± 9.6 \％
10176	CAG	LTE－FDD（SC－FDMA， 1 RB， $10 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.52	± 9.6 \％
10177	CAI	LTE－FDD（SC－FDMA， 1 RB， 5 MHz ，QPSK）	LTE－FDD	5.73	± 9.6 \％
10178	CAG	LTE－FDD（SC－FDMA， 1 RB， $5 \mathrm{MHz}, 16$－QAM）	LTE－FDD	6.52	± 9.6 \％
10179	CAG	LTE－FDD（SC－FDMA， 1 RB， $10 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.50	± 9.6 \％
10180	CAG	LTE－FDD（SC－FDMA， 1 RB， $5 \mathrm{MHz}, 64$－QAM）	LTE－FDD	6.50	± 9.6 \％
10181	CAE	LTE－FDD（SC－FDMA， 1 RB， 15 MHz ，QPSK）	LTE－FDD	5.73	± 9.6 \％

10182	CAE	LTE－FDD（SC－FDMA， 1 RB， 15 MHz ，16－QAM）	LTE－FDD	6.52	± 9.6 \％
10183	AAD	LTE－FDD（SC－FDMA， $1 \mathrm{RB}, 15 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.50	± 9.6 \％
10184	CAE	LTE－FDD（SC－FDMA， 1 RB， $3 \mathrm{MHz}, \mathrm{QPSK}$ ）	LTE－FDD	5.73	± 9.6 \％
10185	CAE	LTE－FDD（SC－FDMA， 1 RB， $3 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.51	± 9.6 \％
10186	AAE	LTE－FDD（SC－FDMA， 1 RB， $3 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.50	± 9.6 \％
10187	CAF	LTE－FDD（SC－FDMA，1 RB，1．4 MHz，QPSK）	LTE－FDD	5.73	± 9.6 \％
10188	CAF	LTE－FDD（SC－FDMA， 1 RB， $1.4 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.52	± 9.6 \％
10189	AAF	LTE－FDD（SC－FDMA，1 RB， $1.4 \mathrm{MHz}, 64$－QAM）	LTE－FDD	6.50	± 9.6 \％
10193	CAD	IEEE 802．11n（HT Greenfield， 6.5 Mbps ，BPSK）	WLAN	8.09	± 9.6 \％
10194	CAD	IEEE 802．11n（HT Greenfield， 39 Mbps ，16－QAM）	WLAN	8.12	± 9.6 \％
10195	CAD	IEEE 802．11n（HT Greenfield， $65 \mathrm{Mbps}, 64$－QAM）	WLAN	8.21	$\pm 9.6 \%$
10196	CAD	IEEE 802．11n（HT Mixed， $6.5 \mathrm{Mbps}, \mathrm{BPSK}$ ）	WLAN	8.10	± 9.6 \％
10197	CAD	IEEE 802．11n（HT Mixed， 39 Mbps ，16－QAM）	WLAN	8.13	± 9.6 \％
10198	CAD	IEEE 802．11n（HT Mixed， 65 Mbps ，64－QAM）	WLAN	8.27	± 9.6 \％
10219	CAD	IEEE 802．11n（HT Mixed，7．2 Mbps，BPSK）	WLAN	8.03	± 9.6 \％
10220	CAD	IEEE 802．11n（HT Mixed， 43.3 Mbps ，16－QAM）	WLAN	8.13	± 9.6 \％
10221	CAD	IEEE 802．11 n （HT Mixed， 72.2 Mbps ，64－QAM）	WLAN	8.27	± 9.6 \％
10222	CAD	IEEE 802．11n（HT Mixed， 15 Mbps ，BPSK）	WLAN	8.06	± 9.6 \％
10223	CAD	IEEE 802．11n（HT Mixed， 90 Mbps ，16－QAM）	WLAN	8.48	± 9.6 \％
10224	CAD	IEEE 802．11n（HT Mixed， 150 Mbps ，64－QAM）	WLAN	8.08	± 9.6 \％
10225	CAB	UMTS－FDD（HSPA＋）	WCDMA	5.97	± 9.6 \％
10226	CAB	LTE－TDD（SC－FDMA， 1 RB，1．4 MHz，16－QAM）	LTE－TDD	9.49	± 9.6 \％
10227	CAB	LTE－TDD（SC－FDMA， 1 RB，1．4 MHz，64－QAM）	LTE－TDD	10.26	± 9.6 \％
10228	CAB	LTE－TDD（SC－FDMA，1 RB，1．4 MHz，QPSK）	LTE－TDD	9.22	± 9.6 \％
