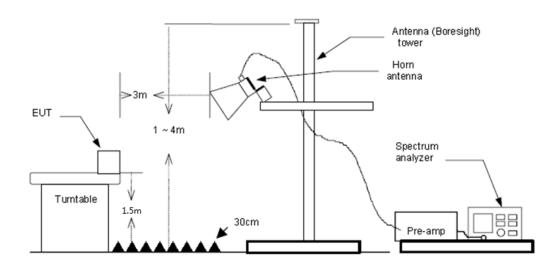


3.3. Band Edge Emissions

Limit

Limits of unwanted emission out of the restricted bands


FCC CFR Title 47 Part 15 Subpart C Section 15.407(b)/ RSS-247 6.2.1.2 & RSS-247 6.2.4.2

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)			
5150~5250	-27	68.2			
5250~5350	-27	68.2			
5470~5725	-27	68.2			
	-27(Note 2)	68.2			
5725~5825	10(Note 2)	105.2			
5725~5625	15.6(Note 2)	110.8			
	27(Note 2)	122.2			

Note: 1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{2}$ uV/m, where P is the eirp (Watts)

2. According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

CTC Laboratories, Inc.

中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: <u>yz.cnca.cn</u>

5. The receiver set as follow:

RBW=1MHz, VBW=3MHz PEAK detector for Peak value.

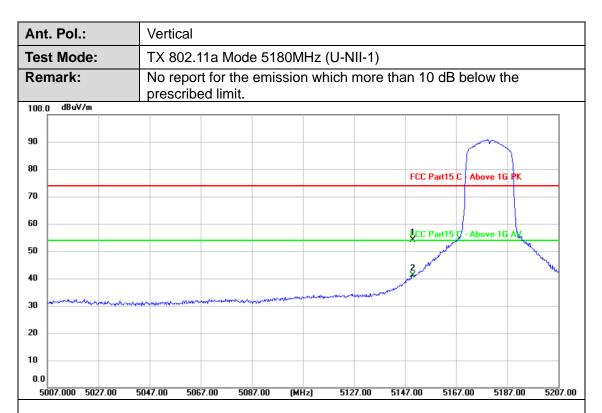
RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause Appendix E: Duty Cycle

Test Mode

Please refer to the clause 2.4.

Test Results


Ant.	Pol.:	Horiz	zontal									
Test	Mode:	TX 8	802.11a Mode 5180MHz (U-NII-1)									
Rem	nark:		eport for		emis	ssion wh	nich more	e than	10 dB b	elow th	ne	
100.0	dBuV/m											
90												
80								FC	C Part15 C	- Above 1G	PK	
70												
60								FC		Above 16	AV	Y
50									3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-
40						and the same of th		~~~~	X			
30	Party Company of the Company	read the trap to the		4.7								
20												
10												_
0.0												

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	48.89	3.97	52.86	74.00	-21.14	peak
2 *	5150.000	40.96	3.97	44.93	54.00	-9.07	AVG

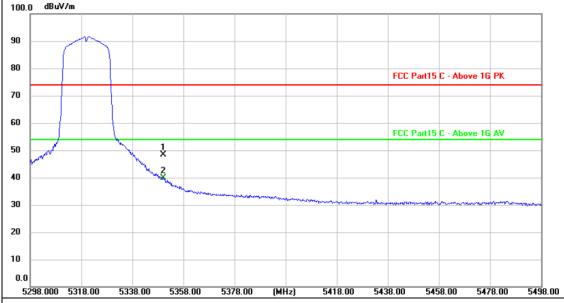
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	50.16	3.97	54.13	74.00	-19.87	peak
2 *	5150.000	37.11	3.97	41.08	54.00	-12.92	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

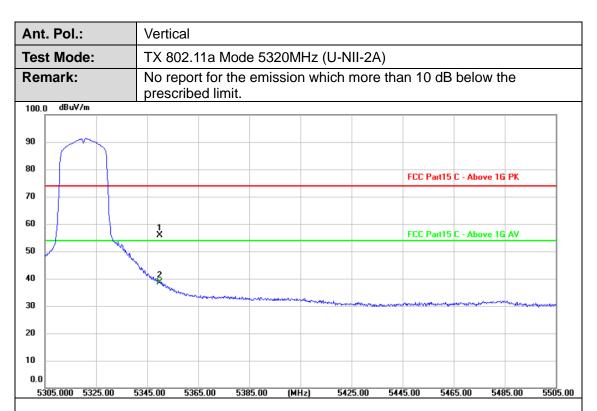


Ant. Pol.: Horizontal

Test Mode: TX 802.11a Mode 5320MHz (U-NII-2A)

Remark: No report for the emission which more than 10 dB below the prescribed limit.

Report No.: CTC2024214214



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	44.12	4.34	48.46	74.00	-25.54	peak
2 *	5350.000	35.48	4.34	39.82	54.00	-14.18	AVG

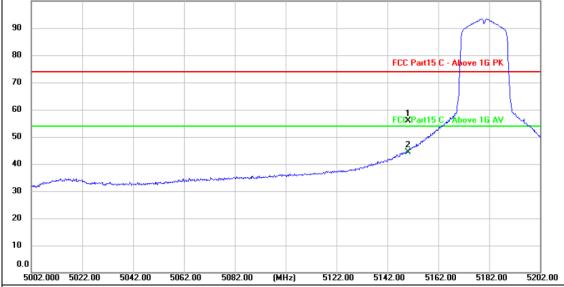
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	51.51	4.34	55.85	74.00	-18.15	peak
2 *	5350.000	34.18	4.34	38.52	54.00	-15.48	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant. Pol.: Horizontal

Test Mode: TX 802.11n(HT20) Mode 5180MHz (U-NII-1)

Remark: No report for the emission which more than 10 dB below the prescribed limit.

