FCC PART 15 SUBPART C/IC RSS-210

TEST REPORT

For

TPM sensor tester

Model No.: PR2-001

FCC ID: XVBPR2001

IC: 9368A-PR2001

of

Applicant: Standard Motor Products, Inc Address: 37-18 Northern Boulevard, Long Island City, New York 11101, United States

Tested and Prepared

by

Worldwide Testing Services (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

A2LA Accredited No.: 2732.01

Report No.: W6D21307-13373-C-1

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: wts@wts-lab.com

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

TABLE OF CONTENTS

1	GE	NERAL INFORMATION	2
	1.1	Notes	2
	1.2	TESTING LABORATORY	3
	1.2.	1 Location	3
	1.2.	2 Details of accreditation status	3
	1.3	DETAILS OF APPROVAL HOLDER	3
	1.4	APPLICATION DETAILS	4
	1.5	GENERAL INFORMATION OF TEST ITEM	4
	1.6	TEST STANDARDS	4
2	TE	CHNICAL TEST	5
	2.1	SUMMARY OF TEST RESULTS	5
	2.2	TEST ENVIRONMENT	5
	2.3	TEST EQUIPMENT LIST	6
	2.4	GENERAL TEST PROCEDURE	8
3	TES	ST RESULTS (ENCLOSURE)	9
	3.1	PEAK OUTPUT POWER.	10
	3.2	Spurious Emissions radiated – Transmitter operating	12
	3.3	OCCUPIED BANDWIDTH	16
	3.4	Antenna requirement	17
	3.5	RADIATED EMISSIONS FROM RECEIVER SECTION OF TRANSCEIVER	18
	3.6	Power Line Conducted Emission	21

APPENDIX

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems. The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services(Taiwan) Co., Ltd.

Kevin Wang

Tester:

August 06, 2013 Robert Ren

Date WTS-Lab. Name Signature

Technical responsibility for area of testing:

August 06, 2013 Kevin Wang

Date WTS Name Signature

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

1.2 Testing laboratory

1.2.1 Location

OATS

No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Dist.,

New Taipei City 207, Taiwan (R.O.C.)

Company

Worldwide Testing Services(Taiwan) Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C.

Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA accredited number: 2732.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

Test location, where different from Worldwide Testing Services (Taiwan) Co., Ltd.:

Name:	./.
Accredited number:	./.
Street:	./.
Town:	./.
Country:	./.
Telephone:	./.
Fax.	/

1.3 Details of approval holder

Name: Standard Motor Products, Inc. Street: 37-18 Northern Boulevard,

Town: Long Island City, New York 11101

 Country:
 United States

 Telephone:
 718-316-4571

 Fax:
 718-786-8247

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

1.4 Application details

Date of receipt of test item: July 31, 2013

Date of test: From August 01, 2013 to August 06, 2013

1.5 General information of Test item

Type of test item: TPM sensor tester

Model Number: PR2-001

Multi-listing model number: PR2-002

Brand name: Standard Motor Products, Inc.

Photos: see Appendix

Technical data

Transmitting Frequency: 125 kHz

Operation modes: Simplex

Modulation Type: AM

Antenna Type / Gain: CHOKE COIL / Max: 0 dBi

Power supply: Battery: 9 VDC

Manufacturer: (if different from Approval Holder)

Name: Orange Electronic Co., Ltd

Street: No 15, Lane 81, Sec 2, Tanfu Rd., Tanzih,

Town: Taichung, Country: Taiwan

Additional information: ./.

1.6 Test standards

Technical standard:

FCC RULES 15 SUBPART C § 2.1049, § 15.203, § 15.209, § 15.207 (2011-10)

IC RSS-210 Issue 8 December 2010

IC RSS-Gen Issue 3 December 2010

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

Technical test

Summary of test results 2.1

No deviations from the technical specification(s) were ascertained in the course of the tests performed.	×
or	
The deviations as specified in 3 were ascertained in the course of the tests performed.	