10229	CAD	LTE－TDD（SC－FDMA， 1 RB， $3 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－TDD	9.48	± 9.6 \％
10230	CAD	LTE－TDD（SC－FDMA， 1 RB， $3 \mathrm{MHz}, 64$－QAM）	LTE－TDD	10.25	± 9.6 \％
10231	CAD	LTE－TDD（SC－FDMA， 1 RB， 3 MHz ，QPSK）	LTE－TDD	9.19	± 9.6 \％
10232	CAG	LTE－TDD（SC－FDMA， 1 RB， $5 \mathrm{MHz}, 16$－QAM）	LTE－TDD	9.48	± 9.6 \％
10233	CAG	LTE－TDD（SC－FDMA， 1 RB， $5 \mathrm{MHz}, 64$－QAM）	LTE－TDD	10.25	± 9.6 \％
10234	CAG	LTE－TDD（SC－FDMA， 1 RB， $5 \mathrm{MHz}, \mathrm{QPSK}$ ）	LTE－TDD	9.21	± 9.6 \％
10235	CAG	LTE－TDD（SC－FDMA， 1 RB， $10 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－TDD	9.48	± 9.6 \％
10236	CAG	LTE－TDD（SC－FDMA， 1 RB， $10 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－TDD	10.25	± 9.6 \％
10237	CAG	LTE－TDD（SC－FDMA， $1 \mathrm{RB}, 10 \mathrm{MHz}$ ，QPSK）	LTE－TDD	9.21	± 9.6 \％
10238	CAF	LTE－TDD（SC－FDMA， 1 RB， $15 \mathrm{MHz}, 16$－QAM）	LTE－TDD	9.48	± 9.6 \％
10239	CAF	LTE－TDD（SC－FDMA， 1 RB， $15 \mathrm{MHz}, 64-$ QAM ）	LTE－TDD	10.25	± 9.6 \％
10240	CAF	LTE－TDD（SC－FDMA， 1 RB， 15 MHz ，QPSK）	LTE－TDD	9.21	± 9.6 \％
10241	CAB	LTE－TDD（SC－FDMA， 50% RB， $1.4 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－TDD	9.82	± 9.6 \％
10242	CAB	LTE－TDD（SC－FDMA， 50% RB，1，4 MHz，64－QAM）	LTE－TDD	9.86	± 9.6 \％
10243	CAB	LTE－TDD（SC－FDMA， 50% RB，1．4 MHz，QPSK）	LTE－TDD	9.46	± 9.6 \％
10244	CAD	LTE－TDD（SC－FDMA， 50% RB， $3 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－TDD	10.06	± 9.6 \％
10245	CAD	LTE－TDD（SC－FDMA， 50% RB， $3 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－TDD	10.06	$\pm 9.6 \%$
10246	CAD	LTE－TDD（SC－FDMA， 50% RB， 3 MHz, QPSK）	LTE－TDD	9.30	± 9.6 \％
10247	CAG	LTE－TDD（SC－FDMA， 50% RB， 5 MHz ，16－QAM）	LTE－TDD	9.91	± 9.6 \％
10248	CAG	LTE－TDD（SC－FDMA， $50 \% \mathrm{RB}, 5 \mathrm{MHz}, 64$－QAM）	LTE－TDD	10.09	± 9.6 \％
10249	CAG	LTE－TDD（SC－FDMA， 50% RB， 5 MHz ，QPSK）	LTE－TDD	9.29	$\pm 9.6 \%$
10250	CAG	LTE－TDD（SC－FDMA， 50% RB， $10 \mathrm{MHz}, 16$－QAM）	LTE－TDD	9.81	± 9.6 \％
10251	CAG	LTE－TDD（SC－FDMA， 50% RB， 10 MHz ，64－QAM）	LTE－TDD	10.17	± 9.6 \％
10252	CAG	LTE－TDD（SC－FDMA， 50% RB， 10 MHz ，QPSK）	LTE－TDD	9.24	± 9.6 \％
10253	CAF	LTE－TDD（SC－FDMA， 50% RB， 15 MHz ，16－QAM）	LTE－TDD	9.90	± 9.6 \％
10254	CAF	LTE－TDD（SC－FDMA， 50% RB， 15 MHz ， $64-$ QAM）	LTE－TDD	10.14	± 9.6 \％
10255	CAF	LTE－TDD（SC－FDMA， 50% RB， 15 MHz ，QPSK）	LTE－TDD	9.20	± 9.6 \％
10256	CAB	LTE－TDD（SC－FDMA， 100% RB， $1.4 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－TDD	9.96	± 9.6 \％
10257	CAB	LTE－TDD（SC－FDMA， 100% RB， 1.4 MHz ， 64 －QAM）	LTE－TDD	10.08	± 9.6 \％