100.0 dBuV/m

90
80
FCC Part15 C - Above 16 PK

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	51.90	3.97	55.87	74.00	-18.13	peak
2 *	5150.000	40.38	3.97	44.35	54.00	-9.65	AVG

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5199.00

Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5180MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	54.79	3.97	58.76	74.00	-15.24	peak
2 *	5150.000	37.10	3.97	41.07	54.00	-12.93	AVG

(MHz)

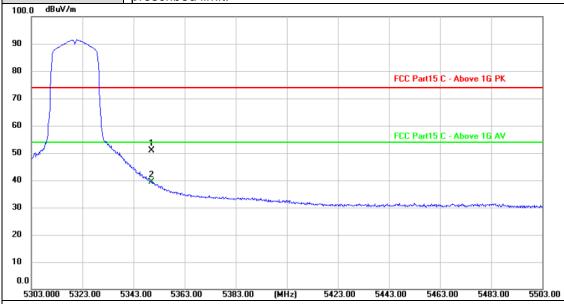
Remarks:

0.0

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会



Ant. Pol.: Horizontal

Test Mode: TX 802.11n(HT20) Mode 5320MHz (U-NII-2A)

Remark: No report for the emission which more than 10 dB below the prescribed limit.

Report No.: CTC2024214214

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	46.44	4.34	50.78	74.00	-23.22	peak
2 *	5350.000	34.99	4.34	39.33	54.00	-14.67	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5506.00

Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5320MHz (U-NII-2A) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	50.42	4.34	54.76	74.00	-19.24	peak
2 *	5350.000	34.72	4.34	39.06	54.00	-14.94	AVG

(MHz)

5426.00

5446.00

5466.00

5386.00

Remarks:

0.0

5306.000 5326.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 60 ve 1G AV 50 40 30 20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	53.54	3.97	57.51	74.00	-16.49	peak
2 *	5150.000	40.71	3.97	44.68	54.00	-9.32	AVG

(MHz)

5116.00

5136.00

5156.00

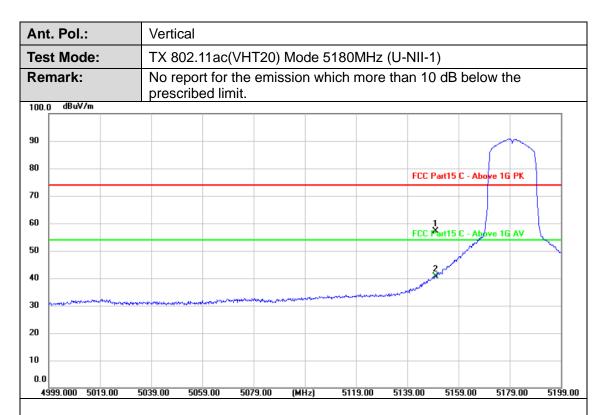
5176.00

5196.00

Remarks:

10

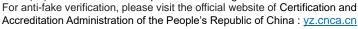
4996.000 5016.00


5036.00

5056.00

5076.00

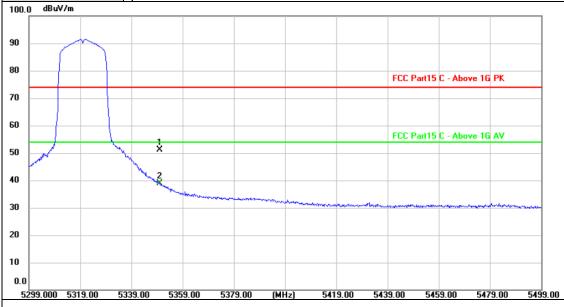
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	53.14	3.97	57.11	74.00	-16.89	peak
2 *	5150.000	36.70	3.97	40.67	54.00	-13.33	AVG

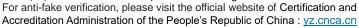
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant. Pol.: Horizontal

Test Mode: TX 802.11ac(VHT20) Mode 5320MHz (U-NII-2A)


Remark: No report for the emission which more than 10 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	46.85	4.34	51.19	74.00	-22.81	peak
2 *	5350.000	34.56	4.34	38.90	54.00	-15.10	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5320MHz (U-NII-2A) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 X 40 30 20 10 0.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	43.39	4.34	47.73	74.00	-26.27	peak
2 *	5350.000	34.14	4.34	38.48	54.00	-15.52	AVG

(MHz)

5426.00 5446.00

5466.00 5486.00

5386.00

5366.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

5215.00

Ant. Pol.: Horizontal **Test Mode:** TX 802.11n(HT40) Mode 5190MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. 100.0 dBuV/m 90 80 FCC Part 5 C - Above 1G PK 60 FCC Part15 C - Above 1G AV 50 40 30 20 10

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	5150.000	50.51	3.97	54.48	74.00	-19.52	peak
2 *	5150.000	42.31	3.97	46.28	54.00	-7.72	AVG

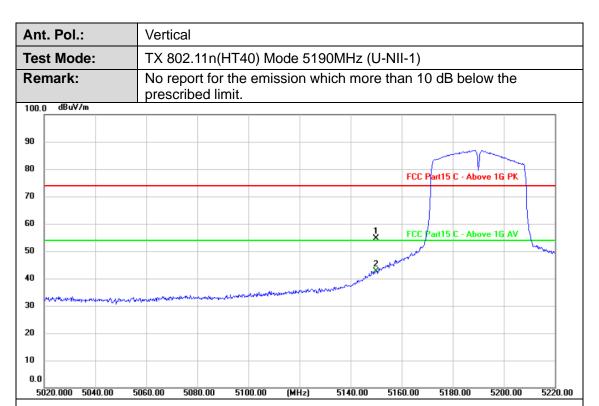
(MHz)

