

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.com.cn

TEST REPORT

Report No. CTC20200208E02

FCC ID······: XUJDIAGUNV

Applicant·····: LAUNCH TECH CO., LTD

Address····· Launch Industrial Park, North of Wuhe Avenue, Banxuegang,

Longgang, Shenzhen, Guangdong, P.R. China

Manufacturer LAUNCH TECH CO., LTD

Address····· Launch Industrial Park, North of Wuhe Avenue, Banxuegang,

Longgang, Shenzhen, Guangdong, P.R. China

Jenny Su Miller Ma

Product Name······: AUTO Smart Diagnostic Tool

Trade Mark·····: LAUNCH

Model/Type reference······ X-431 Diagun v

Listed Model(s) ······ N/A

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample...: Feb. 28, 2020

Date of testing...... Feb. 29, 2020 to Mar. 12, 2020

Date of issue...... Mar. 13, 2020

Result..... PASS

Compiled by:

(Printed name+signature) Terry Su

Supervised by:

(Printed name+signature) Miller Ma

Approved by:

(Printed name+signature) Walter Chen

Testing Laboratory Name.....: CTC Laboratories, Inc.

Address...... 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park,

Shenzhen, Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

Report No.: CTC20200208E02

1.	TEST	SUMMARY	3
	1.1.	TEST STANDARDS	3
:	1.2.	REPORT VERSION	3
:	1.3.	TEST DESCRIPTION	4
:	1.4.	TEST FACILITY	5
:	1.5.	MEASUREMENT UNCERTAINTY	5
:	1.6.	ENVIRONMENTAL CONDITIONS	6
2.	GEN	ERAL INFORMATION	7
:	2.1.	CLIENT INFORMATION	7
	2.2.	GENERAL DESCRIPTION OF EUT	7
	2.3.	OPERATION STATE	8
:	2.4.	MEASUREMENT INSTRUMENTS LIST	9
3.	TEST	ITEM AND RESULTS	11
:	3.1.	CONDUCTED EMISSION	11
:	3.2.	RADIATED EMISSION	14
:	3.3.	BAND EDGE EMISSIONS	36
:	3.4.	20 BANDWIDTH	55
:	3.5.	CHANNEL SEPARATION	62
:	3.6.	Number of Hopping Channel	66
:	3.7.	DWELL TIME	68
:	3.8.	PEAK OUTPUT POWER	73
3	3.9.	Antenna requirement	77
4.	LABI	EL AND LABEL LOCATION	78
5.	EUT	TEST PHOTOS	79
6.	PHO	TOGRAPHS OF EUT CONSTRUCTIONAL	80

Page 3 of 80

Report No.: CTC20200208E02

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS 247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Mar. 13. 2020	Original

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

1.3. Test Description

FCC Part 15 Subpart C (15.247)/ RSS 247 Issue 2					
Took How	Standard	Section	Descrit	Test	
Test Item	FCC IC		Result	Engineer	
Antenna Requirement	15.203	1	Pass	Rod Lou	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jon Huang	
Restricted Bands	15.205	RSS-Gen 8.10	Pass	Terry Su	
Hopping Channel Separation	15.247(a)(1)	RSS 247 5.1 (b)	Pass	Rod Lou	
Dwell Time	15.247(a)(iii)	RSS 247 5.1 (d)	Pass	Rod Lou	
Peak Output Power	15.247(b)(1)	RSS 247 5.4 (b)	Pass	Rod Lou	
Number of Hopping Frequency	15.247(a)(iii)	RSS 247 5.1 (d)	Pass	Rod Lou	
Band Edge Emissions	15.247(d)	RSS 247 5.5	Pass	Rod Lou	
Radiated Spurious Emission	15.247(d) & 15.209	RSS 247 5.5& RSS-Gen 8.9	Pass	Rod Lou	
99% Occupied Bandwidth & 20dB Bandwidth	15.247(a)	RSS 247 5.1 (b)	Pass	Rod Lou	

Note: The measurement uncertainty is not included in the test result.

Page 5 of 80

Report No.: CTC20200208E02

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (F CC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

(1)

Occupied Bandwidth

Test Items Measurement Uncertainty Notes Transmitter power conducted 0.42 dB (1) Transmitter power Radiated 2.14 dB (1) Conducted spurious emissions 9kHz~40GHz 1.60 dB (1) Radiated spurious emissions 9kHz~40GHz 2.20 dB (1) Conducted Emissions 9kHz~30MHz 3.20 dB (1) Radiated Emissions 30~1000MHz 4.70 dB (1) Radiated Emissions 1~18GHz 5.00 dB (1) Radiated Emissions 18~40GHz 5.54 dB (1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	25°C
Relative Humidity:	40%
Air Pressure:	101kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	LAUNCH TECH CO., LTD
Address:	Launch Industrial Park, North of Wuhe Avenue, Banxuegang, Longgang, Shenzhen, Guangdong, P.R. China
Manufacturer:	LAUNCH TECH CO., LTD
Address:	Launch Industrial Park, North of Wuhe Avenue, Banxuegang, Longgang, Shenzhen, Guangdong, P.R. China

2.2. General Description of EUT

Product Name:	AUTO Smart Diagnostic Tool
Trade Mark:	LAUNCH
Model/Type reference:	X-431 Diagun v
Listed Model(s):	N/A
Product Description:	The products have different colors on the appearance
Power supply:	5Vdc/2A from AC/DC Adapter 3.8Vdc from 4680mAh Li-ion Battery
Adapter Model:	SAPA05010US Input:100-240V 50/60Hz 0.6A Output:5V/2A
Hardware version:	N/A
Software version:	N/A
Bluetooth 4.0 + BR/EDR	
Modulation:	GFSK, π/4-DQPSK, 8-DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	FPC Antenna
Antenna gain:	3.75dBi

2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2403
:	i i
38	2440
39	2441
40	2442
:	÷
77	2479
78	2480

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.4. Measurement Instruments List

Tonsce	Tonscend JS0806-2 Test system				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 27, 2020
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 13, 2020
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 27, 2020
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 27, 2020
5	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 27, 2020
6	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 27, 2020
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 27, 2020
8	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 27, 2020
9	9 Wideband Radio Communication Tester Rohde & Schwarz	CMW500	116410	Dec. 27, 2020	
10	10 Climate Chamber ESPEC	MT3065	/	Dec. 27, 2020	
11	300328 v2.2.2 test system	TONSCEND	v2.6	1	1

Radiate	Radiated Emission and Transmitter spurious emissions				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 27, 2020
2	High pass filter	micro-tranics	HPM50111	142	Dec. 27, 2020
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 27, 2020
4	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 27, 2020
5	Loop Antenna	LAPLAC	RF300	9138	Dec. 27, 2020
6	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 27, 2020
7	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 27, 2020
8	Pre-Amplifier	HP	8447D	1937A03050	Dec. 27, 2020
9	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 27, 2020
10	Antenna Mast	UC	UC3000	N/A	N/A
11	Turn Table	UC	UC3000	N/A	N/A
12	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 27, 2020
13	Cable Above 1GHz	Hubersuhner	SUCOFLEX 102	DA1580	Dec. 27, 2020
14	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 27, 2020
15	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	Dec. 27, 2020
16	RF Connection Cable	Chengdu E-Microwave			Dec. 27, 2020
17	High pass filter	Compliance	BSU-6	34202	Dec. 27, 2020

CTC Laboratories, Inc.

Page 10 of 80 Report No.: CTC20200208E02

		Direction systems			
18	Attenuator	Chengdu E-Microwave	EMCAXX-10 RNZ-3		Dec. 27, 2020
19	High and low temperature box	ESPEC	MT3065	12114019	Dec. 27, 2020

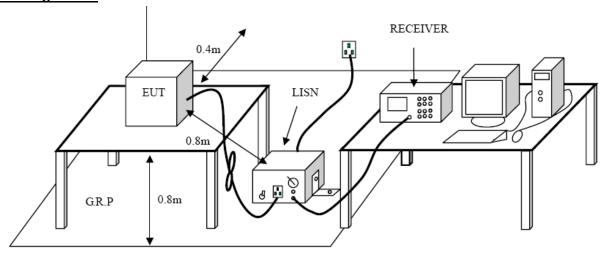
Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 27, 2020
2	LISN	R&S	ENV216	101113	Dec. 27, 2020
3	EMI Test Receiver	R&S	ESCI	100658	Dec. 27, 2020

Note:1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3.TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

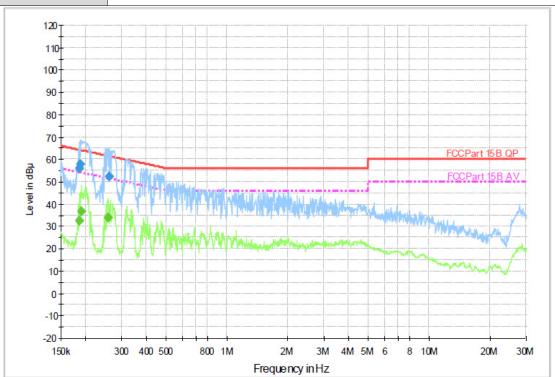
Frequency range (MHz)	Limit (d	BuV)
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.


Test Mode:

Please refer to the clause 2.3.

Test Results

Final Measurement Detector 1

	Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
ı	0.185340	55.8	1000.00	9.000	On	L1	9.4	8.4	64.2	
	0.187580	57.8	1000.00	9.000	On	L1	9.4	6.3	64.1	
	0.260220	52.4	1000.00	9.000	On	L1	9.4	9.0	61.4	

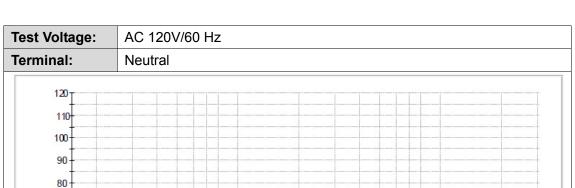
Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.185340	32.4	1000.00	9.000	On	L1	9.4	21.8	54.2	
0.189840	36.7	1000.00	9.000	On	L1	9.4	17.3	54.0	
0.256100	33.9	1000.00	9.000	On	L1	9.4	17.7	51.6	

Emission Level= Read Level+ Correct Factor

FCCPart 15B QP

20M


30M



70

60

30 20 10 -10 -20 150k

300 400 500

800 1M

rmai we	easurem	ent De	lector i						
Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ	
		(ms)						V)	
0.187580	51.6	1000.00	9.000	On	N	9.4	12.5	64.1	
0.194440	51.3	1000.00	9.000	On	Ν	9.4	12.5	63.8	
0.204800	50.7	1000.00	9.000	On	N	9.4	12.7	63.4	

Frequency in Hz

4M 5M 6

Final Measurement Detector 2

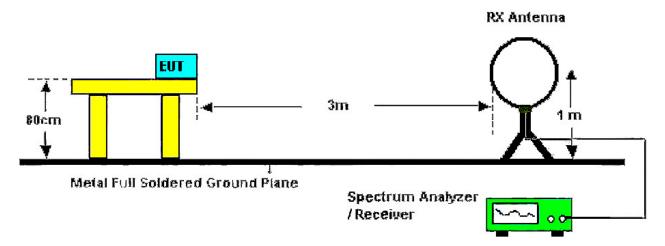
Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.268670	32.2	1000.00	9.000	On	N	9.4	19.0	51.2	
0.471700	28.5	1000.00	9.000	On	N	9.4	18.0	46.5	
0.897010	28.7	1000.00	9.000	On	N	9.5	17.3	46.0	