10258	CAB	LTE－TDD（SC－FDMA， 100% RB， 1.4 MHz ，QPSK）	LTE－TDD	9.34	± 9.6 \％
10259	CAD	LTE－TDD（SC－FDMA， 100% RB， $3 \mathrm{MHz}, 16-$ QAM ）	LTE－TDD	9.98	$\pm 9.6 \%$
10260	CAD	LTE－TDD（SC－FDMA， 100% RB， $3 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－TDD	9.97	$\pm 9.6 \%$

10261	CAD	LTE－TDD（SC－FDMA， 100% RB， 3 MHz ，QPSK）	LTE－TDD	9.24	± 9.6 \％
10262	CAG	LTE－TDD（SC－FDMA， 100% RB， $5 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－TDD	9.83	± 9.6 \％
10263	CAG	LTE－TDD（SC－FDMA， 100% RB， 5 MHz ，64－QAM）	LTE－TDD	10.16	± 9.6 \％
10264	CAG	LTE－TDD（SC－FDMA， 100% RB， 5 MHz ，QPSK）	LTE－TDD	9.23	± 9.6 \％
10265	CAG	LTE－TDD（SC－FDMA， 100% RB， $10 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－TDD	9.92	± 9.6 \％
10266	CAG	LTE－TDD（SC－FDMA， 100% RB， 10 MHz ，64－QAM）	LTE－TDD	10.07	± 9.6 \％
10267	CAG	LTE－TDD（SC－FDMA， 100% RB， 10 MHz ，QPSK）	LTE－TDD	9.30	± 9.6 \％
10268	CAF	LTE－TDD（SC－FDMA， 100% RB， 15 MHz ， $16-\mathrm{QAM}$ ）	LTE－TDD	10.06	$\pm 9.6 \%$
10269	CAF	LTE－TDD（SC－FDMA，100\％RB， $15 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－TDD	10.13	± 9.6 \％
10270	CAF	LTE－TDD（SC－FDMA，100\％RB， 15 MHz ，QPSK）	LTE－TDD	9.58	± 9.6 \％
10274	CAB	UMTS－FDD（HSUPA，Subtest 5，3GPP Rel8．10）	WCDMA	4.87	± 9.6 \％
10275	CAB	UMTS－FDD（HSUPA，Subtest 5，3GPP Rel8．4）	WCDMA	3.96	± 9.6 \％
10277	CAA	PHS（QPSK）	PHS	11.81	± 9.6 \％
10278	CAA	PHS（QPSK，BW 884MHz，Rolloff 0．5）	PHS	11.81	± 9.6 \％
10279	CAA	PHS（QPSK，BW 884MHz，Rolloff 0．38）	PHS	12.18	± 9.6 \％
10290	AAB	CDMA2000，RC1，SO55，Full Rate	CDMA2000	3.91	± 9.6 \％
10291	$A A B$	CDMA2000，RC3，SO55，Full Rate	CDMA2000	3.46	± 9.6 \％
10292	AAB	CDMA2000，RC3，SO32，Full Rate	CDMA2000	3.39	± 9.6 \％
10293	AAB	CDMA2000，RC3，SO3，Full Rate	CDMA2000	3.50	± 9.6 \％
10295	AAB	CDMA2000，RC1，SO3，1／8th Rate 25 fr ．	CDMA2000	12.49	± 9.6 \％
10297	AAD	LTE－FDD（SC－FDMA， 50% RB， 20 MHz ，QPSK）	LTE－FDD	5.81	± 9.6 \％
10298	AAD	LTE－FDD（SC－FDMA， 50% RB， 3 MHz ，QPSK）	LTE－FDD	5.72	± 9.6 \％
10299	AAD	LTE－FDD（SC－FDMA， 50% RB， $3 \mathrm{MHz}, 16-\mathrm{QAM}$ ）	LTE－FDD	6.39	± 9.6 \％
10300	AAD	LTE－FDD（SC－FDMA， 50% RB， $3 \mathrm{MHz}, 64-\mathrm{QAM}$ ）	LTE－FDD	6.60	± 9.6 \％
10301	AAA	IEEE 802．16e WiMAX（ $29: 18,5 \mathrm{~ms}, 10 \mathrm{MHz}$, QPSK，PUSC）	WIMAX	12.03	$\pm 9.6 \%$
10302	AAA	IEEE 802．16e WiMAX（ $29: 18,5 \mathrm{~ms}, 10 \mathrm{MHz}$ ，QPSK，PUSC，3CTRL）	WiMAX	12.57	± 9.6 \％
10303	AAA	IEEE 802．16e WiMAX（ $31: 15,5 \mathrm{~ms}, 10 \mathrm{MHz}$ ，64QAM，PUSC）	WIMAX	12.52	± 9.6 \％