5135.00

5155.00

Remarks:

5015.000 5035.00


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

5055.00

5075.00

5095.00

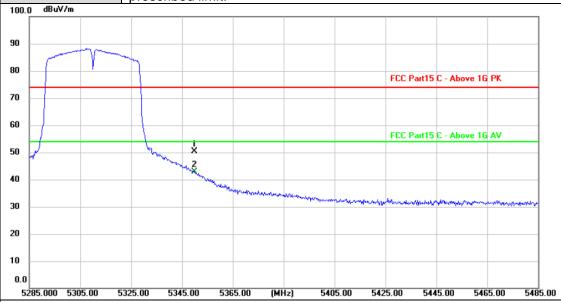
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	50.54	3.97	54.51	74.00	-19.49	peak
2 *	5150.000	38.65	3.97	42.62	54.00	-11.38	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会



Ant. Pol.: Horizontal

Test Mode: TX 802.11n(HT40) Mode 5310MHz (U-NII-2A)

Remark: No report for the emission which more than 10 dB below the prescribed limit.

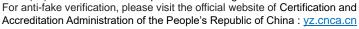
Report No.: CTC2024214214

No) .	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1		5350.000	45.96	4.34	50.30	74.00	-23.70	peak
2	*	5350.000	38.53	4.34	42.87	54.00	-11.13	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5310MHz (U-NII-2A) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 30 20 10 0.0 5285.000 5305.00 5345.00 5365.00 5405.00 5425.00 5465.00 5485.00 5325.00 (MHz) 5445.00


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5350.000	52.93	4.34	57.27	74.00	-16.73	peak
2 *	5350.000	37.83	4.34	42.17	54.00	-11.83	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
	1	5150.000	55.99	3.97	59.96	74.00	-14.04	peak
ı	2 *	5150.000	41.67	3.97	45.64	54.00	-8.36	AVG

(MHz)

5136.00

5156.00

5176.00

5216.00

Remarks:

10

5016.000 5036.00

5056.00

5076.00

5096.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) No report for the emission which more than 10 dB below the Remark: prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10 0.0 5018.000 5038.00 5078.00 5098.00 (MHz) 5138.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	50.44	3.97	54.41	74.00	-19.59	peak
2 *	5150.000	38.35	3.97	42.32	54.00	-11.68	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

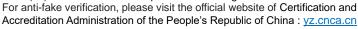
中国国家认证认可监督管理委员会

Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT40) Mode 5310MHz (U-NII-2A) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10 0.0 5288.000 5308.00 5328.00 5368.00 5408.00 5428.00 5348.00 (MHz) 5468.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	5350.000	50.35	4.34	54.69	74.00	-19.31	peak
2 *	5350.000	38.88	4.34	43.22	54.00	-10.78	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

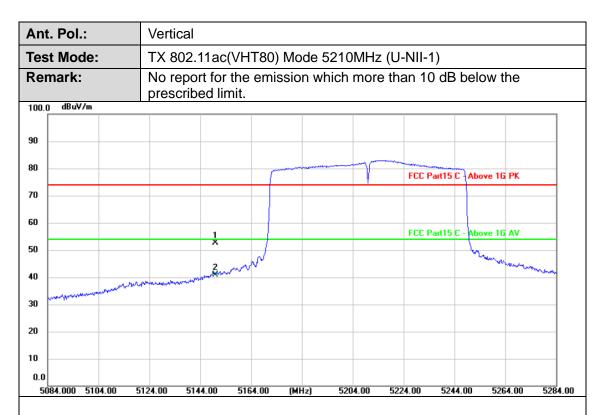


Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT40) Mode 5310MHz (U-NII-2A) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 60 FCC Part15 C - Above 1G AV 50 30 20 0.0 (MHz)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	46.97	4.34	51.31	74.00	-22.69	peak
2 *	5350.000	38.13	4.34	42.47	54.00	-11.53	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20 10 0.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	51.42	3.97	55.39	74.00	-18.61	peak
2 *	5150.000	42.06	3.97	46.03	54.00	-7.97	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	48.63	3.97	52.60	74.00	-21.40	peak
2 *	5150.000	36.83	3.97	40.80	54.00	-13.20	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT80) Mode 5290MHz (U-NII-2A) Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV × 50 40 30 20 10 0.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	46.57	4.34	50.91	74.00	-23.09	peak
2 *	5350.000	38.84	4.34	43.18	54.00	-10.82	AVG

(MHz)

5336.00

5356.00

5376.00

5396.00

5416.00

Remarks:

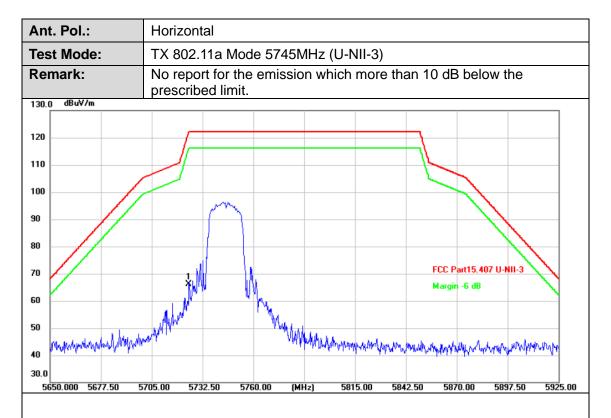
5216.000 5236.00

5256.00

5276.00

5296.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT80) Mode 5290MHz (U-NII-2A) No report for the emission which more than 10 dB below the Remark: prescribed limit. 100.0 dBuV/m 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV Ÿ 50 2 40 30 20 10 5424.00 5224.000 5244.00 5264.00 5284.00 5304.00 5344.00 (MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	45.74	4.34	50.08	74.00	-23.92	peak
2 *	5350.000	38.28	4.34	42.62	54.00	-11.38	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	60.75	5.45	66.20	122.20	-56.00	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5745MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	53.83	5.45	59.28	122.20	-62.92	peak