Emission Level= Read Level+ Correct Factor

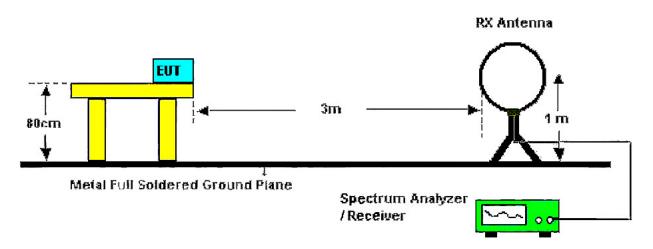
For anti-take verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

3.2. Radiated Emission

Limit

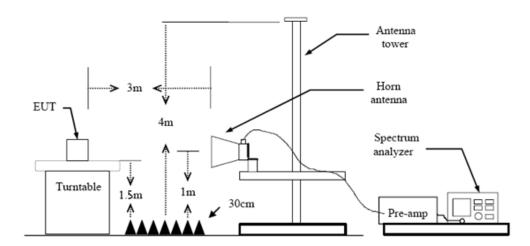

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS - Gen 8.9

Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 GHz	54.00	Average
Above I GHZ	74.00	Peak


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration


Below 30MHz Test Setup

Below 1000MHz Test Setup

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Above 1GHz Test Setup

Test Procedure

- The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode

Please refer to the clause 2.3.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

1000.000

Ant. Pol. Horizontal **Test Mode:** TX GFSK Mode 2402MHz Remark: Only worse case is reported 90.0 dBuV/m FCC Part15 Class B 3M Radiation Margin -6 dB 40 -10

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	38.6160	-17.49	28.32	10.83	40.00	-29.17	QP
2	44.1202	-17.60	28.73	11.13	40.00	-28.87	QP
3	50.9420	-17.84	30.23	12.39	40.00	-27.61	QP
4	141.8262	-17.49	30.20	12.71	43.50	-30.79	QP
5	198.5880	-20.78	32.54	11.76	43.50	-31.74	QP
6	385.2805	-16.07	39.17	23.10	46.00	-22.90	QP

(MHz)

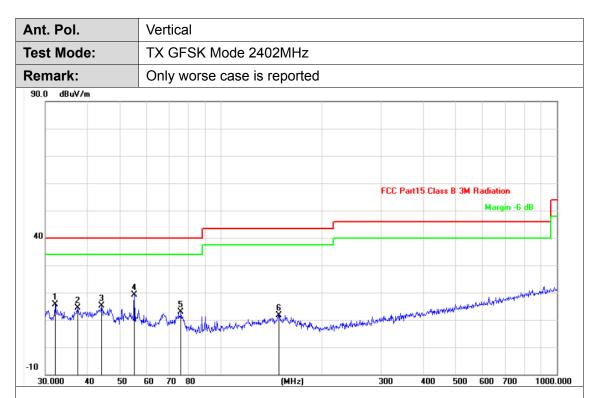
300

400

500 600 700

Remarks:

30.000

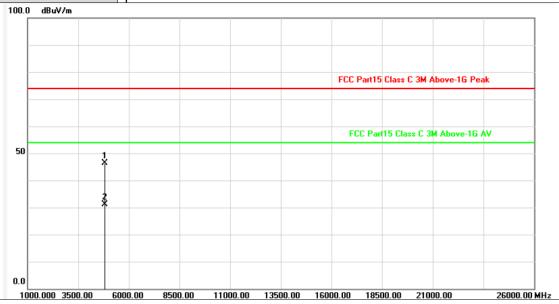

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

50

60

70 80

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	32.0667	-18.11	33.75	15.64	40.00	-24.36	QP
2	37.4164	-17.65	31.93	14.28	40.00	-25.72	QP
3	44.1202	-17.61	32.69	15.08	40.00	-24.92	QP
4	55.2207	-18.16	37.33	19.17	40.00	-20.83	QP
5	75.9773	-21.31	34.09	12.78	40.00	-27.22	QP
6	148.9624	-16.85	28.53	11.68	43.50	-31.82	QP


Remarks:

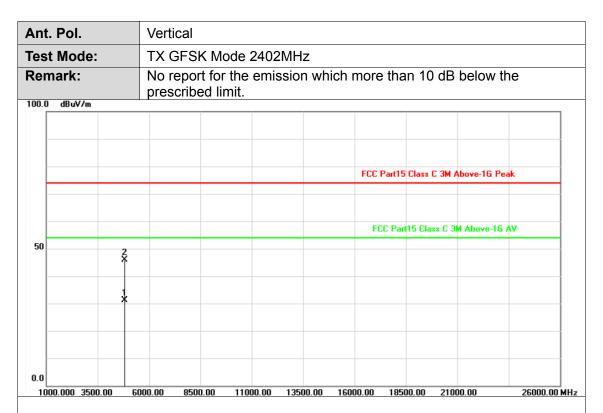
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol. Horizontal **Test Mode:** TX GFSK Mode 2402MHz Remark: No report for the emission which more than 10 dB below the prescribed limit.

No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4803.381	-2.82	49.11	46.29	74.00	-27.71	peak
2	4804.174	-2.82	33.89	31.07	54.00	-22.93	AVG

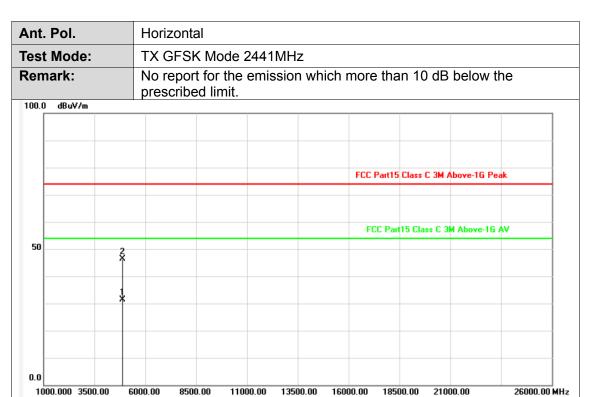
Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Tel.: (86)755-27521059

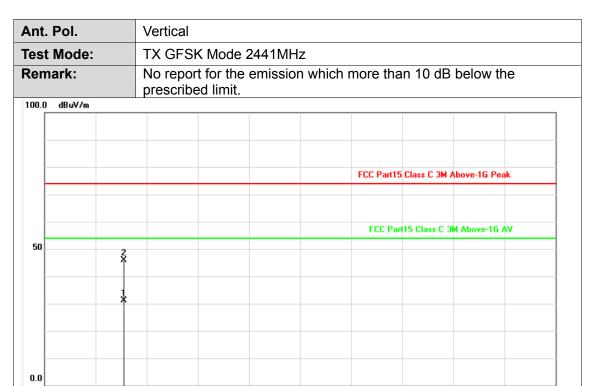
中国国家认证认可监督管理委员会



No.	Frequency (MHz)	l	Reading (dBuV)			Margin (dB)	Detector
1	4803.149	-2.82	33.83	31.01	54.00	-22.99	AVG
2	4804.360	-2.82	48.64	45.82	74.00	-28.18	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


No.	Frequency (MHz)	l .	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4881.425	-2.60	33.88	31.28	54.00	-22.72	AVG
2	4881.910	-2.60	48.86	46.26	74.00	-27.74	peak

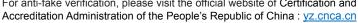
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

26000.00 MHz

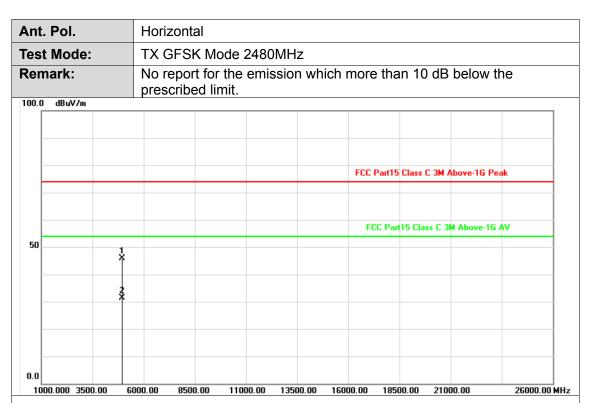
No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector
1	4881.241	-2.60	33.85	31.25	54.00	-22.75	AVG
2	4882.242	-2.60	48.51	45.91	74.00	-28.09	peak

11000.00 13500.00 16000.00 18500.00 21000.00


Remarks:

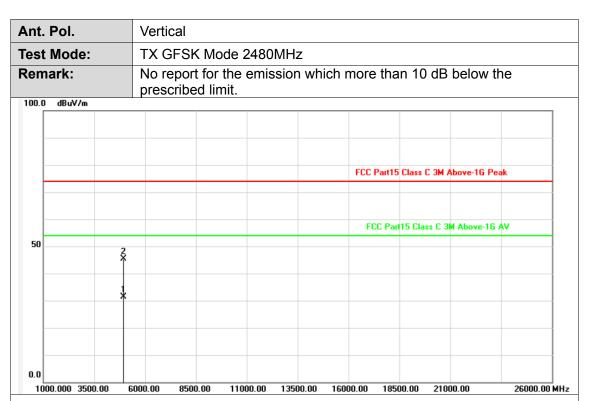
1000.000 3500.00

6000.00


8500.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

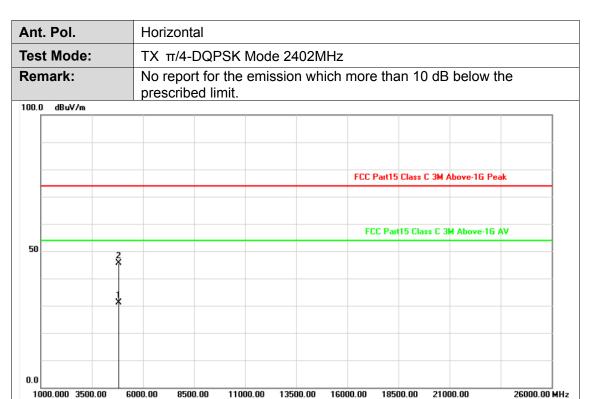
No.	Frequency (MHz)	l	_	Level (dBuV/m)	l	Margin (dB)	Detector
1	4959.069	-2.38	48.24	45.86	74.00	-28.14	peak
2	4959.181	-2.38	33.70	31.32	54.00	-22.68	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