2.2 **Test environment**

23 °C Temperature:

Relative humidity content: 20 ... 75 %

Air pressure: 86 ... 103 kPa

Details of power supply Battery: 9 VDC

Extreme conditions parameters: test voltage: -- extreme

> min: -- V max : -- V

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

2.3 Test Equipment List

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2012/9/5	2013/9/4
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Function	on Test
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO-LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2012/12/21	2013/12/20
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	2013/3/4	2014/3/3
ETSTW-CE 007	SPECTRUM ANALYZER 5GHz	FSB	849670/001	R&S	Pre-te	st Use
ETSTW-CE 008	HF-EICHLEITUNG RF STEP ATTENUATOR 139dB DPSP	334.6010.02	844581/024	R&S	Function	on Test
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2013/7/10	2014/7/9
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2012/9/5	2013/9/4
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2012/9/5	2013/9/4
ETSTW-RE 012	TUNABLE BANDREJECT FILTER	D.C 0309	146	K&L	Function	on Test
ETSTW-RE 013	TUNABLE BANDREJECT FILTER	D.C 0336	397	K&L	Function	on Test
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2012/10/12	2013/10/11
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	ETS-Lindgren	2013/7/3	2014/7/2
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2013/3/4	2014/3/3
ETSTW-RE 045	ESA-E SERIES SPECTRUM ANALYZER	E4404B	MY45111242	Agilent	Pre-te	st Use
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2013/3/21	2014/3/20
ETSTW-RE 050	Attenuator 10dB	50HF-010-1	None	JFW	2013/3/4	2014/3/3
ETSTW-RE 051	Attenuator 6dB	50HF-006-1	None	JFW	2013/3/4	2014/3/3
ETSTW-RE 053	Attenuator 3dB	50HF-003-1	None	JFW	2013/3/4	2014/3/3
ETSTW-RE 055	SPECTRUM ANALYZER	FSU 26	200074	R&S	2013/5/31	2014/5/30
ETSTW-RE 060	Attenuator 30dB	5015-30	F651012z-01	ATM	2013/3/4	2014/3/3
ETSTW-RE 062	Amplifier Module	CHC 2	None	KMIC	2012/11/28	2013/11/27
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function	on Test
ETSTW-RE 069	Double-Ridged Guide Horn Antenna	3117	00069377	EMCO	Function	on Test
ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	HP	2012/10/5	2013/10/4
ETSTW-RE 088	SOLID STATE AMPLIFIER	KMA180265A01	99057	KMIC	2012/10/12	2013/10/11
ETSTW-RE 099	DC Block	50DB-007-1	None	JFW	2013/3/4	2014/3/3
ETSTW-RE 106	Humidity Temperature Meter	TES-1366	091011113	TES	2012/12/4	2013/12/3
ETSTW-RE 111	TRILOG Super Broadband test Antenna	VULB 9160	9160-3309	Schwarz beck	2012/12/13	2013/12/12
ETSTW-RE 112	AC POWER SOURCE	TFC-1005	None	T-Power	Functi	on test
ETSTW-RE 115	2.4GHz Notch Filter	N0124411	473874	MICROWAVE CIRCUITS	2013/1/11	2014/1/10