(MHz)

5815.00

5842.50

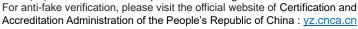
5870.00

5925.00

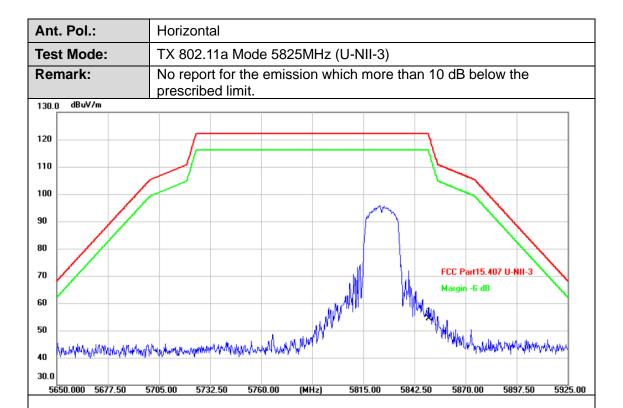
Remarks:

30.0

5650.000 5677.50

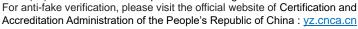

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value


5705.00

5732.50

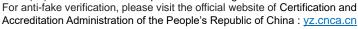
5760.00



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	48.35	5.91	54.26	122.20	-67.94	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

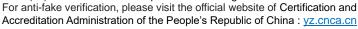


Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5825MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 60 50 30.0 5842.50

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	50.07	5.91	55.98	122.20	-66.22	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

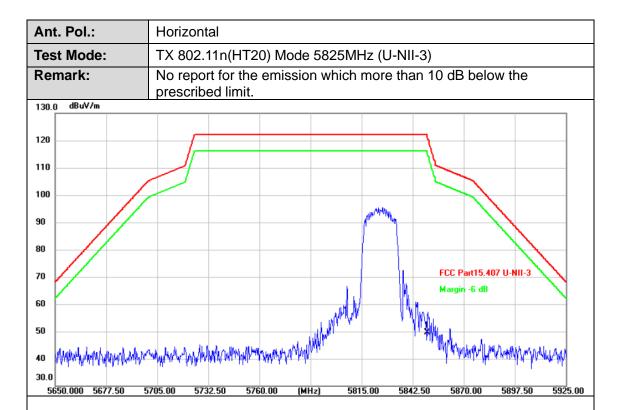


Ant. Pol.: Horizontal Test Mode: TX 802.11n(HT20) Mode 5745MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40 5732.50 5760.00 (MHz) 5815.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	56.63	5.45	62.08	122.20	-60.12	peak

Remarks:

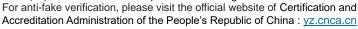
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5745MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40 30.0 5760.00 (MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	54.58	5.45	60.03	122.20	-62.17	peak	

Remarks:

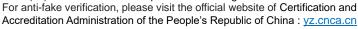
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	43.63	5.91	49.54	122.20	-72.66	peak	Ī

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

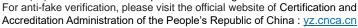


Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT20) Mode 5825MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	47.19	5.91	53.10	122.20	-69.10	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant. Pol.: Horizontal Test Mode: TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40 5650.000 5677.50 5732.50 5760.00 5705.00 (MHz) 5815.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	50.18	5.45	55.63	122.20	-66.57	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol.: Vertical Test Mode: TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB wasaying maraya mara bar file fallo files 60 50 30.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	54.70	5.45	60.15	122.20	-62.05	peak

(MHz)

5815.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5760.00

5732.50

Ant. Pol.: Horizontal Test Mode: TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40 30.0

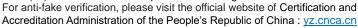
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	49.46	5.91	55.37	122.20	-66.83	peak

(MHz)

5815.00

5842.50

5897.50

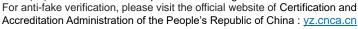

5760.00

Remarks:

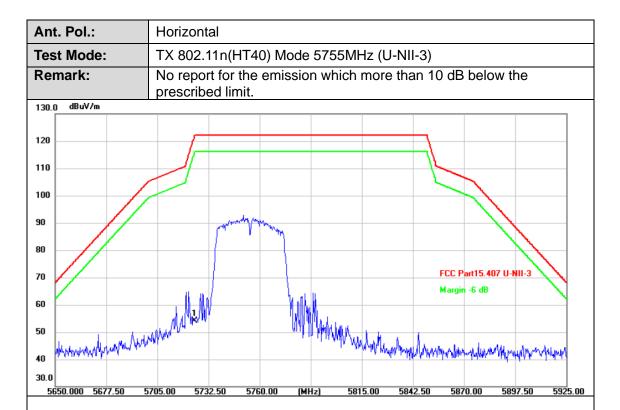
5650.000 5677.50

5705.00

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

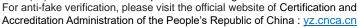


Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 130 0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 50 40 30.0 5870.00 5650.000 5677.50 (MHz) 5815.00 5842.50 5925.00 5705.00


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	46.43	5.91	52.34	122.20	-69.86	peak

Remarks:

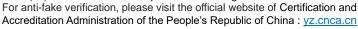
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