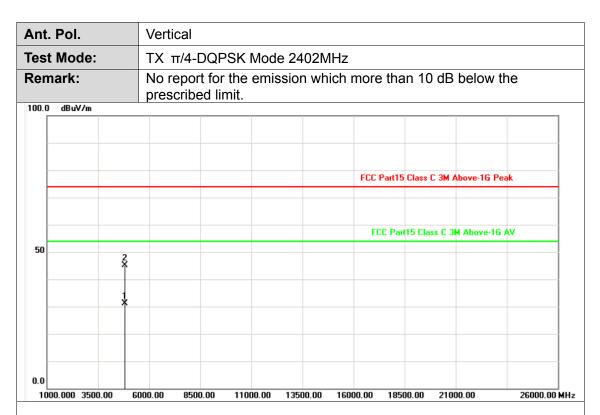

N	lo.	Frequency (MHz)		Reading (dBuV)				Detector
	1	4959.115	-2.38	33.73	31.35	54.00	-22.65	AVG
	2	4960.304	-2.38	47.79	45.41	74.00	-28.59	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

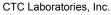
No.	Frequency (MHz)		_	Level (dBuV/m)		Margin (dB)	Detector
1	4803.297	-2.82	33.89	31.07	54.00	-22.93	AVG
2	4803.970	-2.82	48.35	45.53	74.00	-28.47	peak


Remarks:

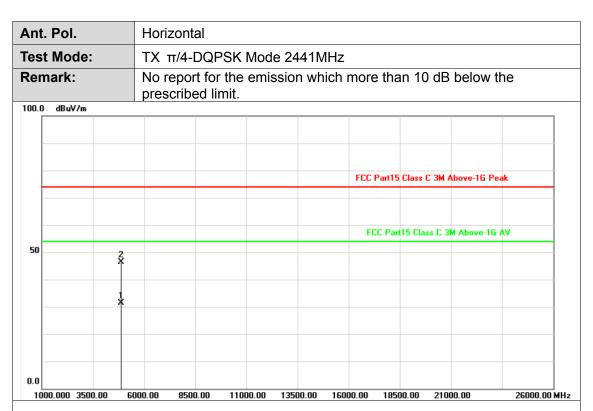
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

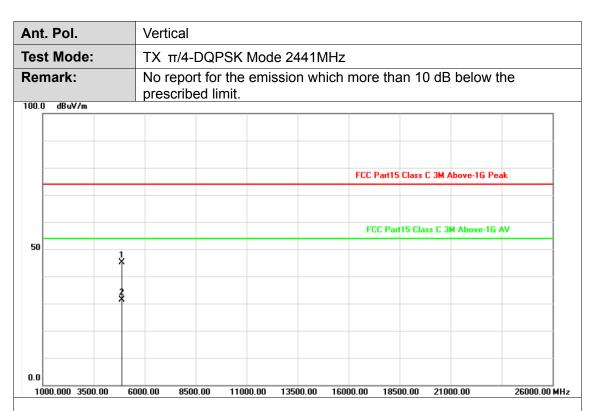


No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4803.211	-2.82	33.92	31.10	54.00	-22.90	AVG
2	4803.602	-2.82	47.86	45.04	74.00	-28.96	peak


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

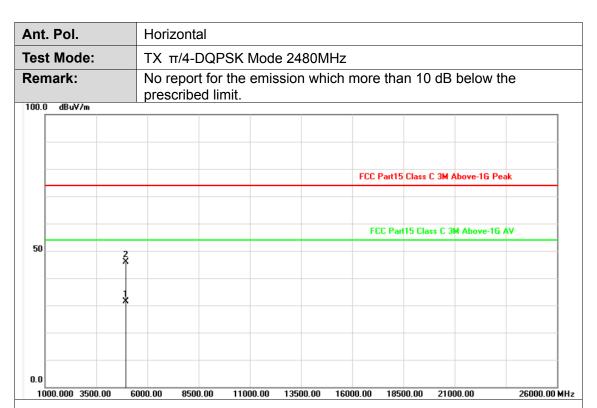
2.Margin value = Level -Limit value



N	0.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
•	1	4881.167	-2.60	33.87	31.27	54.00	-22.73	AVG
2	2	4881.832	-2.60	49.06	46.46	74.00	-27.54	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



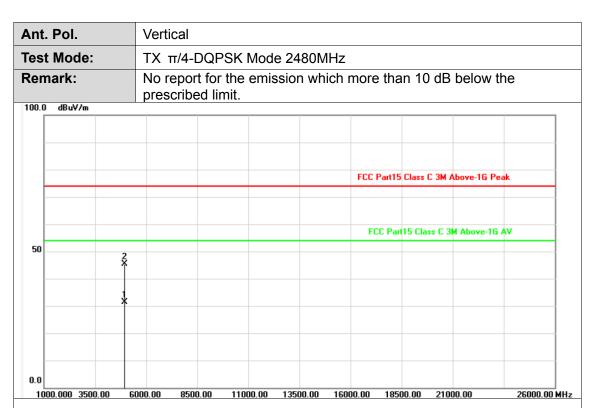
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4881.249	-2.60	47.71	45.11	74.00	-28.89	peak
2	4881.652	-2.60	33.89	31.29	54.00	-22.71	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4959.035	-2.38	33.74	31.36	54.00	-22.64	AVG
2	4960.080	-2.38	48.34	45.96	74.00	-28.04	peak

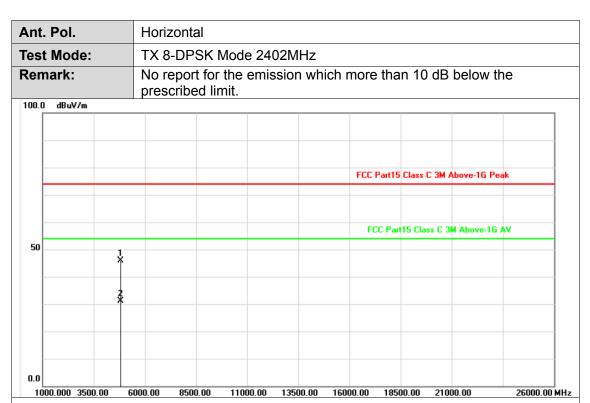
Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

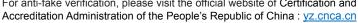
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4959.169	-2.38	33.69	31.31	54.00	-22.69	AVG
2	4960.060	-2.38	47.88	45.50	74.00	-28.50	peak

Remarks:

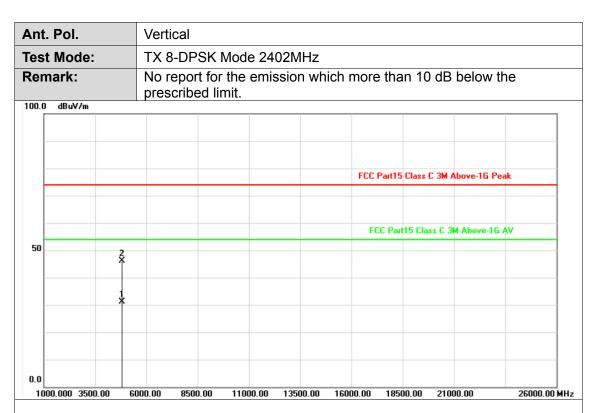

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

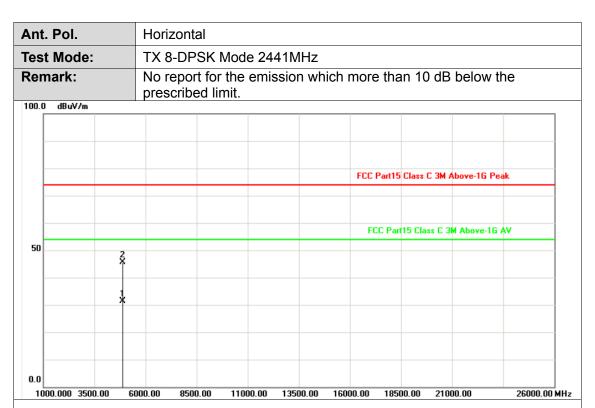
For anti-take verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn



No.	Frequency (MHz)			Level (dBuV/m)			Detector
1	4803.215	-2.82	48.70	45.88	74.00	-28.12	peak
2	4803.379	-2.82	33.91	31.09	54.00	-22.91	AVG


Remarks:

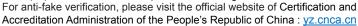
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



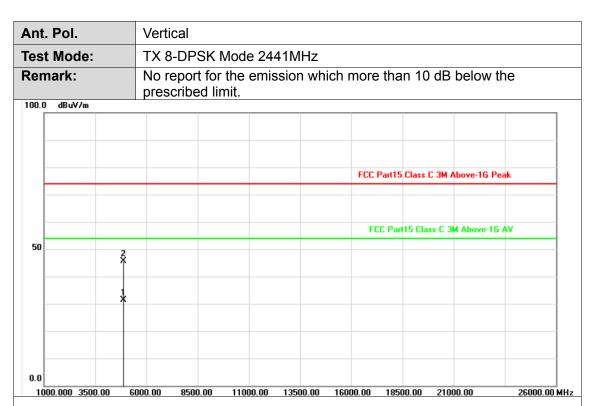
No.	Frequency (MHz)	l	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4803.313	-2.82	33.86	31.04	54.00	-22.96	AVG
2	4804.296	-2.82	48.98	46.16	74.00	-27.84	peak

Remarks:

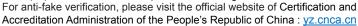
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



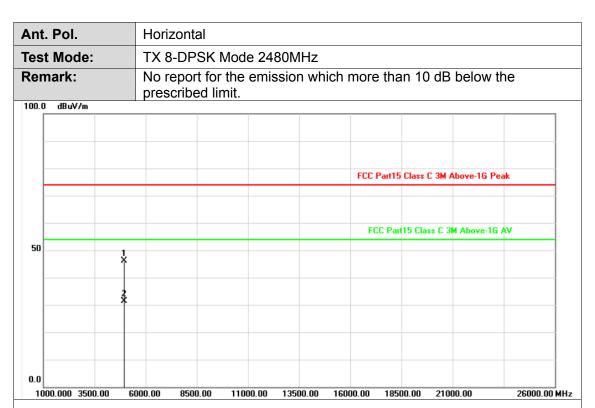
No.	Frequency (MHz)	Factor (dB/m)	_	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4881.161	-2.60	33.88	31.28	54.00	-22.72	AVG
2	4882.677	-2.59	48.28	45.69	74.00	-28.31	peak


Remarks:

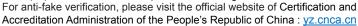
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



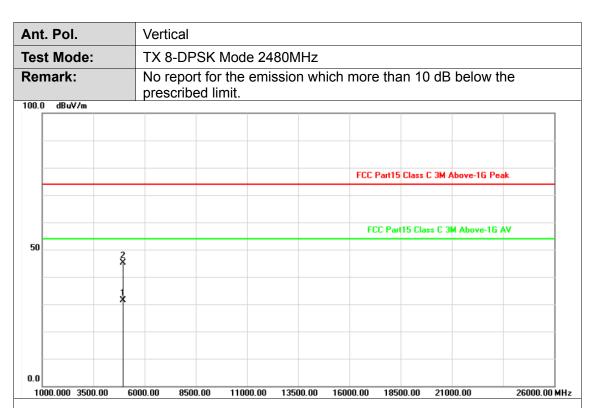
No.	Frequency (MHz)	Factor (dB/m)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4881.095	-2.60	33.89	31.29	54.00	-22.71	AVG
2	4881.962	-2.60	48.17	45.57	74.00	-28.43	peak