Registration number: W6D21307-13373-C-1

ETSTW-RE 120	RF Player	MP9200	MP9210-111022	ADIVIC	Functi	on test
ETSTW-RE 122	SIGNAL GENERATOR	SMF100A	102149	R&S	2013/6/28	2014/6/27
ETSTW-RE 125	5GHz Notch filter	5NSL11- 5200/E221.3-O/O	1	K&L Microwave	2012/8/18	2013/8/17
ETSTW-RE 126	5GHz Notch filter	5NSL11- 5800/E221.3-O/O	1	K&L Microwave	2012/8/18	2013/8/17
ETSTW-RE 127	RF Switch Box	RFS-01	None	WTS	2013/3/4	2014/3/3
ETSTW-GSM 002	Universal Radio Communication Tester	CMU 200	109439	R&S	2012/10/5	2013/10/4
ETSTW-GSM 019	Band Reject Filter	WRCTF824/849- 822/851-40 /12+9SS	3	WI	2013/1/11	2014/1/10
ETSTW-GSM 020	Band Reject Filter	WRCD1747/1748- 1743/1752-32/5SS	1	WI	2013/1/11	2014/1/10
ETSTW-GSM 021	Band Reject Filter	WRCD1879.5/1880.5 -1875.5/1884.5- 32/5SS	3	WI	2013/1/11	2014/1/10
ETSTW-GSM 022	Band Reject Filter	WRCT901.9/903.1- 904.25-50/8SS	1	WI	2013/1/11	2014/1/10
ETSTW-GSM 023	Power Divider	4901.19.A	None	SUHNER	2012/9/18	2013/9/17
ETSTW-Cable 010	BNC Cable	5 M BNC Cable	None	JYE BAO CO.,LTD.	2013/3/4	2014/3/3
ETSTW-Cable 011	BNC Cable	BNC Cable 1	None	JYE BAO CO.,LTD.	Pre-test l	Jse NCR
ETSTW-Cable 012	N TYPE To SMA Cable	Cable 012	None	JYE BAO CO.,LTD.	2013/3/4	2014/3/3
ETSTW-Cable 016	BNC Cable	Switch Box	B Cable 1	Schwarz beck	2013/3/4	2014/3/3
ETSTW-Cable 017	BNC Cable	X Cable	B Cable 2	Schwarz beck	2013/3/4	2014/3/3
ETSTW-Cable 018	BNC Cable	Y Cable	B Cable 3	Schwarz beck	2013/3/4	2014/3/3
ETSTW-Cable 019	BNC Cable	Z Cable	B Cable 4	Schwarz beck	2013/3/4	2014/3/3
ETSTW-Cable 022	N TYPE Cable	5006	0002	JYE BAO CO.,LTD.	2013/3/26	2014/3/25
ETSTW-Cable 026	Microwave Cable	SUCOFLEX 104	279075	HUBER+SUHNER	2013/3/4	2014/3/3
ETSTW-Cable 027	Microwave Cable	SUCOFLEX 104	279083	HUBER+SUHNER	2013/3/4	2014/3/3
ETSTW-Cable 028	Microwave Cable	FA147A0015M2020	30064-2	UTIFLEX	2012/10/12	2013/10/11
ETSTW-Cable 029	Microwave Cable	FA147A0015M2020	30064-3	UTIFLEX	2012/10/12	2013/10/11
ETSTW-Cable 030	Microwave Cable	SUCOFLEX 104 (S_Cable 9)	279067	HUBER+SUHNER	2013/3/4	2014/3/3
ETSTW-Cable 031	Microwave Cable	SUCOFLEX 104 (S_Cable 10)	238092	HUBER+SUHNER	2012/11/28	2013/11/27
ETSTW-Cable 043	Microwave Cable	SUCOFLEX 104	317576	HUBER+SUHNER	2012/11/28	2013/11/27
ETSTW-Cable 047	Microwave Cable	SUCOFLEX 104	325518	HUBER+SUHNER	2012/11/28	2013/11/27
ETSTW-Cable 053	N TYPE To SMA Cable	RG142	None	JYE BAO CO.,LTD.	2013/3/26	2014/3/25
ETSTW-Cable 058	Microwave Cable	SUCOFLEX 104	none	HUBER+SUHNER	2013/6/20	2014/6/19
WTSTW-SW 002	EMI TEST SOFTWARE	EZ_EMC	None	Farad	Version E	ETS-03A1

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2009 5.2 using a 50µH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2009 6.4 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz) METER READING + ACF + CABLE LOSS(to the receiver) = FS

33 $20 dB\mu V + 10.36 dB + 6 dB = 36.36 dB\mu V/m @3m$

ANSI STANDARD C63.4-2009 6.3.1 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm height and with dimensions of 1m by 1.5m (non metallic table). The EUT was placed in the centre of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings.

Measurements were made by Worldwide Testing Services(Taiwan) Co., Ltd. at the registered open field test site located at No.5-1, Lishui, Shuang Sing Village, Wanli Dist., New Taipei City 207, Taiwan (R.O.C.). The Registration Number: 930600.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

ANSI STANDARD C63.4-2009 10.2.7: Any measurements that utilize special test software shall be indicated and referenced in the test report. During testing, test software 'EZ EMC' was used for setting up different operation modes.

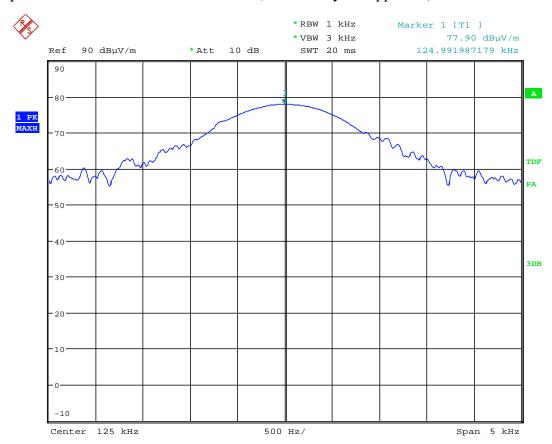
Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

3 Test results (enclosure)

Test case	Para. Number	Required	Test passed	Test failed
Peak Output Power	15.209	×	×	
	IC RSS-Gen 4.8 & 7.2.5			
Spurious Emissions radiated –	15.209	×	×	
Transmitter operating	IC RSS-Gen 4.9 & 7.2.5			
Spurious Emissions radiated –	15.109	×	×	
Receiver operating	IC RSS-Gen 4.10 & 7.2.5			
Occupied bandwidth	2.1049	×	×	
	IC RSS-Gen 4.6.1			
Antenna Requirement	FCC 15.203	×	×	
	IC RSS-Gen			
Power Line Conducted	FCC 15.207			
Emission	IC RSS-Gen 7.2.4			

The following is intentionally left blank.


Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

3.1 Peak Output Power

FCC Rules: 15.209

The power was measured with modulation (declared by the applicant).

POWER

Date: 5.AUG.2013 16:51:46

Limits: 15.209

Frequency of Emission (MHz)	Field Strength of Fundamental Limit uV/m	Measurement distance
0.009 - 0.490	2400 / f (KHz)	300
0.49 - 1.705	24000 / f (KHz)	30
1.705 – 30	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

The test was performed in the anechoic OATS at 3 meter test distance, i.e. the distance between measuring antenna and EUT boundary. The results were extrapolated by using the square of an inverse linear distance factor DF:

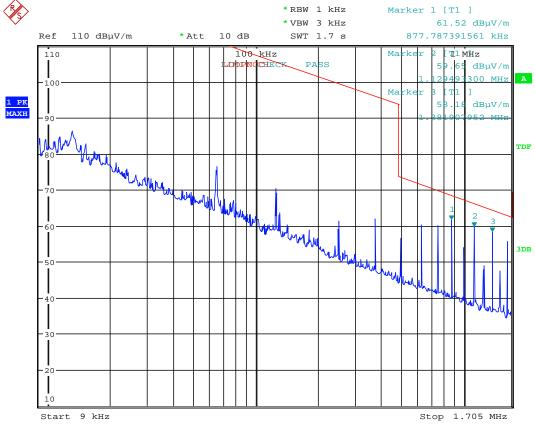
DF (distance factor) = $40 \log (D_1/D_2) = 80 dB$, where

 D_1 is the 300 meter specified measurement distance, D_2 is the 3 meter test measurement distance.

For 125 kHz frequency the calculated limit is: Limit $_{3m}$ = Limit $_{300m}$ + DF = 25.67 dBuV/m + 80 dB = 105.67 dBuV/m

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 027, ETSTW-RE 055.

Registration number: W6D21307-13373-C-1

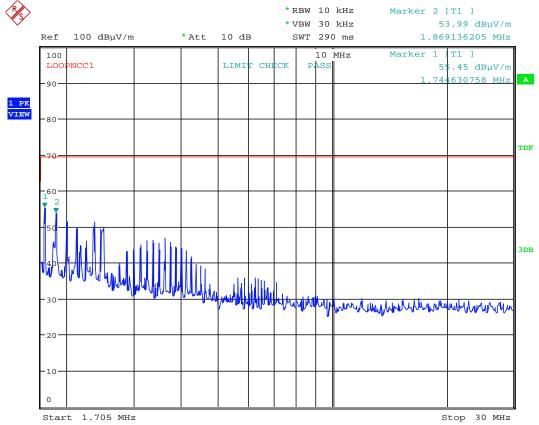

FCC ID: XVBPR2001 IC: 9368A-PR2001

3.2 Spurious Emissions radiated – Transmitter operating

FCC Rules: 15.209

The field strength of any emission appearing outside of the specific band shall not exceed the general radiated emission limits in 15.209.

For the frequency from 9 kHz to 30 MHz:


Radiated

Date: 5.AUG.2013 14:39:39

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

Radiated

Date: 5.AUG.2013 14:37:21

Note: The above field strength limits are specified at a distance of 3 meters.

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

For the frequency from 30 MHz to 1000 MHz.:

Model: PR2-001 Date: 2013/8/3

Mode: TX Temperature: 24 °C Engineer: Leon

Polarization: Horizontal Humidity: 60 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
162.1844	5.65	peak	15.17	20.82	43.50	-22.68	120	100
634.5490	4.00	peak	23.46	27.46	46.00	-18.54	175	100

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
31.9440	11.15	peak	13.30	24.45	40.00	-15.55	110	100
175.7916	7.93	peak	14.14	22.07	43.50	-21.43	130	100

Note

- 1. Correction Factor = Antenna factor + Cable loss Preamplifier
- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty for 3m measurement : 0.009-30 MHz : ± 6.27 dB, 30-1000 MHz = \pm 3.72 dB, 1-18 GHz = \pm 5.33 dB, 18-40 GHz= \pm 3.43 dB ;Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.
- 6. See attached diagrams in the Appendix.

All other not noted test plots do not contain significant test results in relation to the limits.

TEST RESULT (Transmitter): The unit DOES meet the FCC requirements.

Limits: 15.209

Frequency of Emission (MHz)	Field Strength of Fundamental Limit uV/m	Measurement distance
0.009 - 0.490	2400 / f (KHz)	300
0.49 - 1.705	24000 / f (KHz)	30
1.705 - 30	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

^{*} In the emission table above, the tighter limit applies at the band edges.

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

The test was performed in the anechoic chamber at 3 meter test distance, i.e. the distance between measuring antenna and EUT boundary. The results were extrapolated by using the square of an inverse linear distance factor DF:

 $DF = 40 \log (D_1/D_2) = 80 dB$, where

For D₁ is the 300 meter specified measurement distance.

 D_2 is the 3 meter test measurement distance.

The DF = 80 dB was applied for limit calculation at 3 meter test distance measurements.

For D₁ is the 30 meter specified measurement distance.

 D_2 is the 3 meter test measurement distance.

The DF = 40 dB was applied for limit calculation at 3 meter test distance measurements.

If the frequency between 9 – 490 kHz,

Limit = 20log(2400/f(kHz)) + 80

If the frequency between 490 – 1705 kHz,

Limit = 20log(2400/f(kHz)) + 40

If the frequency between 1705 – 30000 kHz,

Limit = 20log30 + 40

For 125 kHz frequency the calculated limit is:

 $Limit_{3m} = Limit_{300m} + DF = 25.67 dBuV/m + 80 dB = 105.67 dBuV/m$

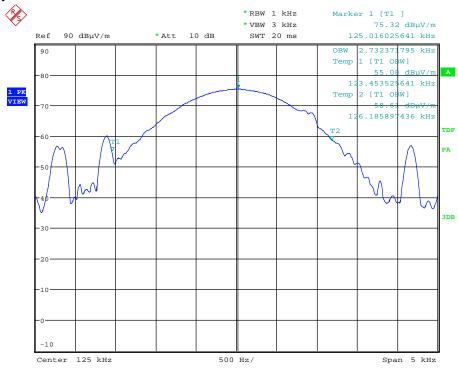
Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 027, ETSTW-RE 028,

ETSTW-RE 029, ETSTW-RE 055, ETSTW-RE 049.

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

3.3 Occupied Bandwidth


FCC Rules: 2.1049

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated are each equal to 0.5% of the total mean power radiated by a given emission.

The resolution bandwidth of the spectrum analyzer shall be set to a value greater than 5.0% of the allowed bandwidth specifications are given, the following guidelines are used:

Fundamental frequency	Minimum resolution bandwidth
9 kHz to 30 MHz	1 kHz
30 MHz to 1000 MHz	10 kHz
1000 MHz to 40 GHz	100 kHz

Test result:

Occupied bandwidth
Date: 5.AUG.2013 16:54:13

Test equipment: ETSTW-RE 055

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

3.4 Antenna requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

Explanation: This antenna is Helical antenna which passes antenna requirement.

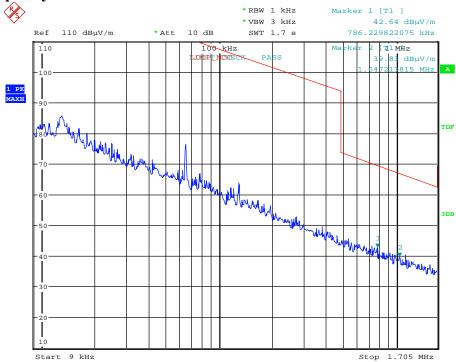
The equipment meets the	yes	no
requirements	×	

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

3.5 Radiated Emissions from Receiver Section of Receiver Part

For the frequency from 9 kHz to 30 MHz:

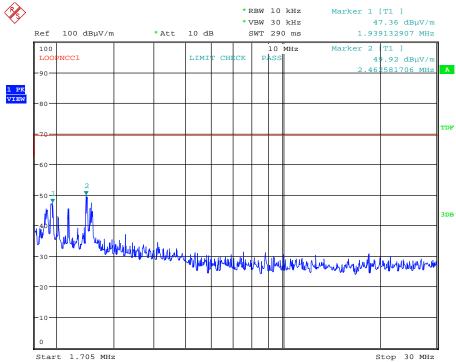

FCC Rule: 15.209

The field strength of any emission appearing outside of the specific band shall not exceed the general radiated emission limits in 15.209.