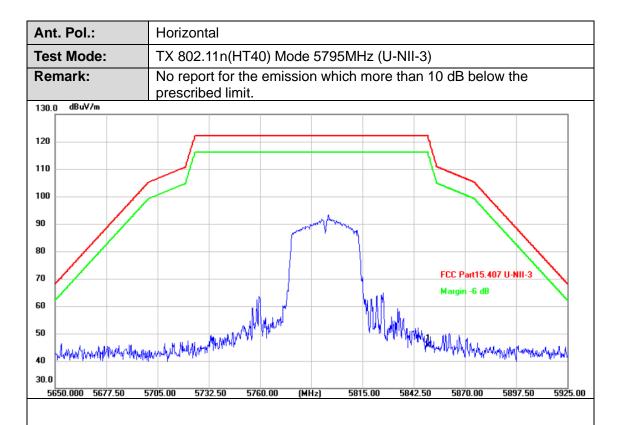
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	48.65	5.45	54.10	122.20	-68.10	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

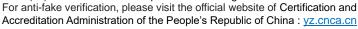


Ant. Pol.: Vertical Test Mode: TX 802.11n(HT40) Mode 5755MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB afterfehlungen hours och op after flyster fra flyster flyster fra flyster flyster fra flyster Appropriate the form of the 60 50 40 30.0 5732.50 5760.00


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	49.75	5.45	55.20	122.20	-67.00	peak

Remarks:

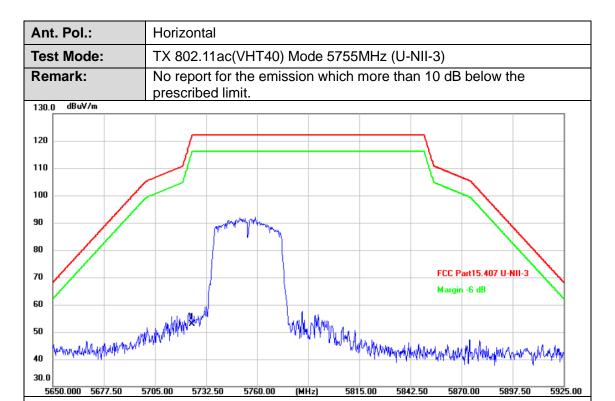
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5850.000	39.70	5.91	45.61	122.20	-76.59	peak	Ī

Remarks:

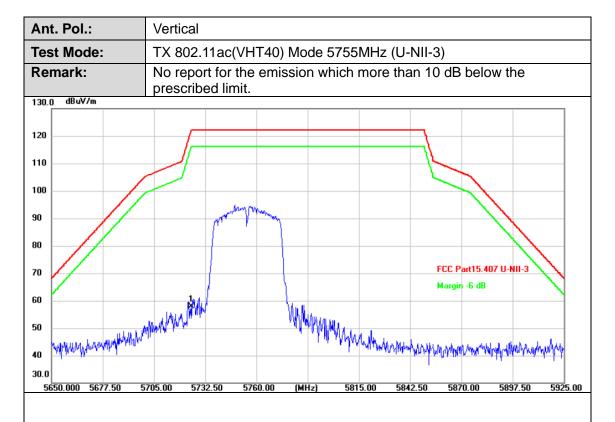
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5795MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 white the parties of the same 50 40 30.0 5815.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	36.12	5.91	42.03	122.20	-80.17	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No	o .	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	*	5725.000	47.55	5.45	53.00	122.20	-69.20	peak

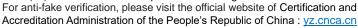
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.000	52.41	5.45	57.86	122.20	-64.34	peak	Ī

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

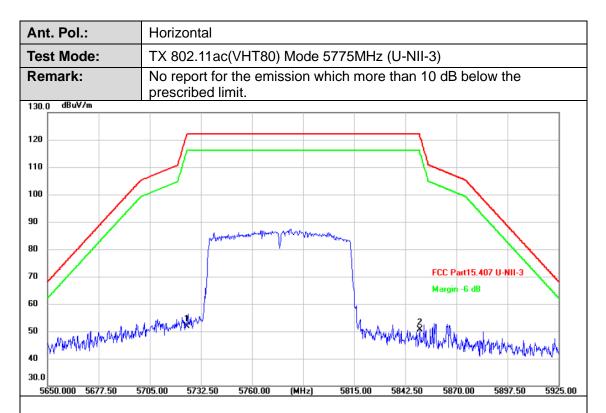


Ant. Pol.: Horizontal Test Mode: TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. 130.0 dBuV/m 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB 60 man alleratura terapakaman pana panga Angla far 50 40 30.0 5650.000 5677.50 5705.00 (MHz) 5815.00 5870.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	44.97	5.91	50.88	122.20	-71.32	peak

Remarks:

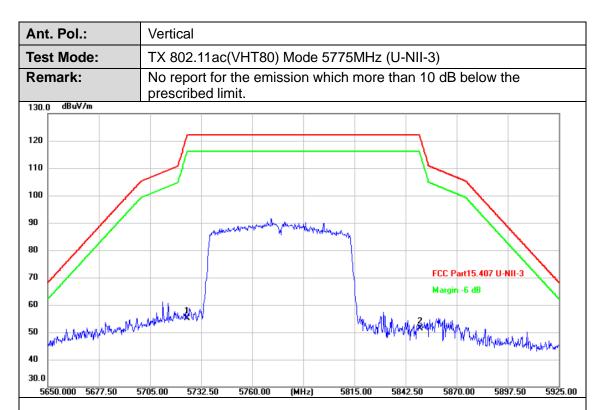
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