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Factor (dB/m)	_	Level (dBuV/m)	l	Margin (dB)	Detector
1	4959.213	-2.38	48.41	46.03	74.00	-27.97	peak
2	4959.215	-2.38	33.71	31.33	54.00	-22.67	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4959.071	-2.38	33.72	31.34	54.00	-22.66	AVG
2	4959.501	-2.38	47.59	45.21	74.00	-28.79	peak

Remarks:

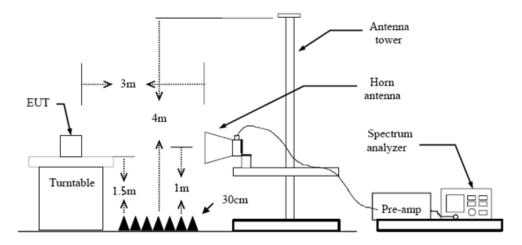
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Tel.: (86)755-27521059

中国国家认证认可监督管理委员会

3.3. Band Edge Emissions


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

Restricted Frequency Band	(dBuV/m)(at 3m)			
(MHz)	Peak	Average		
2310 ~2390	74	54		
2483.5 ~2500	74	54		

Conducted band edge limit: The highest point of the operating frequency waveform down 20dB

Test Configuration

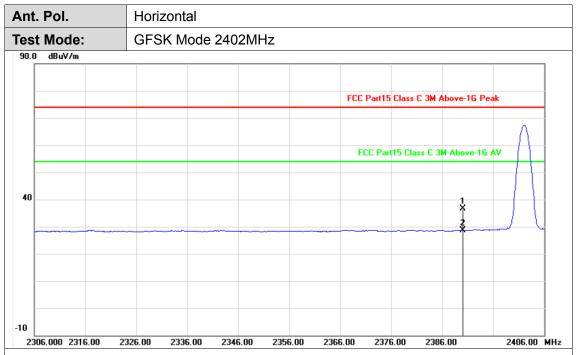
Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

Test Mode

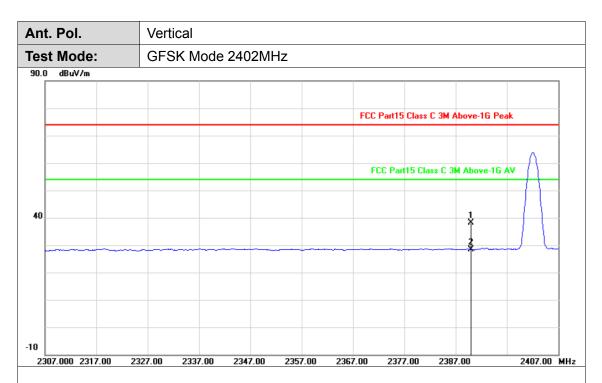

Please refer to the clause 2.3.

Test Results

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

(1) Radiation Test

No.	Frequency (MHz)	l .	_	Level (dBuV/m)	l .	_	Detector
1	2390.000	-8.10	44.61	36.51	74.00	-37.49	peak
2	2390.000	-8.10	36.70	28.60	54.00	-25.40	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Accreditation Administration of the People's Republic of China: yz.cnca.cn

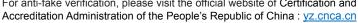
No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	-8.10	46.33	38.23	74.00	-35.77	peak
2	2390.000	-8.10	36.39	28.29	54.00	-25.71	AVG

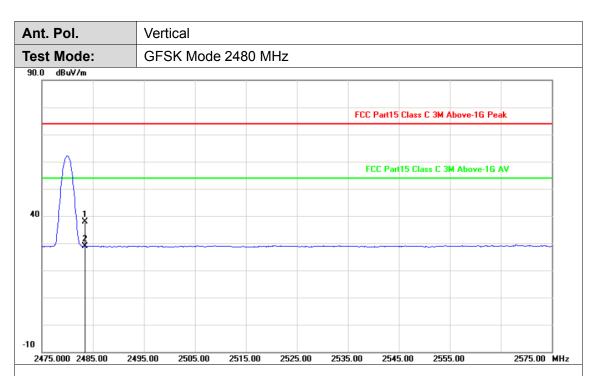
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

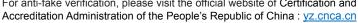
For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

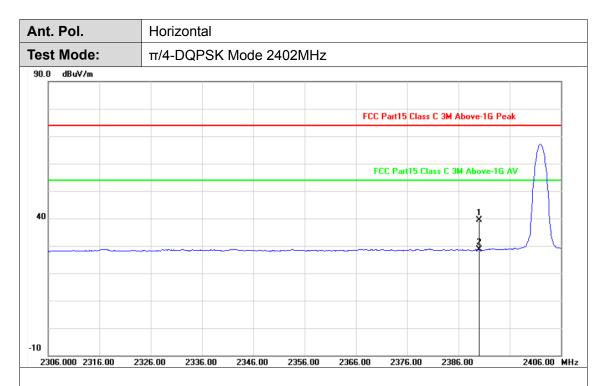



No.	Frequency (MHz)	l	_	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	-7.68	46.08	38.40	74.00	-35.60	peak
2	2483.500	-7.68	36.70	29.02	54.00	-24.98	AVG

Remarks:

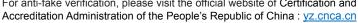
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

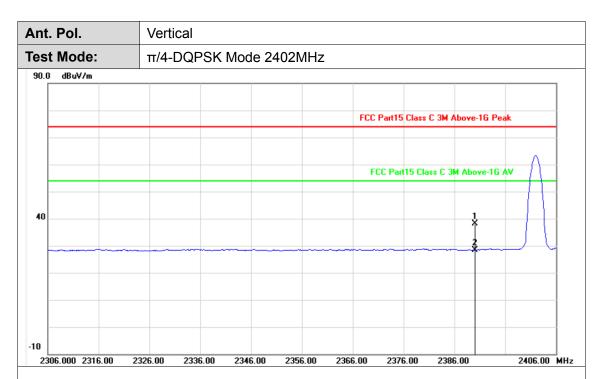



No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	-7.68	45.59	37.91	74.00	-36.09	peak
2	2483.500	-7.68	36.54	28.86	54.00	-25.14	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



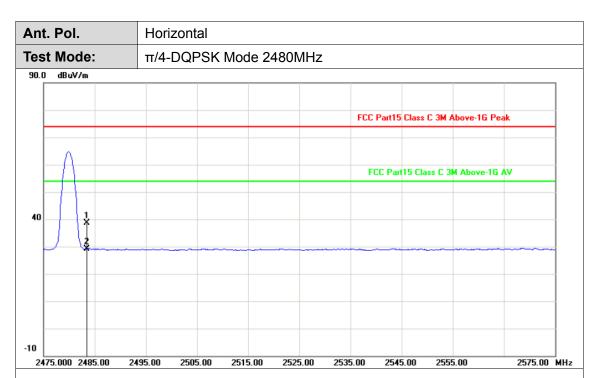

No.	Frequency (MHz)			Level (dBuV/m)			Detector
1	2390.000	-8.10	47.41	39.31	74.00	-34.69	peak
2	2390.000	-8.10	36.68	28.58	54.00	-25.42	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

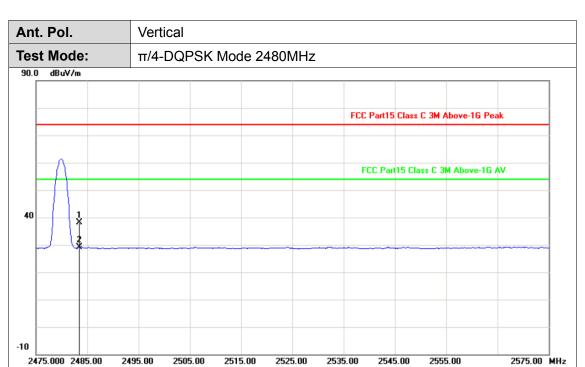
No.	Frequency (MHz)	l	_	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	-8.10	46.35	38.25	74.00	-35.75	peak
2	2390.000	-8.10	36.51	28.41	54.00	-25.59	AVG

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

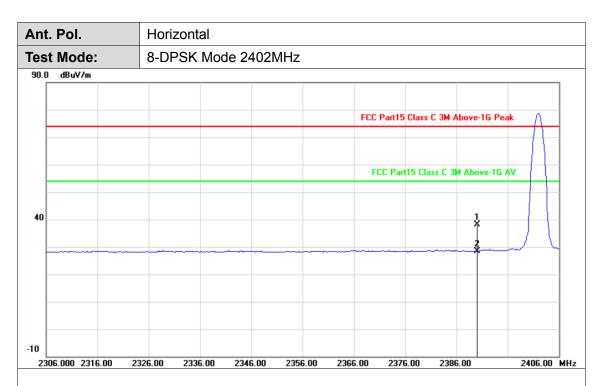
For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn



No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	-7.68	46.38	38.70	74.00	-35.30	peak
2	2483.500	-7.68	36.91	29.23	54.00	-24.77	AVG

Remarks:

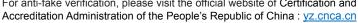
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

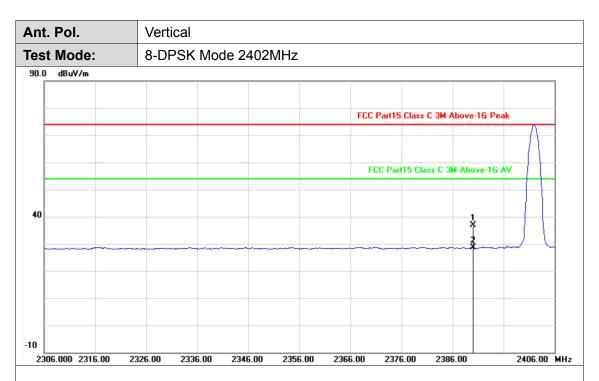


No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	-7.68	45.91	38.23	74.00	-35.77	peak
2	2483.500	-7.68	36.88	29.20	54.00	-24.80	AVG

Remarks:

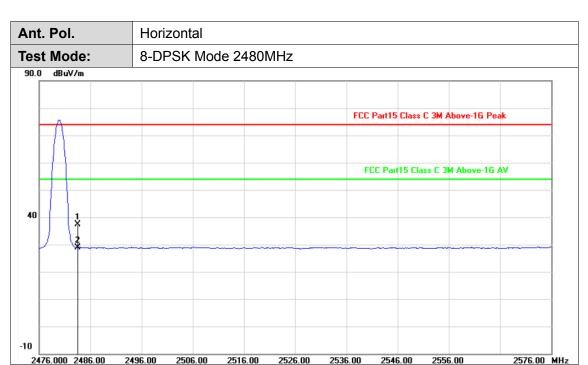
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor




No.	Frequency (MHz)	Factor (dB/m)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	-8.10	46.11	38.01	74.00	-35.99	peak
2	2390.000	-8.10	36.58	28.48	54.00	-25.52	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