10304	AAA	IEEE 802.16 e WIMAX（ $29: 18,5 \mathrm{~ms}, 10 \mathrm{MHz}, 64 \mathrm{QAM}, \mathrm{PUSC}$ ）	WIMAX	11.86	± 9.6 \％
10305	AAA	IEEE 802．16e WIMAX（ $31: 15,10 \mathrm{~ms}, 10 \mathrm{MHz}, 64 \mathrm{QAM}, \mathrm{PUSC}$ ）	WIMAX	15.24	± 9.6 \％
10306	AAA	IEEE 802．16e WIMAX（ $29: 18,10 \mathrm{~ms}, 10 \mathrm{MHz}$ ，64QAM，PUSC）	Wimax	14.67	± 9.6 \％
10307	AAA	IEEE 802．16e WiMAX（ $29: 18,10 \mathrm{~ms}, 10 \mathrm{MHz}$ ，QPSK，PUSC）	WIMAX	14.49	± 9.6 \％
10308	AAA	IEEE 802．16e WiMAX（ $29: 18,10 \mathrm{~ms}, 10 \mathrm{MHz}, 16 \mathrm{QAM}, \mathrm{PUSC})$	WIMAX	14.46	± 9.6 \％
10309	AAA	IEEE 802．16e WiMAX（ $29: 18,10 \mathrm{~ms}, 10 \mathrm{MHz}, 16 \mathrm{QAM}$, AMC $2 \times 3)$	WIMAX	14.58	± 9.6 \％
10310	AAA	IEEE 802．16e WiMAX（29：18， $10 \mathrm{~ms}, 10 \mathrm{MHz}$ ，QPSK，AMC 2×3	WiMAX	14.57	± 9.6 \％
10311	AAD	LTE－FDD（SC－FDMA， 100% RB， 15 MHz ，QPSK）	LTE－FDD	6.06	± 9.6 \％
10313	AAA	IDEN 1：3	iDEN	10.51	± 9.6 \％
10314	AAA	iDEN 1：6	iDEN	13.48	± 9.6 \％
10315	AAB	IEEE 802．11b WiFi 2．4 GHz（DSSS， 1 Mbps，96pc dc）	WLAN	1.71	± 9.6 \％
10316	AAB	IEEE 802．11g WiFi 2.4 GHz （ERP－OFDM， $6 \mathrm{Mbps}, 96 \mathrm{pc} \mathrm{dc}$ ）	WLAN	8.36	± 9.6 \％
10317	AAD	IEEE 802．11a WiFi 5 GHz （OFDM， $6 \mathrm{Mbps}, 96 \mathrm{pc} \mathrm{dc})$	WLAN	8.36	± 9.6 \％
10352	AAA	Pulse Waveform（ $200 \mathrm{~Hz}, 10 \%$ ）	Generic	10.00	± 9.6 \％
10353	AAA	Pulse Waveform（ $200 \mathrm{~Hz}, 20 \%$ ）	Generic	6.99	± 9.6 \％
10354	AAA	Pulse Waveform（ $200 \mathrm{~Hz}, 40 \%$ ）	Generic	3.98	± 9.6 \％
10355	AAA	Pulse Waveform（ $200 \mathrm{~Hz}, 60 \%$ ）	Generic	2.22	± 9.6 \％
10356	AAA	Pulse Waveform（ $200 \mathrm{~Hz}, 80 \%$ ）	Generic	0.97	± 9.6 \％
10387	AAA	QPSK Waveform， 1 MHz	Generic	5.10	± 9.6 \％
10388	AAA	QPSK Waveform， 10 MHz	Generic	5.22	± 9.6 \％
10396	AAA	64－QAM Waveform， 100 kHz	Generic	6.27	± 9.6 \％
10399	AAA	64－QAM Waveform， 40 MHz	Generic	6.27	± 9.6 \％
10400	AAE	IEEE 802．11ac WiFi（20MHz，64－QAM，99pc dc）	WLAN	8.37	± 9.6 \％
10401	AAE	IEEE 802．11ac WiFi（ $40 \mathrm{MHz}, 64-\mathrm{QAM}, 99 \mathrm{pc} \mathrm{dc}$ ）	WLAN	8.60	± 9.6 \％
10402	AAE	IEEE 802．11ac WiFi（80MHz，64－QAM，99pc dc）	WLAN	8.53	± 9.6 \％
10403	AAB	CDMA2000（1xEV－DO，Rev．0）	CDMA2000	3.76	± 9.6 \％
10404	AAB	CDMA2000（1xEV－DO，Rev．A）	CDMA2000	3.77	± 9.6 \％
10406	AAB	CDMA2000，RC3，SO32，SCH0，Full Rate	CDMA2000	5.22	± 9.6 \％
10410	AAG	LTE－TDD（SC－FDMA， 1 RB， 10 MHz ，QPSK，UL Sub＝2，3，4，7，8，9）	LTE－TDD	7.82	± 9.6 \％

[^0]: Certificate No：Z22－60107