Ant. Pol.: Vertical Test Mode: TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3) Remark: No report for the emission which more than 10 dB below the prescribed limit. dBuV/m 130.0 120 110 100 90 80 FCC Part15.407 U-NII-3 70 Margin -6 dB Polytowallik for for your own profession boll and proper the fight of the file of the formal of the file of the formal of the file of the 60 50 30.0 5760.00 (MHz) 5815.00 5650.000 5677.50 5705.00 5732.50 5870.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000	40.37	5.91	46.28	122.20	-75.92	peak

Remarks:

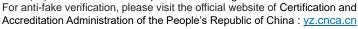
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.000	46.35	5.45	51.80	122.20	-70.40	peak
2	5850.000	44.72	5.91	50.63	122.20	-71.57	peak

Remarks:

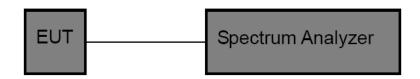
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	5725.000	49.69	5.45	55.14	122.20	-67.06	peak
2	5850.000	45.36	5.91	51.27	122.20	-70.93	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



3.4. Bandwidth Test

Limit

FC	C Part 15 Subpart C(15.407)/ RS	S-247
Test Item Limit		Frequency Range (MHz)
		5150~5250
26 Bandwidth	N/A	5250~5350
		5500~5700
6 dB Bandwidth	>500kHz	5725~5850

Test Configuration

Test Procedure

Please refer to According to KDB789033 D02, for the measurement methods.

The setting of the spectrum analyser as below:

26dB Bandwidth Test			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span	>26 dB Bandwidth		
RBW	Approximately 1% of the emission bandwidth		
VBW	VBW>RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 153 of 169 Report No.: CTC2024214214

6dB Bandwidth Test			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span	>6 dB Bandwidth		
RBW	100 kHz		
VBW	VBW>=3*RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		
	99% Occupied Bandwidth Test		
Spectrum Parameters	Setting		
Attenuation	Auto		
RBW	1% to 5% of the OBW		
VBW	≥ 3RBW		
Detector	Peak		
Trace	Max Hold		

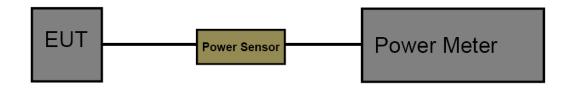
Note: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

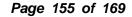
Please refer to the clause 2.4.

Test Results

Please see the Appendix A1, A2, A3.


3.5. Output Power Test

<u>Limit</u>


FCC Part 15 Subpart E (15.407)				
Test Item	Frequency Range(MHz)			
Conducted Output Power	Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm)	5150~5250		
	250mW (24dBm)	5250~5350		
	250mW (24dBm)	5500~5700		
	1 Watt (30dBm)	5725~5850		

	IC Power@PSD Limit				
Frequency	Type of devices	Maximum Conducted	EIRP Output Power	Conducted Power	EIRP Power
5150MHz-5250MHz	in vehicles	Output Power	30mW or 1.76 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)	Spectral Density	Spectral Bensity
3130mnz-3230mnz	Other Devices		200mW or 10 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)		10dBm/MHz
	in vehicles		30mW or 1.76 + 10 × logsoB dBm, whichever is less (B=99% OBW in MHz)		
5250MHz-5350MHz	Other Devices	250mW or 11 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×logioB dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz	
5470MHz-5600MHz 5650MHz-5725MHz	ALL Devices	250mW or 11 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×logioB dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz	
5725MHz-5850MHz	ALL Devices	1₩		30dBm/500KHz	

Test Configuration

CTC Laboratories, Inc.

Test Procedure

The measurement is according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

Report No.: CTC2024214214

Test Mode

Please refer to the clause 2.4.

Test Result

Please see the Appendix B.

3.6. Power Spectral Density Test

Limit

FCC Part 15 Subpart E(15.407)/ RSS-247

For the 5.15~5.25GHz band:

Outdoor AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. If $G_{Tx}>6dBi$, then PSD =17-($G_{Tx}-6$).

Indoor AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. If G_{Tx} >6dBi, then PSD =17-(G_{Tx} -6).

Point-to-point AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. If G_{Tx} >23dBi, then PSD =17-(G_{Tx} -23).

Client devices

The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. If G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.25~5.35GHz band:

The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. If G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.47~5.725GHz band:

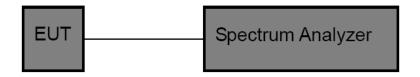
The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. If G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.725~5.85GHz band:

Point-to-multipoint systems (P2M)

The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz. If $G_{Tx}>6dBi$, then PSD = $30-(G_{Tx}-6)$.

Point-to-point systems (P2P)


The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz.

Note: G_{Tx}: EUT Antenna gain.

IC Power@PSD Limit					
Frequency	Type of devices	Maximum Conducted	EIRP Output Power	Conducted Power	EIRP Power
rrequency	Type of devices	Output Power	LIAT Output rower	Spectral Density	Spectral Density
5150MHz-5250MHz	in vehicles		30mW or 1.76 + 10 × log:0B dBm, whichever is less (B=99% OBW in MHz)		
	Other Devices		200mW or 10 + 10 × logioB dBm, whichever is less (B=99% OBW in MHz)		10dBm/MHz
5250MHz-5350MHz	in vehicles		30mW or 1.76 + 10 × logioB dBm, whichever is less (B=99% OBW in MHz)		
	Other Devices	250mW or 11 + 10 × logiOB dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×log10B dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz	
5470MHz-5600MHz 5650MHz-5725MHz	ALL Devices	250mW or 11 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×logioB dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz	
5725MHz-5850MHz	ALL Devices	1₩		30 dBm/500KHz	

Test Configuration

Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyzer center frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.
- (4) RBW=1MHz for devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz RBW=500kHz for devices operating in the band 5.725-5.85 GHz
- (5) Set the VBW to: ≥ 3 RBW
- (6) Detector: AVG
- (7) Trace: Max Hold and View
- (7) Sweep time: auto
- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

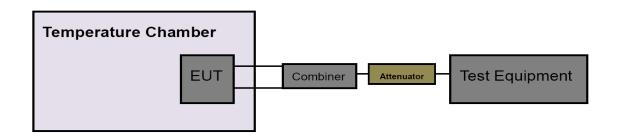
Test Mode

Please refer to the clause 2.4.