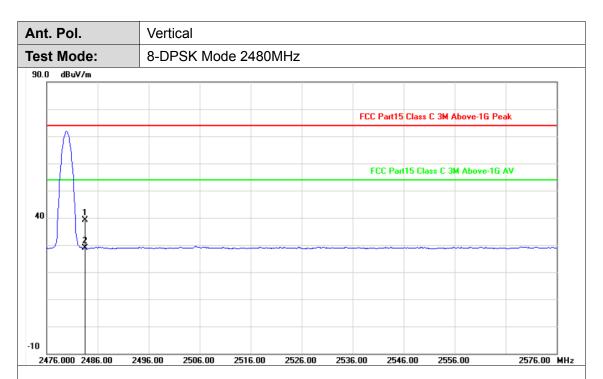
No.	Frequency (MHz)	l	_	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	-8.10	45.07	36.97	74.00	-37.03	peak
2	2390.000	-8.10	36.67	28.57	54.00	-25.43	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	l	_	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	-7.68	45.04	37.36	74.00	-36.64	peak
2	2483.500	-7.68	36.63	28.95	54.00	-25.05	AVG

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

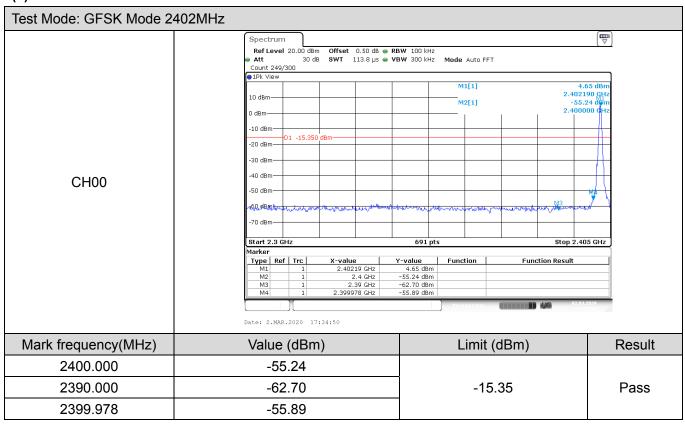
中国国家认证认可监督管理委员会

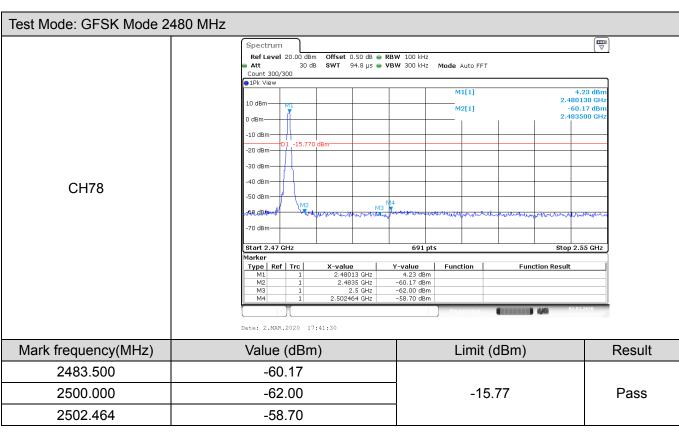
CTC Laboratories, Inc.

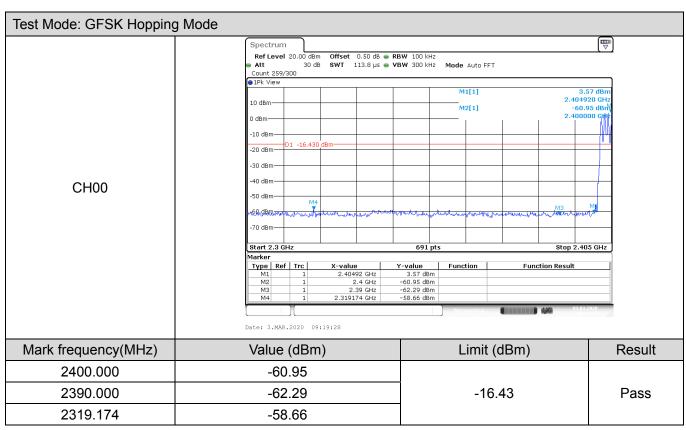
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	-7.68	46.73	39.05	74.00	-34.95	peak
2	2483.500	-7.68	36.55	28.87	54.00	-25.13	AVG

Remarks:

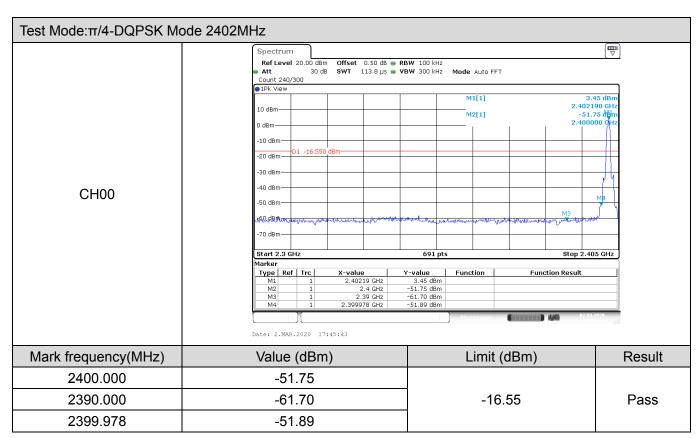
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