Frequency of Emission (MHz)	Field Strength of Fundamental Limit uV/m	Measurement distance
0.009 - 0.490	2400 / f (KHz)	300
0.49 - 1.705	24000 / f (KHz)	30
1.705 - 30	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

^{*} In the emission table above, the tighter limit applies at the band edges.

For the frequency from 9 kHz to 30 MHz:


Radiated

Date: 5.AUG.2013 14:35:22

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

Radiated
Date: 5.AUG.2013 14:38:00

Note: The above field strength limits are specified at a distance of 3 meters.

The test was performed in the anechoic chamber at 3 meter test distance, i.e. the distance between measuring antenna and EUT boundary. The results were extrapolated by using the square of an inverse linear distance factor DF:

 $DF = 40 \log (D_1/D_2) = 80 dB$, where

For D_1 is the 300 meter specified measurement distance.

 D_2 is the 3 meter test measurement distance.

The DF = 80 dB was applied for limit calculation at 3 meter test distance measurements.

For D₁ is the 30 meter specified measurement distance.

 D_2 is the 3 meter test measurement distance.

The DF = 40 dB was applied for limit calculation at 3 meter test distance measurements.

If the frequency between 9 - 490 kHz, $\lim_{x \to \infty} 1 = 20 \log(2400/f(\text{kHz})) + 80$

If the frequency between 490 - 1705 kHz, $\lim_{x \to \infty} 100 = 20 \log(2400) f(kHz) + 40 = 20 \log(2400) f(kHz)$

If the frequency between 1705 - 30000 kHz, limit = 20log30 + 40

For 125 kHz frequency the calculated limit is:

 $Limit_{3m} = Limit_{300m} + DF = 25.67 dBuV/m + 80 dB = 105.67 dBuV/m$

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 027, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 055, ETSTW-RE 049.

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

For the frequency from 30 MHz to 1000 MHz.:

FCC Rule: 15.109

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission	Field Strength	Field Strength
(MHz)	(microvolts/meter)	(dBmicrovolts/meter)
30 - 88	100	40.0
88 - 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

Model: PR2-001 Date: 2013/8/3

Mode: RX Temperature: 24 °C Engineer: Leon

Polarization: Horizontal Humidity: 60 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
168.0160	4.90	peak	14.95	19.85	43.50	-23.65	110	100
403.2264	3.60	peak	18.69	22.29	46.00	-23.71	265	100

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
31.9440	10.71	peak	13.30	24.01	40.00	-15.99	125	100
356.5731	4.59	peak	17.27	21.86	46.00	-24.14	340	100

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 030, ETSTW-RE 044, ETSTW-RE 064

Note

- 1. Correction Factor = Antenna factor + Cable loss Preamplifier
- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty for 3m measurement : $0.009-30 \text{ MHz} = \pm 6.27 \text{ dB}$, $30-1000 \text{ MHz} = \pm 3.72 \text{ dB}$, $1-18 \text{ GHz} = \pm 5.33 \text{ dB}$, $18-40 \text{ GHz} = \pm 3.43 \text{ dB}$; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 6. See attached diagrams in appendix.

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

3.6 Power Line Conducted Emission

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Encourage	Level (dBμV)				
Frequency	quasi-peak	average			
150 kHz	Lower limit line	Lower limit line			

Model:	PR2-001	Dat	e:					
Mode:		Ter	nperature:		°C	Engir	neer:	
Polarization:	N	Hui	midity:		%			
Frequency	Readi	ing	Factor	Re	sult	Liı	nit	Margin
	(dBu'	V)	(dB)	(dB	uV)	(dB	uV)	
(MHz)	QP A	Ave.	Corr.	QP	Ave.	QP	Ave.	(dB)

D.	larization:	T 1
PO	ariyanon.	

1 Old Edition. E1							
Frequency	Reading	Factor	Result	Limit	Margin		
	(dBuV)	(dB)	(dBuV)	(dBuV)			
(MHz)	QP Ave.	Corr.	QP Ave.	QP Ave.	(dB)		

Note

- 1. The formula of measured value as: Test Result = Reading + Correction Factor
- 2. The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty = ± 1.60 dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.
- 6. The EUT is battery-used, so this test is not required.

Limits:

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi Peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Test equipment used: ETSTW-CE 001, ETSTW-CE 004, ETSTW-CE 006, ETSTW-RE 045.

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

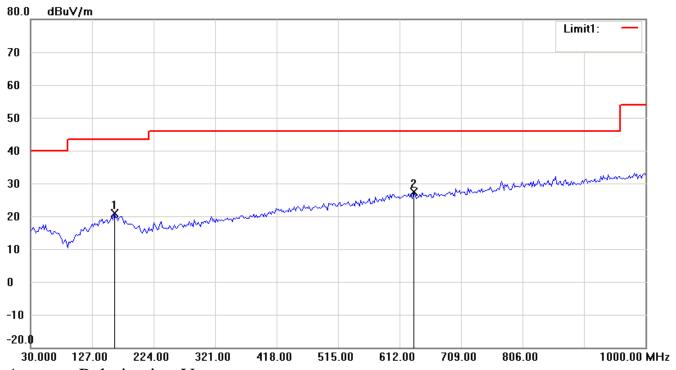
Appendix

A. Measurement diagrams

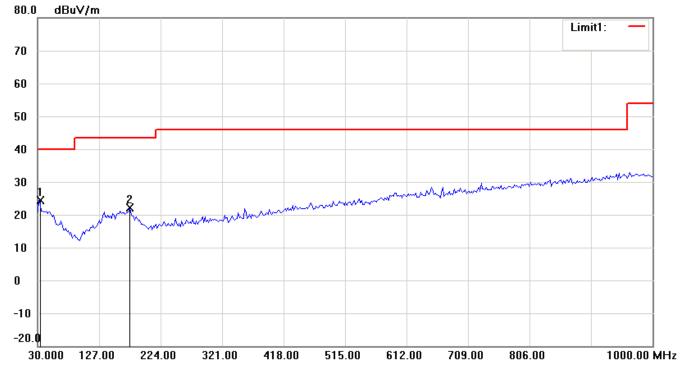
Spurious Emissions Radiated

B. Photos

- 1. External Photos
- 2. Internal Photos
- 3. Set Up Photos of Radiated Emission



Registration number: W6D21307-13373-C-1


FCC ID: XVBPR2001 IC: 9368A-PR2001

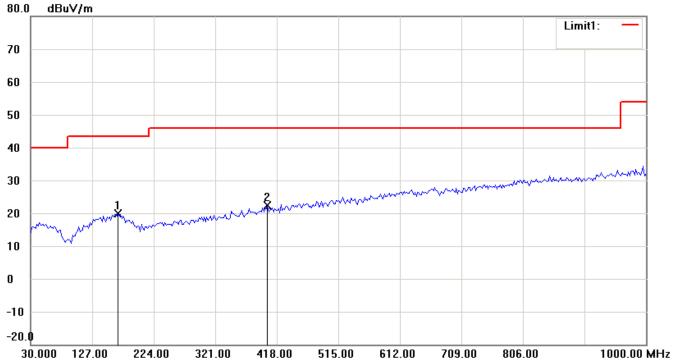
Spurious Emissions radiated -Transmitter - Frequency from 30 MHz to 1000 MHz

Antenna Polarization H

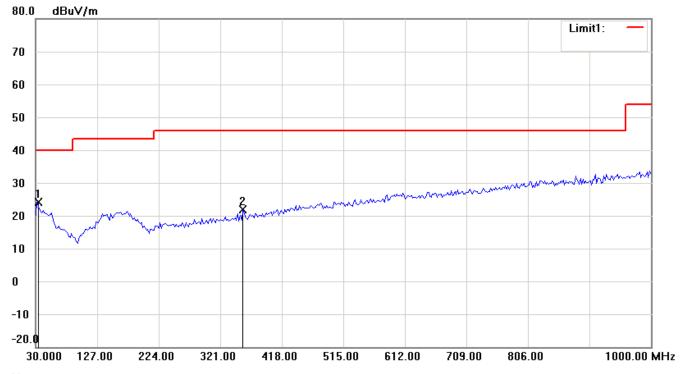
Antenna Polarization V

Note:

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



Registration number: W6D21307-13373-C-1


FCC ID: XVBPR2001 IC: 9368A-PR2001

Spurious Emissions radiated -Receiver - Frequency from 30 MHz to 1000 MHz

Antenna Polarization H

Antenna Polarization V

Note:

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001 External Photos

Registration number: W6D21307-13373-C-1

Registration number: W6D21307-13373-C-1

Registration number: W6D21307-13373-C-1

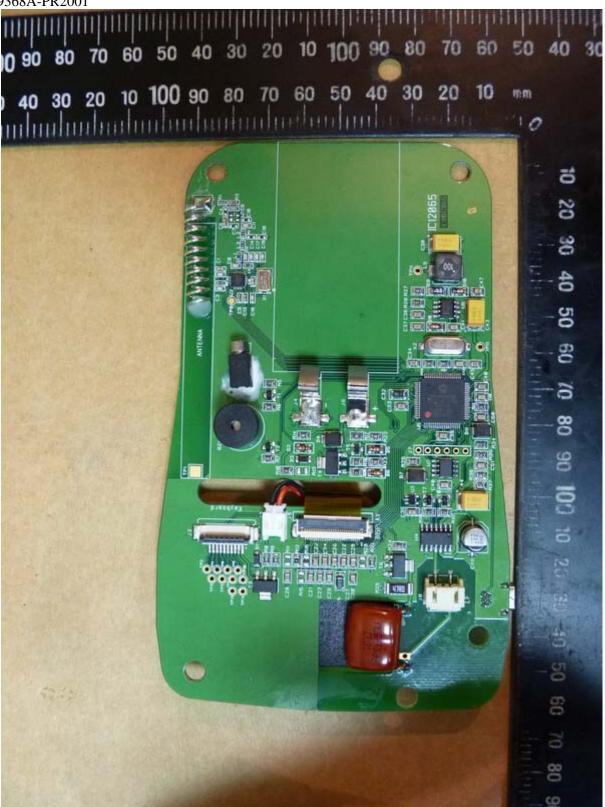
Registration number: W6D21307-13373-C-1

Registration number: W6D21307-13373-C-1

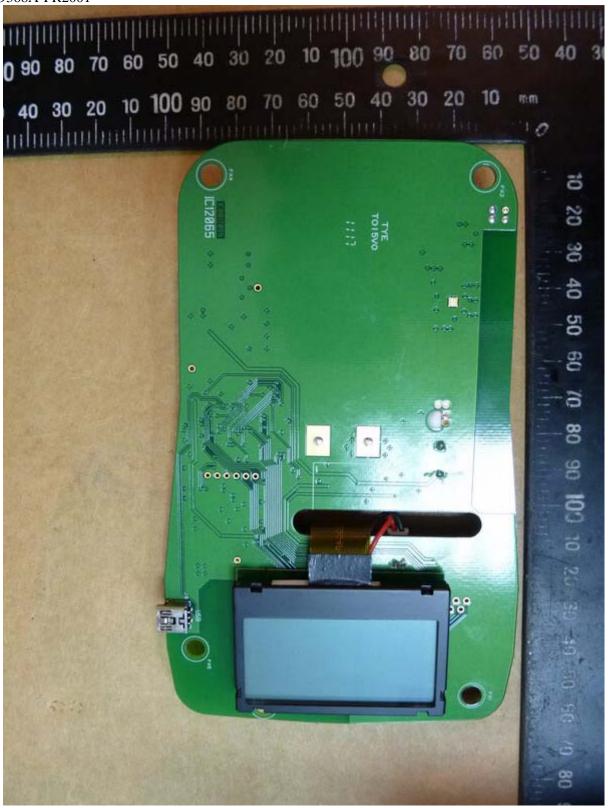
Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001 Internal Photos

Registration number: W6D21307-13373-C-1



Registration number: W6D21307-13373-C-1



Registration number: W6D21307-13373-C-1

Registration number: W6D21307-13373-C-1

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

External Photos of Multi-listing Model no. PR2-002

Registration number: W6D21307-13373-C-1

Registration number: W6D21307-13373-C-1

Registration number: W6D21307-13373-C-1

Registration number: W6D21307-13373-C-1

Registration number: W6D21307-13373-C-1

Registration number: W6D21307-13373-C-1

FCC ID: XVBPR2001 IC: 9368A-PR2001

Set Up Photos of Radiated Emission

Below 30MHz

Above 30MHz

Registration number: W6D21307-13373-C-1