Test Result

Please see the Appendix C.

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn



3.7. Frequency Stability Measurement

Limit

FCC Part 15 Subpart C(15.407)				
Test Item	Limit	Frequency Range(MHz)		
Peak Excursion Measurement	Specified in the user's manual, the transmitter center frequency tolerance shall be ±20 ppm maximum for the 5 GHz band (IEEE 802.11n specification)	5150~5250		
		5250~5350		
		5500~5700		
		5725~5850		

Test Configuration

Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyzer center frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
- (4) Set the RBW to: 10MHz, VBW=10MHz with peak detector and maxhold settings.
- (5) The test extreme voltage is to change the primary supply voltage from 6.84V to 8.36V percent of the nominal value.
- (6) Extreme temperature is 0°C~50°C

NOTE: The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.

Test Mode

Please refer to the clause 2.4.

Test Result

Please see the Appendix D.

3.8. Antenna Requirement

Standard Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: <u>vz.cnca.cn</u>

3.9. Dynamic Frequency Selection(DFS)

Requirement

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode		
Requirement	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode		
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

1. DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Report No.: CTC2024214214

Value (See Notes 1, 2, and 3)
value (See Notes 1, 2, and 3)
-64 dBm
-62 dBm
-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

2. DFS Response Requirements

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

RADAR TEST WAVEFORMS

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Tel.: (86)755-27521059

Table 5 Short Pulse Radar Test Waveforms

Report No.: CTC2024214214

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$\text{Roundup} \begin{cases} \left(\frac{1}{360}\right) \cdot \\ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}}\right) \end{cases}$		
1	1	Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A		60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)				80%	120
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time,					

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses

would be Round up
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Round up } \{17.2\} = 18.$$

Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and

Accreditation Administration of the People's Republic of China: yz.cnca.cn

11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 6 – Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveforms are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type wave forms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 7 – Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each wave form. The hopping sequence is different for each wave form and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

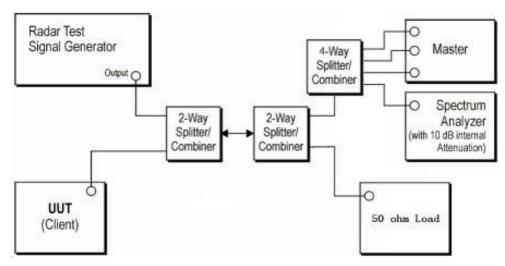
The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250–5724MHz.Next,the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

Calibration of Radar Waveform

Radar Waveform Calibration Procedure

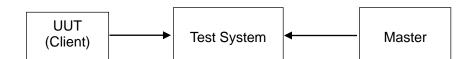
- 1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master
- 2) The interference Radar Detection Threshold Level is -62dBm + 0dBi +1dB = -61dBm that had been taken into account the output power range and antenna gain.
- 3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was

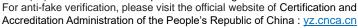
CTC Laboratories, Inc.



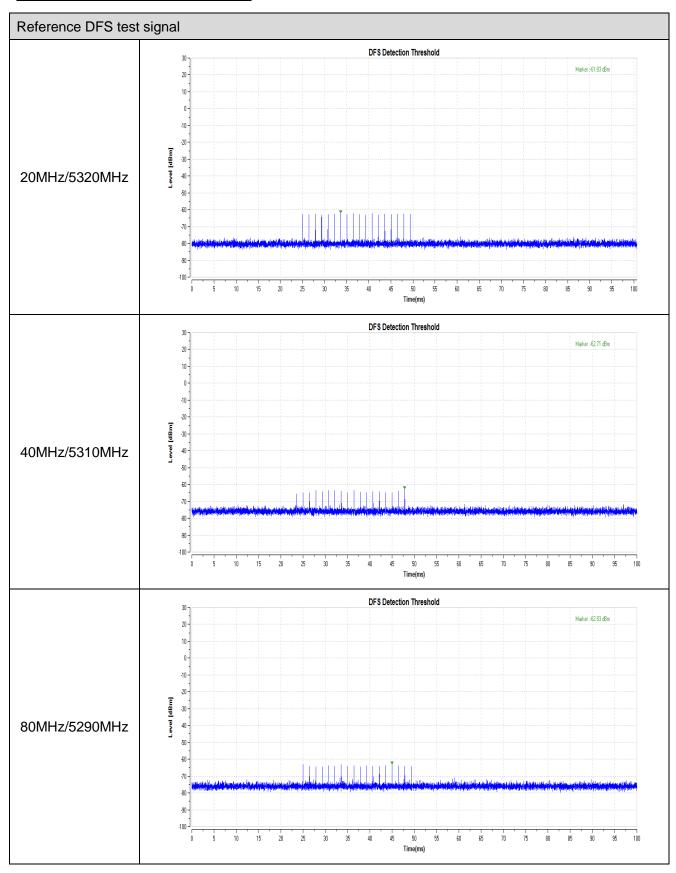
used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.