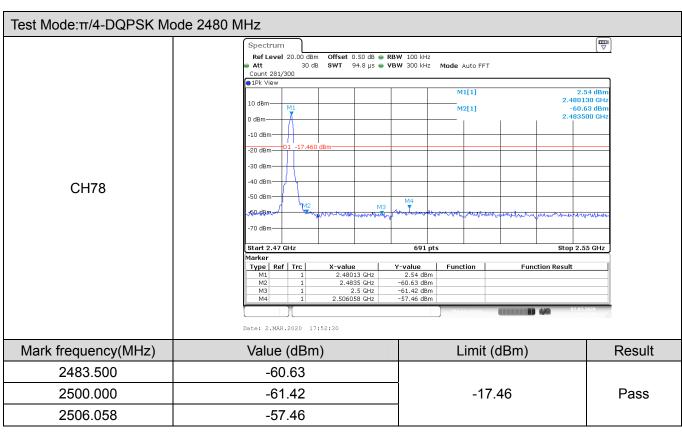

2.Margin value = Level -Limit value


For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

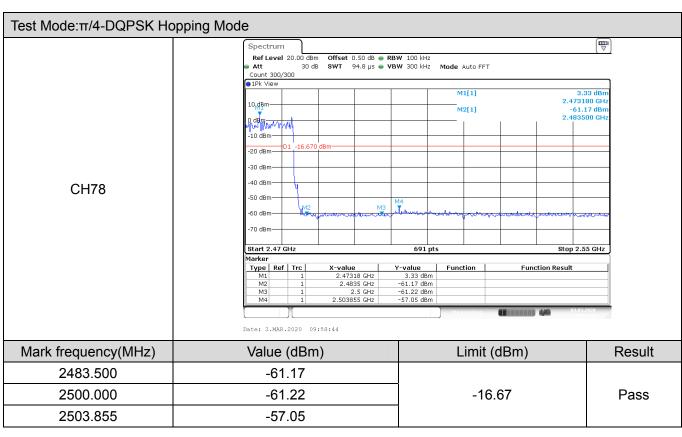


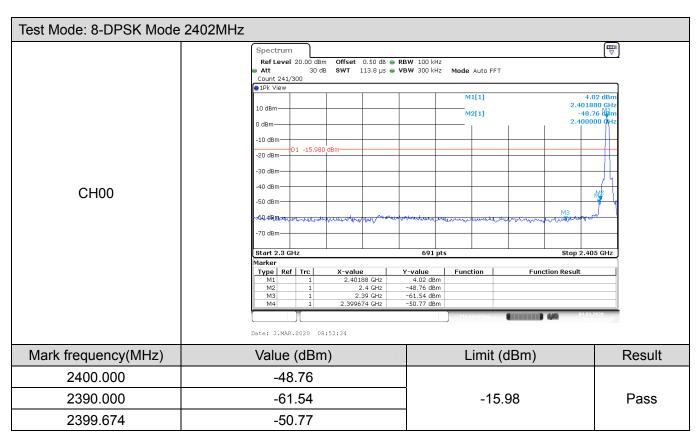
(2) Conducted Test

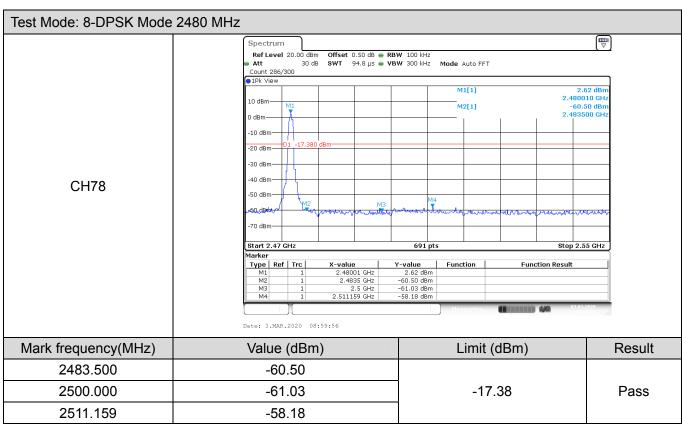


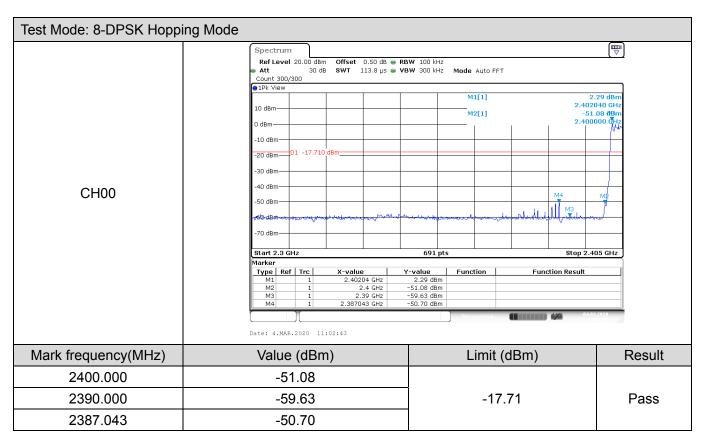


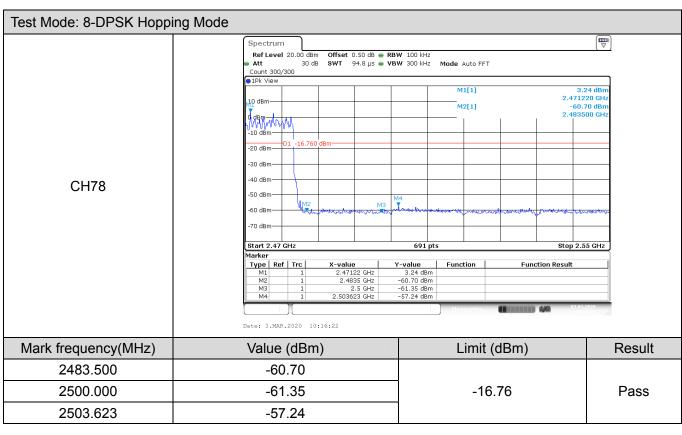






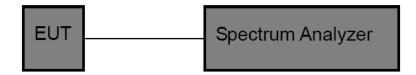






Page 55 of 80

Report No.: CTC20200208E02



3.4. 20 Bandwidth

Limit

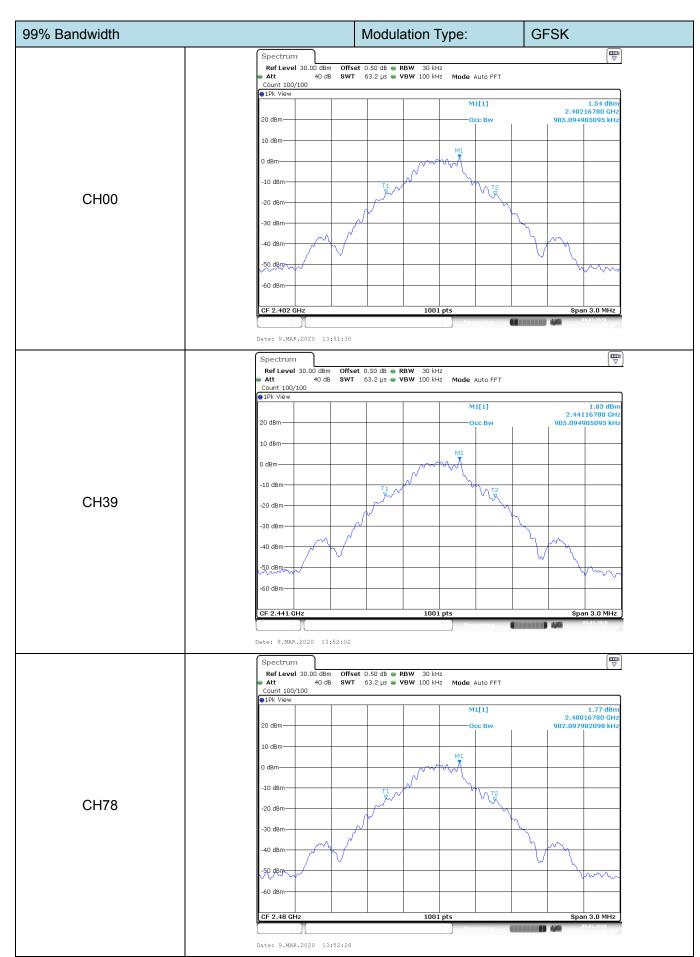
N/A

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

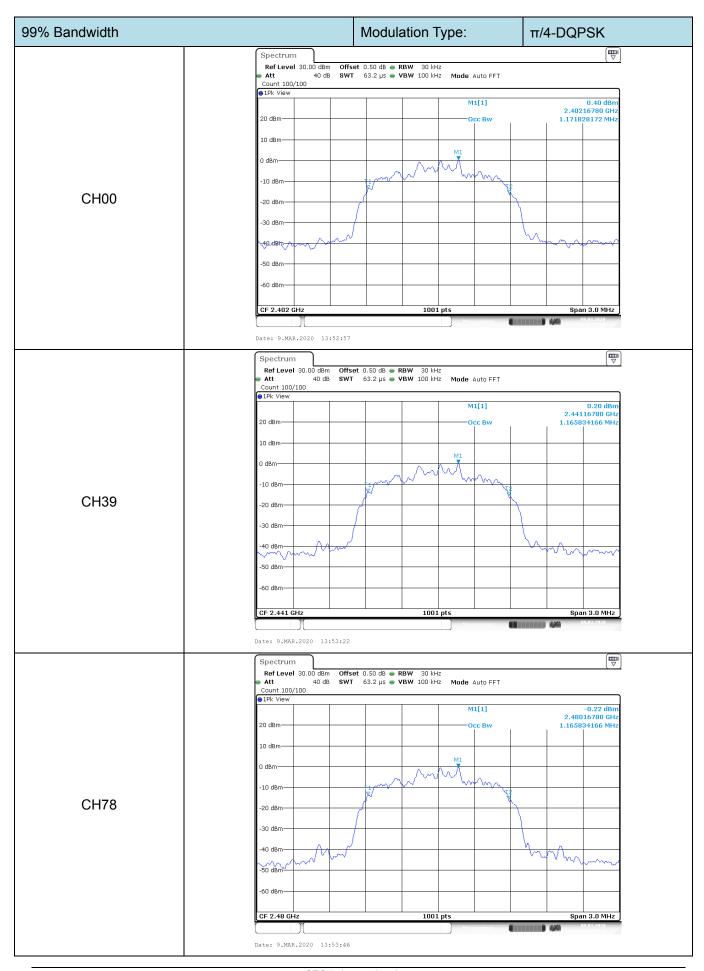
NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.


Test Mode

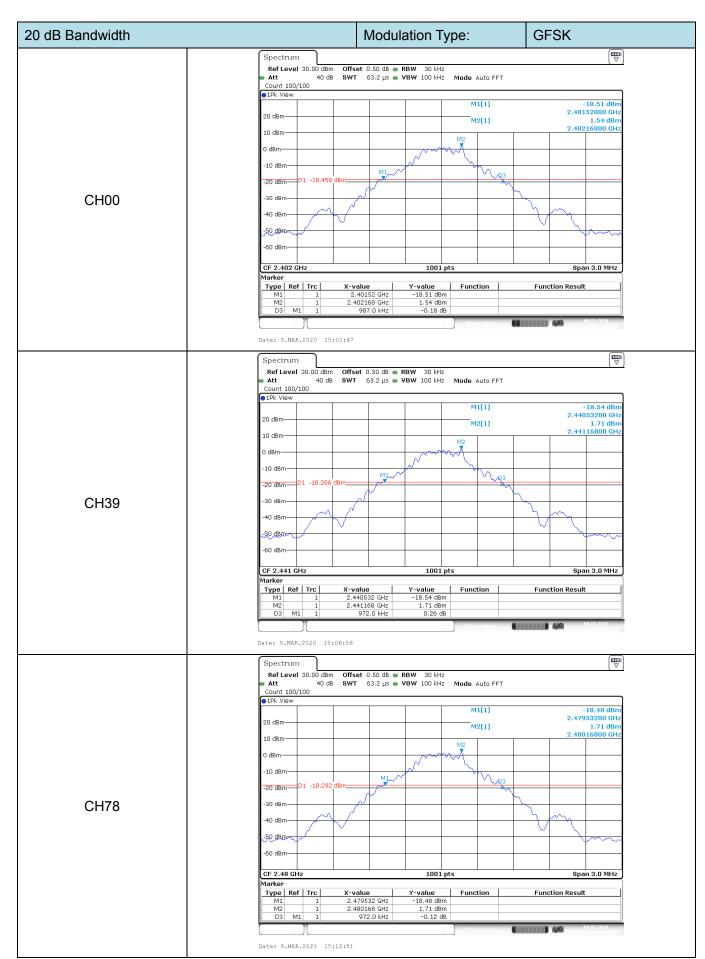
Please refer to the clause 2.3.

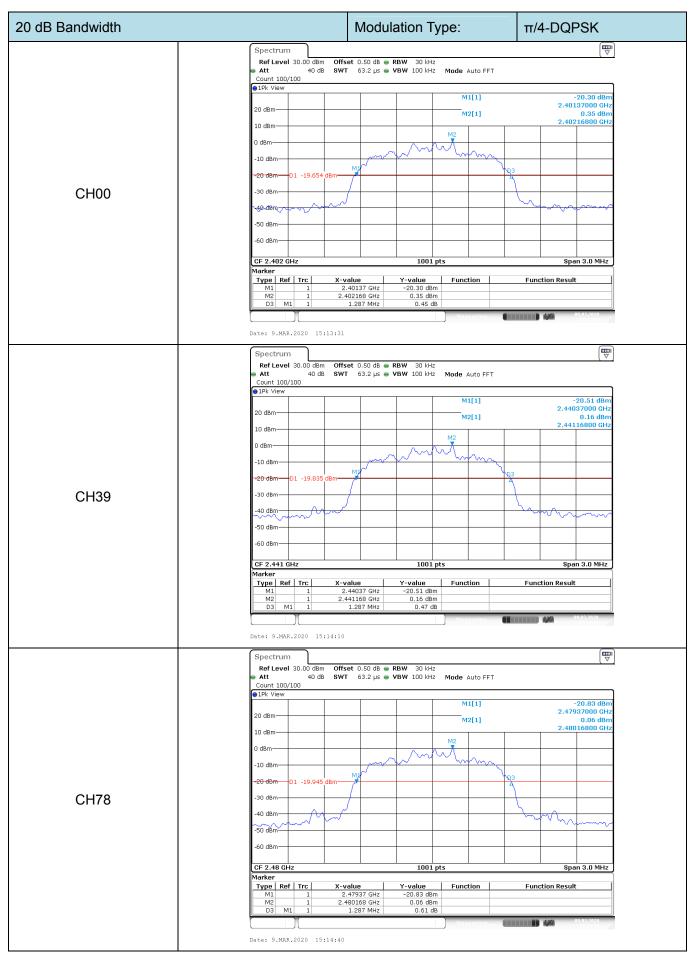

Test Results

Modulation type	Channel	99% Bandwidth (kHz)	20 dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
	00	905	987	658.00
GFSK	39	905	972	648.00
	78	902	972	648.00
	00	1172	1287	858.00
π/4-DQPSK	39	1166	1287	858.00
	78	1166	1287	858.00
	00	1172	1281	854.00
8-DPSK	39	1166	1281	854.00
	78	1166	1281	854.00



中国国家认证认可监督管理委员会Acc





CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

3.5. Channel Separation

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1)/ RSS-247 5.1 b:

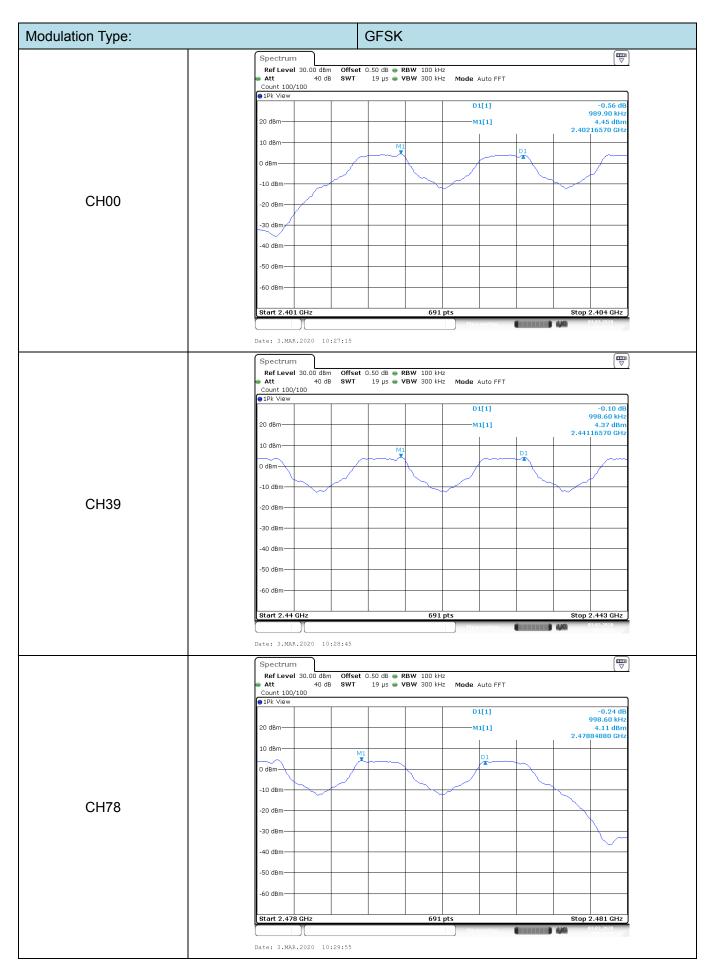
Test Item	Limit	Frequency Range(MHz)	
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5	