Report No.: CTC2024214214


4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was - -62dBm + 0dBi +1dB = -61dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

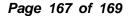

Conducted Calibration Setup

Test Configuration


Setup for Client with injection at the Master

Radar Waveform Calibration Result

Test Procedure

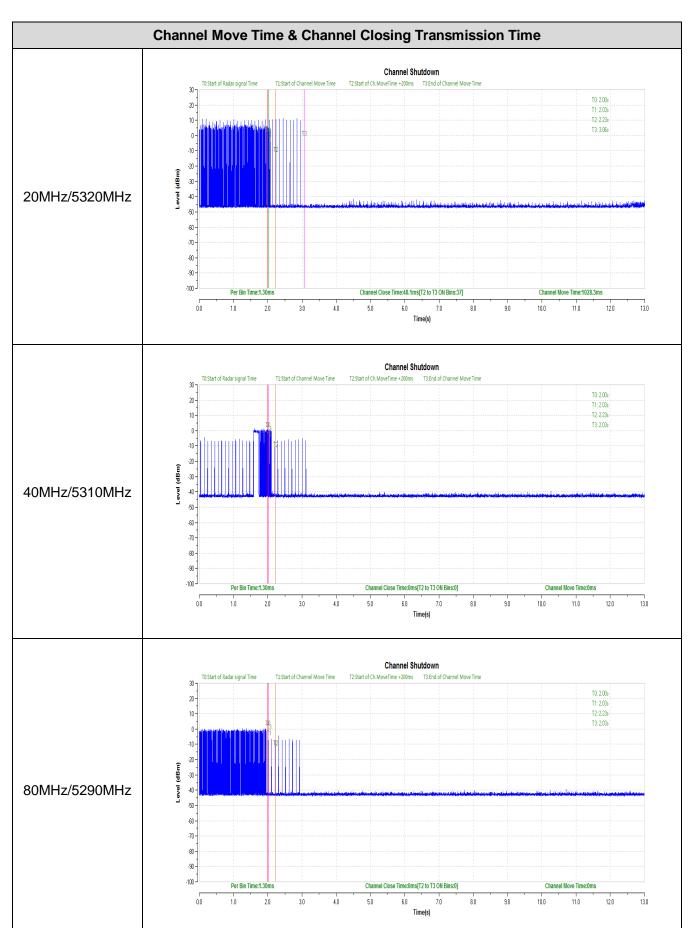

- 1. The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device
- 3. A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.
- 5. When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type
- 7. Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.
- 8. Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

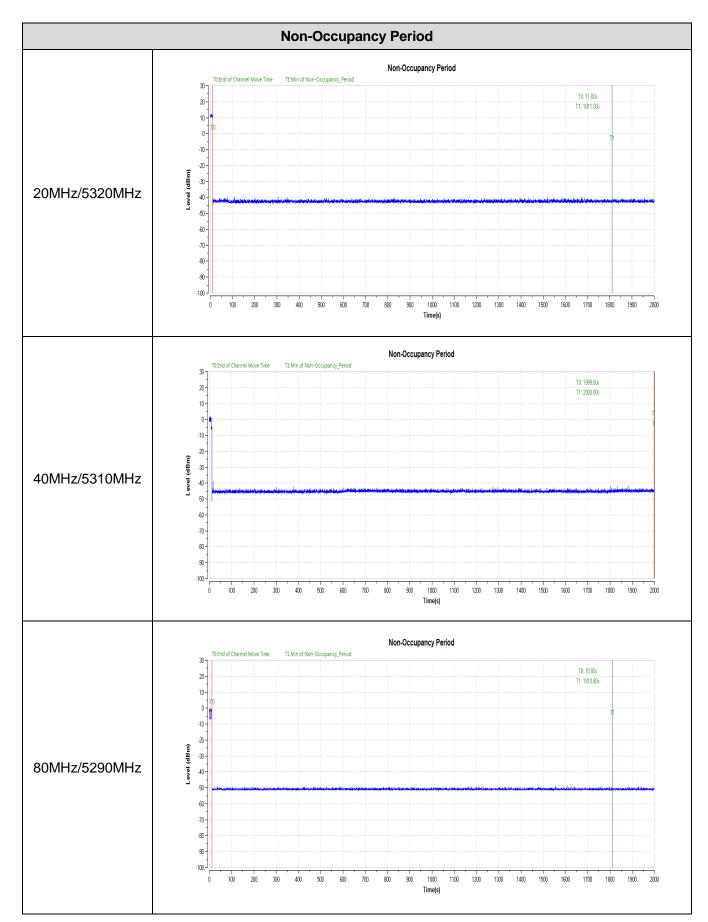
Test Mode

Please	rofor	tο	tha	clai	ICA	21	
riease	reiei	I()	me	Ciai	150	74	

Test Results

Tel.: (86)755-27521059 EN 中国国家认证认可监督管理委员会




BW/Channel	Test Item	Test Result	Limit	Result
	Channel Move Time	1028.3ms	< 10s	Pass
20MHz/5320MHz	Channel Closing Transmission Time	48.1ms	< 200+60ms	Pass
	Non-Occupancy Period	See test graph	>=1800	Pass
40MHz/5310MHz	Channel Move Time	0ms	< 10s	Pass
	Channel Closing Transmission Time	0ms	< 200+60ms	Pass
	Non-Occupancy Period	See test graph	>=1800	Pass
	Channel Move Time	0ms	< 10s	Pass
80MHz/5290MHz	Channel Closing Transmission Time	0ms	< 200+60ms	Pass
	Non-Occupancy Period	See test graph	>=1800	Pass

Accreditation Administration of the People's Republic of China: yz.cnca.cn

##