Test Configuration

Test Procedure

- 3. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 4. Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

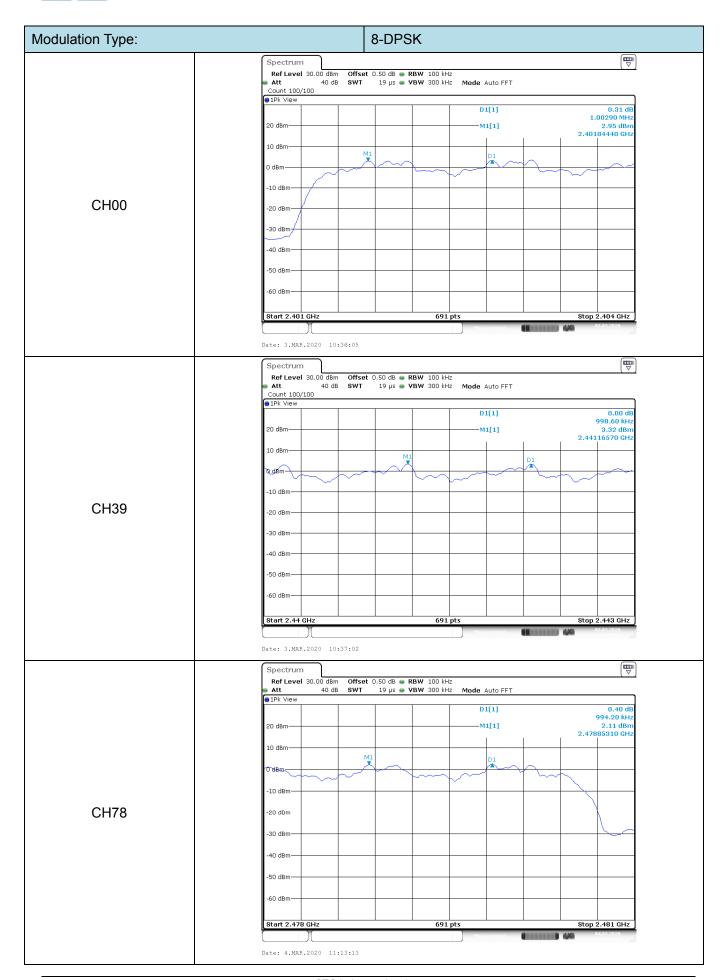
Note: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.


Test Mode

Please refer to the clause 2.3.

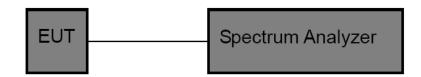

Test Results

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (kHz)	Result
	00	0.990	658.00	
GFSK	39	0.999	648.00	Pass
	78	0.999	648.00	
	00	0.999	858.00	
π/4-DQPSK	39	1.003	858.00	Pass
	78	0.994	858.00	
	00	1.003	854.00	
8-DPSK	39	0.999	854.00	Pass
	78	0.994	854.00	



中国国家认证认可监督管理委员会 For anti-fake verification, plea

Accreditation Administration of the People's Republic of China: yz.cnca.cn


3.6. Number of Hopping Channel

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(iii)/ RSS-247 5.1 d:

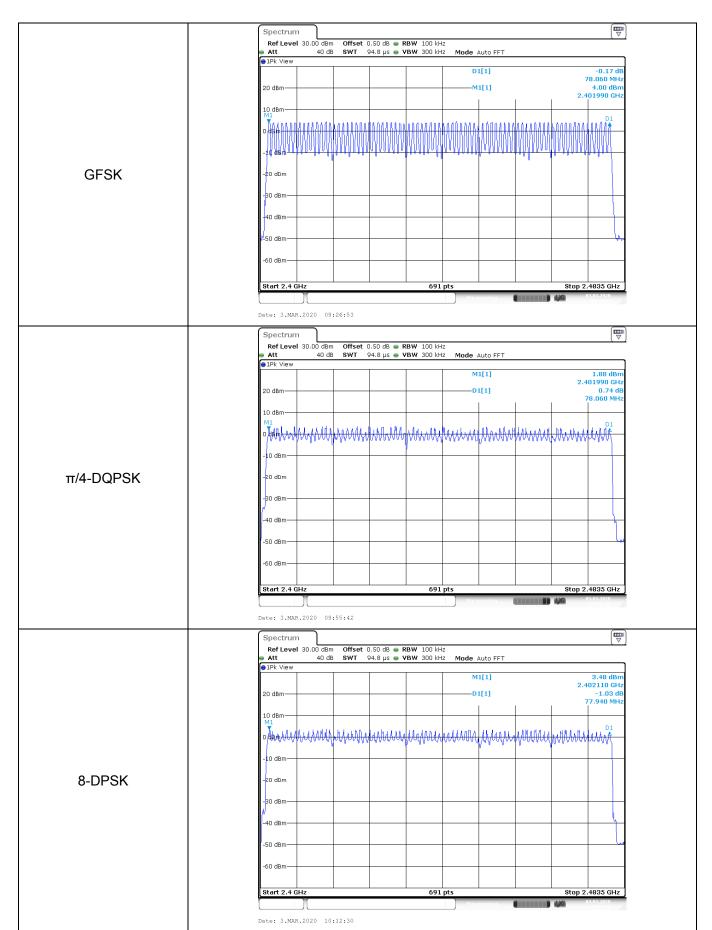
Section	Test Item	Limit	
15.247 (a)(iii)/ RSS-247 5.1 d:	Number of Hopping Channel	>15	

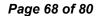
Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.

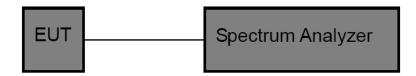
Test Mode


Please refer to the clause 2.3.


Test Result

Modulation type	Modulation type Channel number		Result
GFSK	79		
π/4-DQPSK	79	≥15.00	Pass
8DPSK	79		

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn



3.7. Dwell Time

Limit

Section	Test Item	Limit
15.247(a)(iii)/ RSS-247 5.1 d	Average Time of Occupancy	0.4 sec

Test Configuration

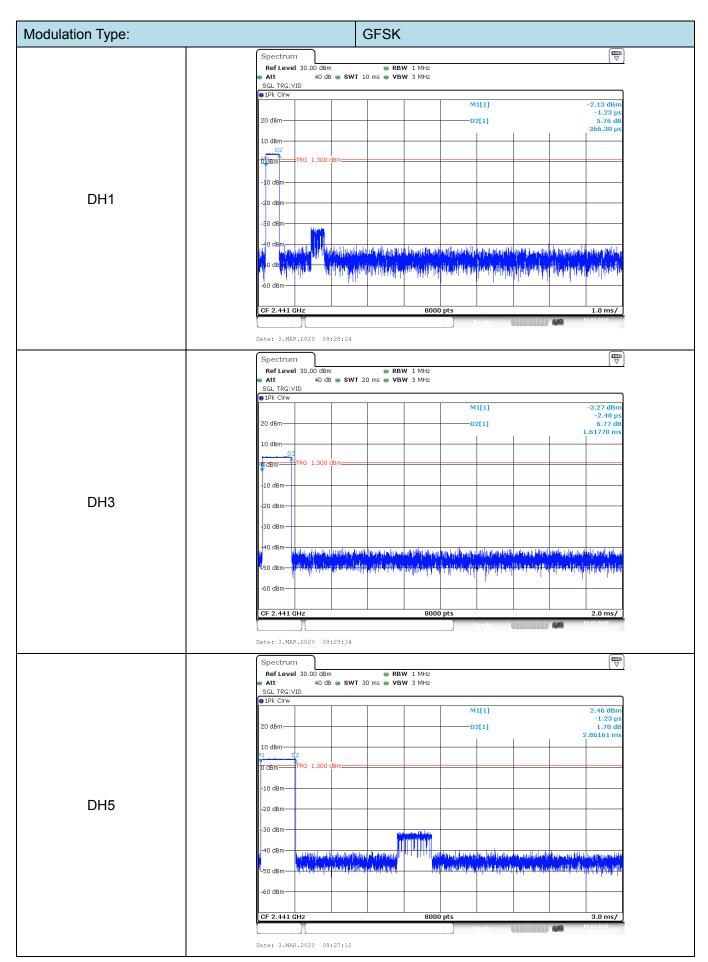
Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
 - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
 - (3) Sweep Time is more than once pulse time.
- (4) Set the center frequency on any frequency would be measure and set the frequency span to zero.
 - (5) Measure the maximum time duration of one single pulse.
 - (6) Set the EUT for packet transmitting.

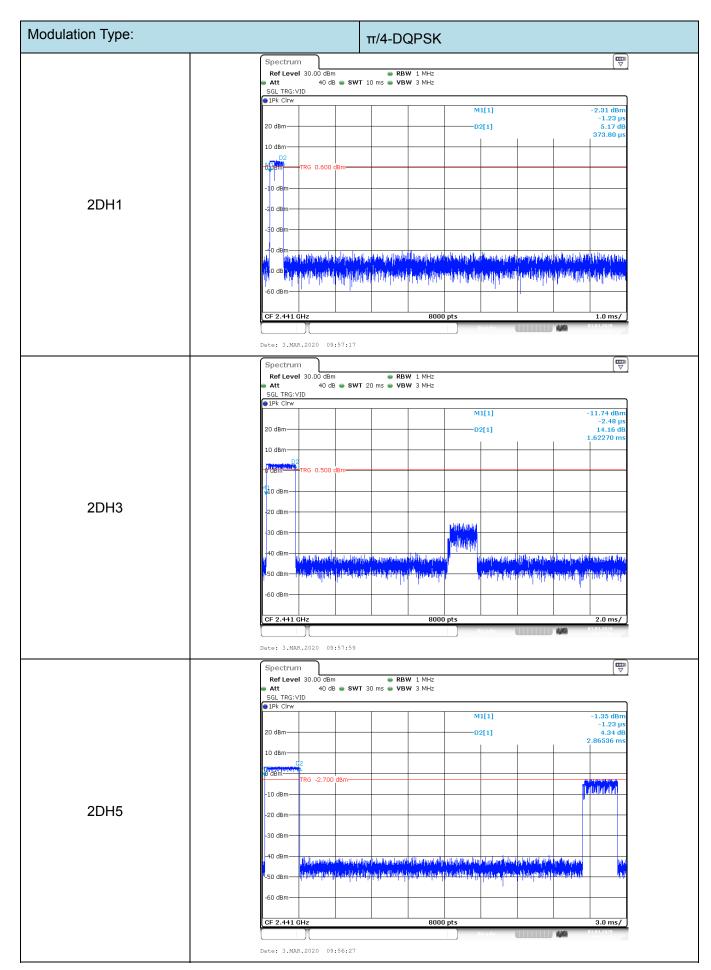
Test Mode

Please refer to the clause 2.3.

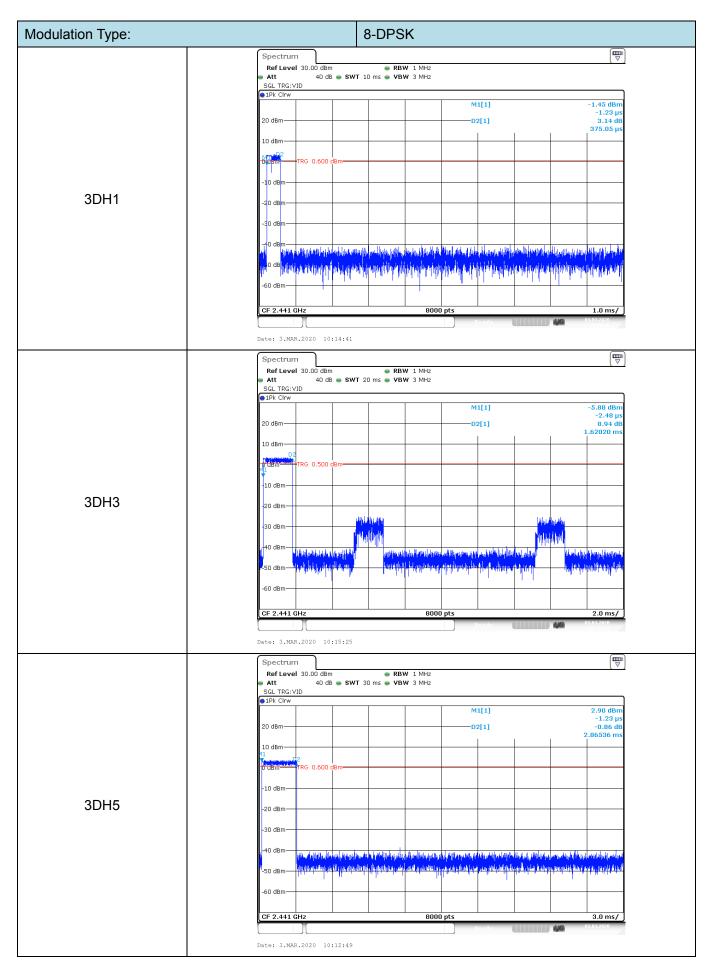
For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn


Test Result

Modulation type	Channel	Channel (MHz)	Pulse Time (ms)	Total of Dwell (ms)	Period Time (ms)	Limit (Second)	Result
	DH1	2441	0.37	118.40	31.60		
GFSK	DH3	2441	1.62	259.20	31.60	≤ 0.40	Pass
	DH5	2441	2.86	305.07	31.60		
	2DH1	2441	0.37	118.40	31.60		
π/4-DQPSK	2DH3	2441	1.62	259.20	31.60	≤ 0.40	Pass
	2DH5	2441	2.87	306.13	31.60		
	3DH1	2441	0.38	121.60	31.60		
8-DPSK	3DH3	2441	1.62	259.20	31.60	≤ 0.40	Pass
	3DH5	2441	2.87	306.13	31.60		


Note: 1DH1/2DH1/3DH1Total of Dwell= Pulse Time*(1600/2)*31.6/79 1DH3/2DH3/3DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79 1DH5/2DH5/3DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

Accreditation Administration of the People's Republic of China: yz.cnca.cn



Accreditation Administration of the People's Republic of China: yz.cnca.cn

3.8. Peak Output Power

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1) / RSS-247 5.4 b:

Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125mW(21dBm)	2400~2483.5	

Test Configuration

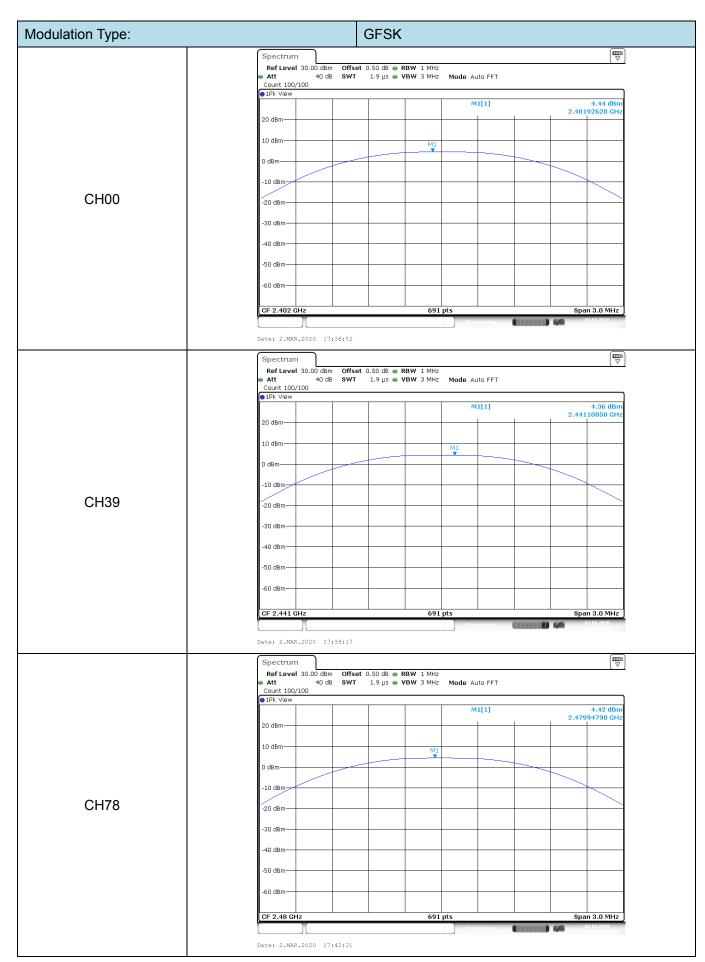
Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

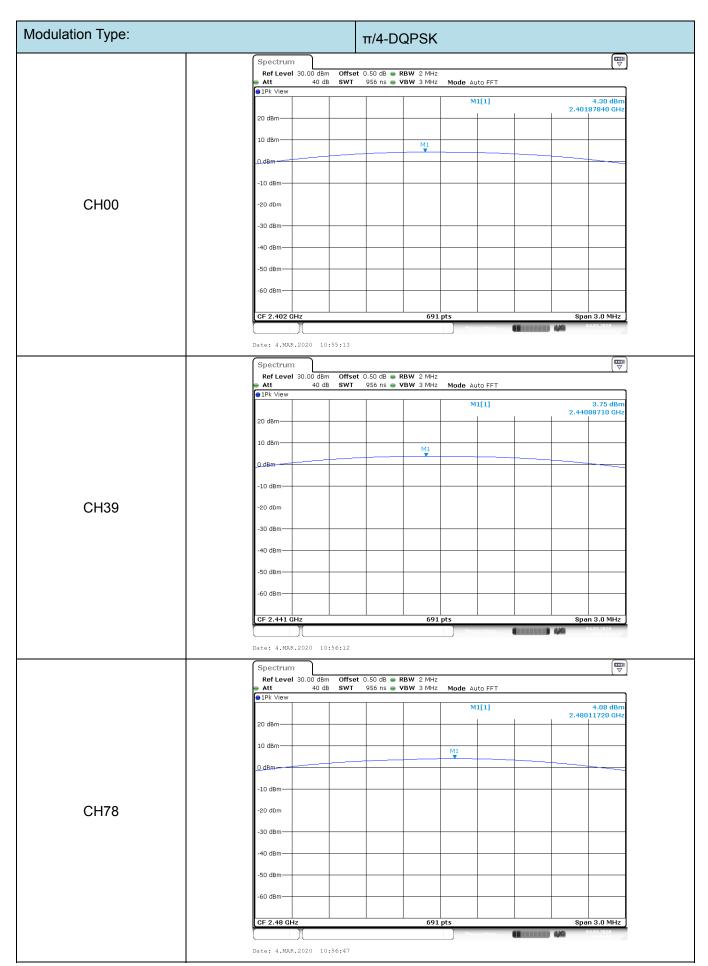
Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

Test Mode

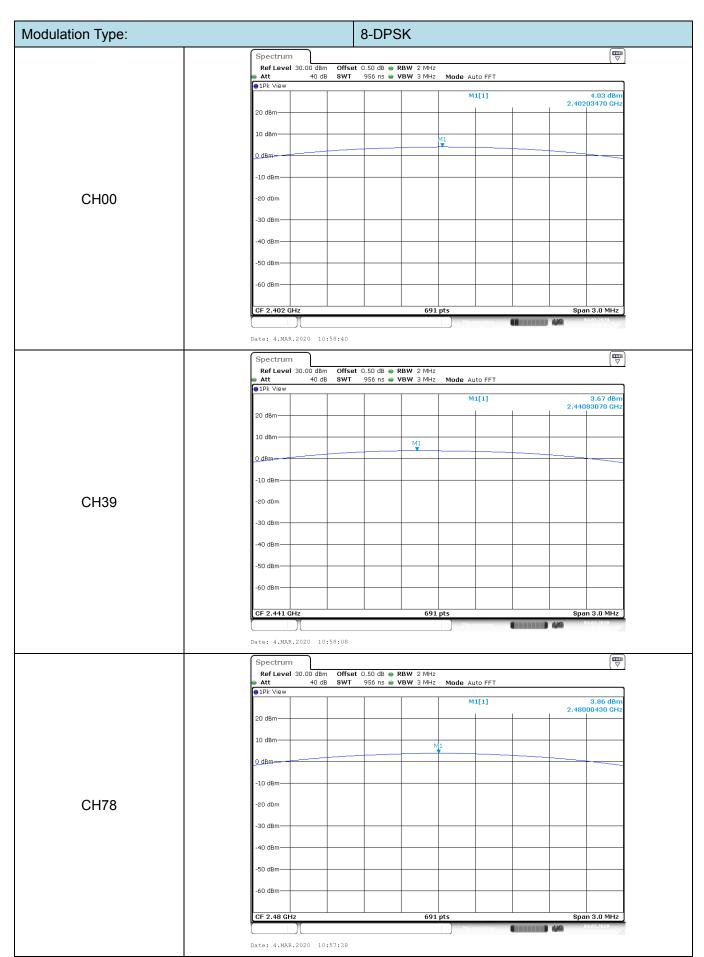
Please refer to the clause 2.3.


Test Result

Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result
	00	4.44		
GFSK	39	4.36	≤ 30.00	Pass
	78	4.42		
	00	4.30		
π/4-DQPSK	39	3.75	≤ 21.00	Pass
	78	4.08		
	00	4.03		
8-DPSK	39	3.67	≤ 21.00	Pass
	78	3.86		


CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn



Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 77 of 80

Report No.: CTC20200208E02

3.9. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn