

Report No. : EED32N80682001

Product Trade mark Model/Type reference Serial Number **Report Number** FCC ID Date of Issue **Test Standards Test result**

- Automotive Diagnosis Terminal ŝ
- LAUNCH
- DBScar VII
- 5 N/A
- EED32N80682001
- : XUJDBSCARVII
- Sep. 15, 2021

PASS

: 47 CFR Part 15 Subpart C

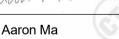
Prepared for: Launch Tech Co., Ltd. Launch Industrial Park, North of Wuhe Rd.,

Banxuegang, Longgang, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Jirazer. Lo	
Frazer Li	


David Wane

David Wang

Reviewed by:

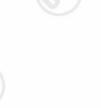
Date:

Acron

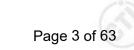
Sep. 15, 2021

Check No.:8602040821

Hotline:400-6788-333

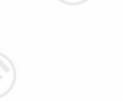

www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

2 Content			
1 COVER PAGE			
2 CONTENT	<hr/>	\sim	2
3 VERSION			
4 TEST SUMMARY		<u> </u>	4
5 GENERAL INFORMATION			6
 5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (959) 		6	
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASUREME			
7.1 ANTENNA REQUIREMENT 7.2 MAXIMUM CONDUCTED OUTPUT PO 7.3 DTS BANDWIDTH 7.4 MAXIMUM POWER SPECTRAL DENS 7.5 BAND EDGE MEASUREMENTS AND 0 7.6 RADIATED SPURIOUS EMISSION & I	OWER SITY CONDUCTED SPURIOUS EMISSIC	DN	
8 APPENDIX A	<u> </u>		
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUC	CTIONAL DETAILS	<u> </u>	



3 Version

Version No.	Date	(A)	Description	0
00	Sep. 15, 2021	C.	Original	9
			()	12
) (,	<u>(</u>)	(5)	(5)	(c



4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	N/A
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS
215	-0-	


Remark:

1.Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

2.The Product is powered by DC 9-18V.

3.Model No.:DBScar VII

The RF board is the same, but its diagnostic board has two different circuits. Since the RF board is the same, we tested Spurious emissions of diagnostic board 1 and diagnostic board 2 separately.

5 General Information

5.1 Client Information

Applicant:	Launch Tech Co., Ltd.	
Address of Applicant:	Launch Industrial Park, North of Wuhe Rd., Banxuegang, Longgang, Shenzhen	
Manufacturer:	Launch Tech Co., Ltd.	100
Address of Manufacturer:	Launch Industrial Park, North of Wuhe Rd., Banxuegang, Longgang, Shenzhen	6

5.2 General Description of EUT

Product Name:	Automotive Diagnosis Term	ninal		
Model No.:	DBScar VII			
Trade mark:	LAUNCH	()	0	
Product Type:	Mobile Portable	Fix Location		
Bluetooth Version:	4.2			
Operation Frequency:	2402MHz~2480MHz			
Modulation Type:	GFSK	(C)		(C)
Transfer Rate:	⊠1Mbps □2Mbps			
Number of Channel:	40			
Antenna Type:	FPC Antenna			
Antenna Gain:	1.89dBi	(6)	67)	
Power Supply:	DC 5V			
Test Voltage:	DC 5V			
Sample Received Date:	Aug. 04, 2021			
Sample tested Date:	Aug. 11, 2021 to Sep. 01, 2	2021		C

	-		-		-		-
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Softwar	e Settings:				
Software:	ISRT Ver:2	2.1.29.4784		~	
EUT Power Grade:	Default	Default			
Use test software to transmitting of the I	o set the lowest frequenc EUT.	y, the middle freque	ncy and the highest fr	requency keep	
Test Mode	Modulation	Rate	Channel	Frequency(MHz)	
Mode a	GFSK	1Mbps	CH0	2402	
Mode b	GFSK	1Mbps	CH19	2440	
Mode c	GFSK	1Mbps	CH39	2480	

5.4	Test Environmer	nt 🚫					
	Operating Environment	t:					
	Radiated Spurious Emi	ssions:					
	Temperature:	22~25.0 °C	- 0.1		- 11-1		
10	Humidity:	50~55 % RH					(1)
	Atmospheric Pressure:	1010mbar	67		6		6
	Conducted Emissions:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH		(in)		60	
	Atmospheric Pressure:	1010mbar		(\mathcal{C})		(67)	
	RF Conducted:						
	Temperature:	22~25.0 °C					
-	Humidity:	50~55 % RH	~°>>		~~>		13
()	Atmospheric Pressure:	1010mbar	(\sim)		(\mathcal{A})		(\mathcal{A})
-							

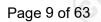
5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Manufacturer	Model No.	Certification	Supplied by
HP	HP ZHAN 66 PRO 14 G4	FCC&CE	СТІ
(i)			0
	HP	HP	HP FCC&CE

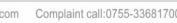
5.6 Test Location


All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-18GHz)
3 Rad		3.3dB (9kHz-30MHz)
	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
		4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



6 Equipment List

		RF test sy	/stem			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022	
High-pass filter	Sinoscite	FL3CX03WG18NM12- 0398-002		(6	- 3	
High-pass filter	MICRO-TRONICS	SPA-F-63029-4			· …	
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3				
band rejection filter	Sinoscite	FL5CX01CA09CL12- 0395-001		- 0	B	
band rejection filter	Sinoscite	FL5CX01CA08CL12- 0393-001	<u>()</u>		9	
band rejection filter	Sinoscite	FL5CX02CA04CL12- 0396-002				
band rejection filter	Sinoscite	FL5CX02CA03CL12- 0394-001		(A)	(5	
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-28-2020	12-27-2021	

Page 11 of 63

		3M Semi	/full-anechoic Cham	per			
	Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
	3M Chamber & Accessory Equipment	ТДК	SAC-3		05-24-2019	05-23-2022	
(A)	TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022	
	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024	
-	Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021	
	Multi device Controller	maturo	NCD/070/10711112		-2		
	Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022	
~~~	Communication test set	Agilent	E5515C	GB47050534	03-01-2019	02-28-2022	
	Cable line	Fulai(7M)	SF106	5219/6A	)	( <u>-</u> )	
Y	Cable line	Fulai(6M)	SF106	5220/6A			
	Cable line	Fulai(3M)	SF106	5216/6A			
	Cable line	Fulai(3M)	SF106	5217/6A			
	band rejection filter	Sinoscite	FL5CX01CA08CL12- 0393-001		<u>(5</u> )		



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com







3M full-anechoic Chamber										
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
RSE Automatic test software	JS Tonscend	JS36-RSE	10166							
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022					
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022					
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022					
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024					
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024					
Communication Antenna	Schwarzbeck	CLSA 0110L	1014							
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024					
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022					
Communication test set	R&S	CMW500	102898	12-31-2020	12-30-2021					
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022					
Preamplifier	JS Tonscend	980380	EMC051845SE	12-31-2020	12-30-2021					
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022					
Fully Anechoic Chamber	ТDК	FAC-3		01-09-2021	01-08-2024					
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		- 6					
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002							
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003							
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	(	S)					
Cable line	Times	EMC104-NMNM- 1000	SN160710							
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		(2					
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	<u> </u>						
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001							
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	(	s)					









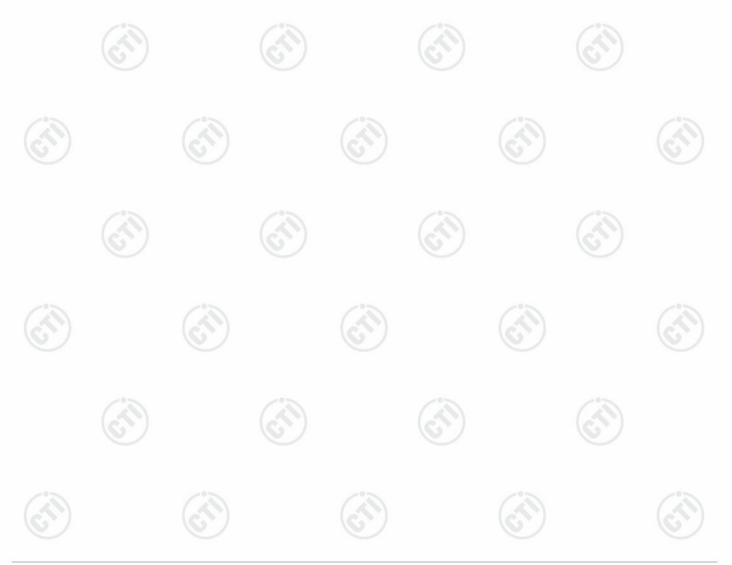




### 7 Test results and Measurement Data

## 7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos	
The antenna is integral ante	nna. The best case gain of the antenna is 1.89dBi.	









Page 14 of 63

## 7.2 Maximum Conducted Output Power

1°2	
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Computer Power Supply Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	<ul> <li>a) Set the RBW ≥ DTS bandwidth.</li> <li>b) Set VBW ≥ 3 × RBW.</li> <li>c) Set span ≥ 3 x RBW</li> <li>d) Sweep time = auto couple.</li> <li>e) Detector = peak.</li> <li>f) Trace mode = max hold.</li> <li>g) Allow trace to fully stabilize.</li> <li>h) Use peak marker function to determine the peak amplitude level.</li> </ul>
Limit:	30dBm
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A



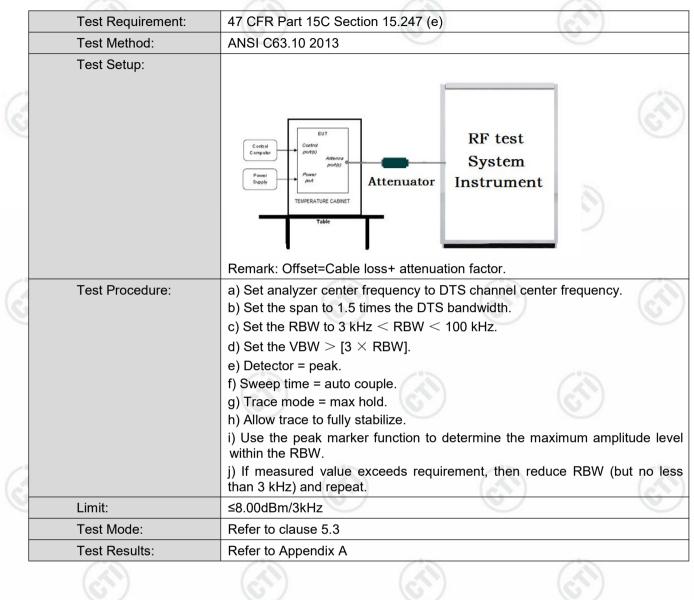


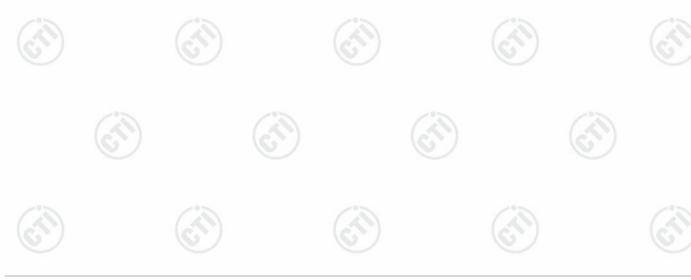




## 7.3 DTS Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
	Test Method:	ANSI C63.10 2013
Ĩ	Test Setup:	Control Computer Computer Computer Power Bupply TEMPERATURE CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	<ul> <li>a) Set RBW = 100 kHz.</li> <li>b) Set the VBW ≥[3 × RBW].</li> <li>c) Detector = peak.</li> <li>d) Trace mode = max hold.</li> <li>e) Sweep = auto couple.</li> <li>f) Allow the trace to stabilize.</li> <li>g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper an lower frequencies) that are attenuated by 6 dB relative to the maximum lever measured in the fundamental emission.</li> </ul>
100	Limit:	≥ 500 kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix A



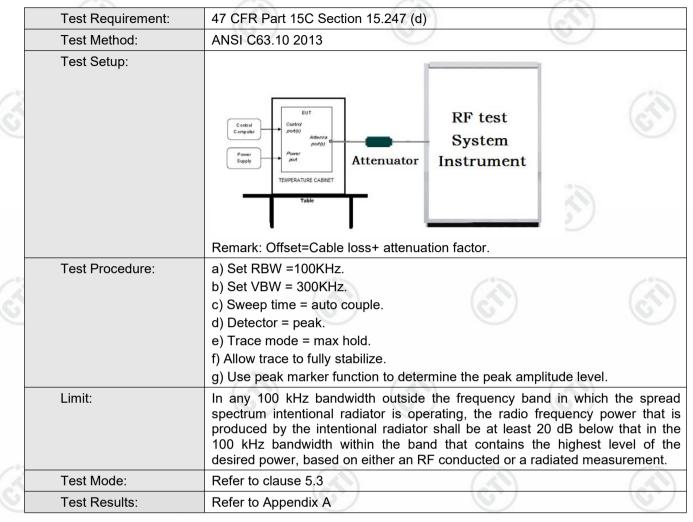



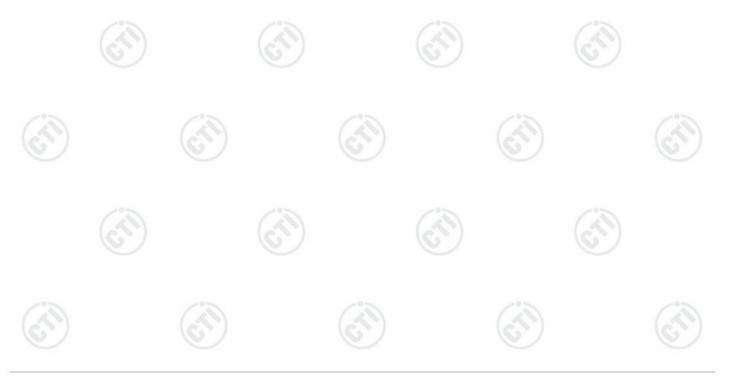





## 7.4 Maximum Power Spectral Density










### 7.5 Band Edge measurements and Conducted Spurious Emission



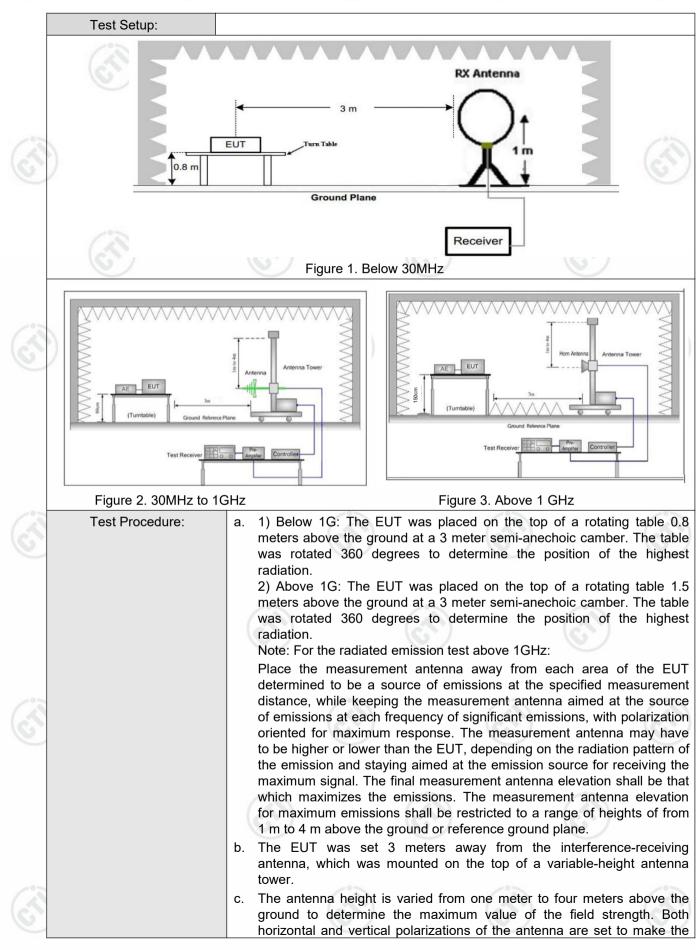








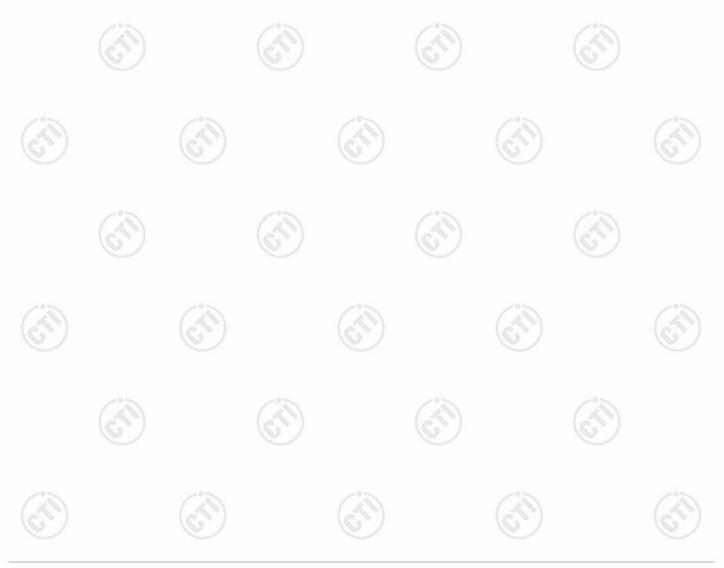
## 7.6 Radiated Spurious Emission & Restricted bands


Test Requirement:	47 CFR Part 15C Section	(2)	-		
Test Method:	ANSI C63.10 2013	S		e	
Test Site:	Measurement Distance:	3m (Semi-Anech	ioic Cham	ber)	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	z Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	z Average	10kHz	z 30kHz	Average
	0.090MHz-0.110MHz	z Quasi-peak	10kHz	z 30kHz	Quasi-peak
	0.110MHz-0.490MHz	z Peak	10kHz	z 30kHz	Peak
	0.110MHz-0.490MHz	z Average	10kHz	z 30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	z 30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100 kH	z 300kHz	Quasi-peak
	Above 4011	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10kHz	Average
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (n
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-		30
	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Note: 15.35(b), L frequency emissions is limit applicable to the ec peak emission level radi	20dB above the i quipment under to	maximum est. This p	permitted ave	erage emissio













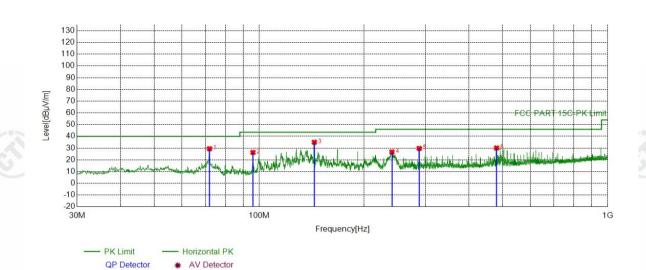



		measurement.
		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
(K)		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
		g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		i. Repeat above procedures until all frequencies measured was complete.
	Test Mode:	Refer to clause 5.3
	Test Results:	Pass










#### Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case Mode c was recorded in the report.

Diagnostic board 1:

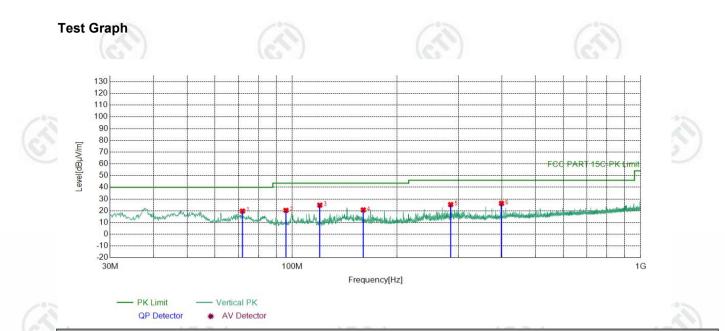
Test Graph



	Suspected List									
1		Freq.	Factor	Reading	Level	Limit	Margin			<b>_</b>
1	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
	1	72.0052	-21.15	50.59	29.44	40.00	10.56	PASS	Horizontal	PK
	2	95.9666	-19.10	45.46	26.36	43.50	17.14	PASS	Horizontal	PK
	3	143.9864	-21.87	56.86	34.99	43.50	8.51	PASS	Horizontal	PK
	4	240.4140	-16.77	43.47	26.70	46.00	19.30	PASS	Horizontal	PK
	5	287.9488	-15.76	45.49	29.73	46.00	16.27	PASS	Horizontal	PK
	6	479.9310	-11.21	41.30	30.09	46.00	15.91	PASS	Horizontal	PK

(F)











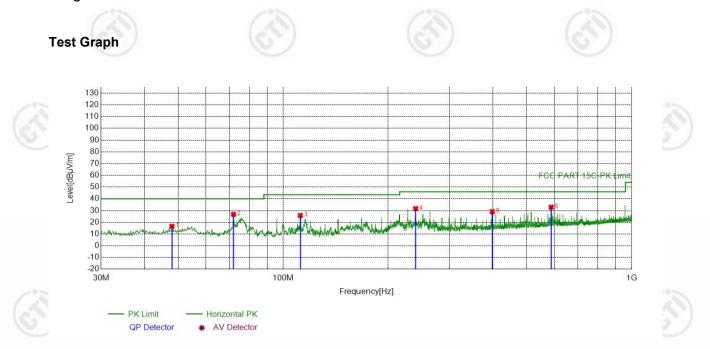




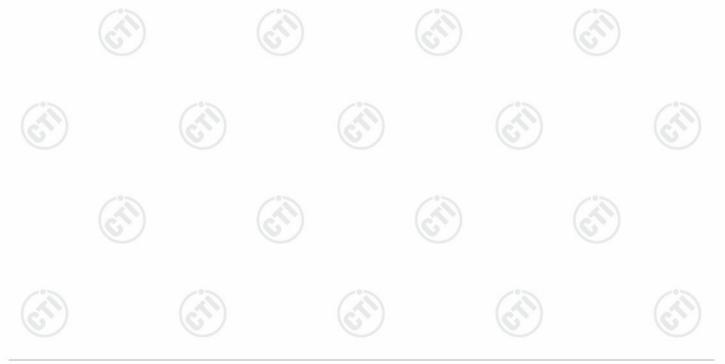


#### Suspected List

1	Suspected List									
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	rtesuit	1 olarity	Remain
	1	72.0052	-21.15	40.92	19.77	40.00	20.23	PASS	Vertical	PK
	2	95.9666	-19.10	39.48	20.38	43.50	23.12	PASS	Vertical	PK
	3	120.0250	-20.08	44.91	24.83	43.50	18.67	PASS	Vertical	PK
	4	159.9930	-21.15	41.90	20.75	43.50	22.75	PASS	Vertical	PK
2	5	285.0385	-15.83	41.15	25.32	46.00	20.68	PASS	Vertical	PK
6	6	398.7339	-12.96	39.24	26.28	46.00	19.72	PASS	Vertical	PK
	100									



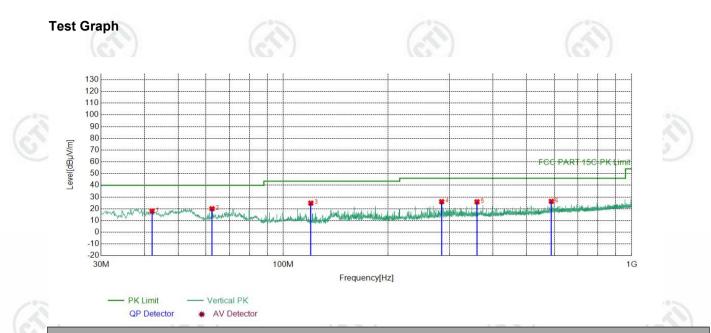





Diagnostic board 2:




	Suspec	ted List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	D	Delector	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	
	1	47.9468	-17.17	33.79	16.62	40.00	23.38	PASS	Horizontal	PK
	2	72.0052	-21.15	47.92	26.77	40.00	13.23	PASS	Horizontal	PK
3	3	111.9732	-18.71	44.58	25.87	43.50	17.63	PASS	Horizontal	PK
	4	240.0260	-16.77	48.42	31.65	46.00	14.35	PASS	Horizontal	PK
-	5	398.2488	-12.98	42.04	29.06	46.00	16.94	PASS	Horizontal	PK
ľ	6	587.9998	-8.93	41.85	32.92	46.00	13.08	PASS	Horizontal	PK











#### Suspected List

1	Suspec	ted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	42.0292	-17.67	35.72	18.05	40.00	21.95	PASS	Vertical	PK
	2	62.4983	-19.07	39.15	20.08	40.00	19.92	PASS	Vertical	PK
ĺ	3	120.0250	-20.08	44.90	24.82	43.50	18.68	PASS	Vertical	PK
	4	285.0385	-15.83	41.91	26.08	46.00	19.92	PASS	Vertical	PK
2	5	360.0270	-13.80	39.74	25.94	46.00	20.06	PASS	Vertical	PK
6	6	588.1938	-8.93	35.29	26.36	46.00	19.64	PASS	Vertical	PK







### Radiated Spurious Emission above 1GHz:

Diagnostic board 1:

Mode:			GF	SK Transmi	tting	Channel:		2402 MH	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1354.0354	1.24	43.41	44.65	74.00	29.35	PASS	Н	PK
2	1939.2939	4.23	41.32	45.55	74.00	28.45	PASS	н	PK
3	4804.1203	-16.23	58.44	42.21	74.00	31.79	PASS	н	PK
4	7206.2804	-11.83	62.68	50.85	74.00	23.15	PASS	н	PK
5	9607.4405	-7.37	55.97	48.60	74.00	25.40	PASS	н	PK
6	13676.7118	-1.74	51.18	49.44	74.00	24.56	PASS	Н	PK
7	1206.2206	0.82	43.22	44.04	74.00	29.96	Pass	V	PK
8	1780.0780	3.21	42.06	45.27	74.00	28.73	Pass	V	PK
9	3192.0128	-20.37	62.73	42.36	74.00	31.64	Pass	V	PK
10	4803.1202	-16.23	57.81	41.58	74.00	32.42	Pass	V	PK
11	7205.2804	-11.83	62.88	51.05	74.00	22.95	Pass	V	PK
12	9609.4406	-7.37	61.26	53.89	74.00	20.11	Pass	V	PK
6	)	0	2		67			V	

Mode:			GF	SK Transmi	tting	Channel:	_	2440 MH	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1250.2250	0.93	42.75	43.68	74.00	30.32	PASS	Н	PK
2	1841.2841	3.59	41.25	44.84	74.00	29.16	PASS	н	PK
3	4879.1253	-16.21	59.98	43.77	74.00	30.23	PASS	Н	PK
4	7320.2880	-11.65	65.06	53.41	74.00	20.59	PASS	н	PK
5	9758.4506	-7.52	55.48	47.96	74.00	26.04	PASS	н	PK
6	12445.6297	-4.75	52.51	47.76	74.00	26.24	PASS	Н	PK
7	1223.2223	0.86	42.83	43.69	74.00	30.31	Pass	V	PK
8	1835.6836	3.55	42.14	45.69	74.00	28.31	Pass	V	PK
9	3192.0128	-20.37	64.18	43.81	74.00	30.19	Pass	V	PK
10	5760.1840	-13.71	57.95	44.24	74.00	29.76	Pass	V	PK
11	7319.2880	-11.66	60.53	48.87	74.00	25.13	Pass	V	PK
12	9760.4507	-7.51	58.90	51.39	74.00	22.61	Pass	V	PK











200			- 0 miles		-0-			- 0 -	
Mode:			GF	SK Transmi	itting	Channel:		2480 MH	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dΒ μV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1235.8236	0.89	43.48	44.37	74.00	29.63	PASS	Н	PK
2	1839.2839	3.57	41.64	45.21	74.00	28.79	PASS	Н	PK
3	4959.1306	-15.98	61.00	45.02	74.00	28.98	PASS	Н	PK
4	7439.2960	-11.34	62.76	51.42	74.00	22.58	PASS	Н	PK
5	9918.4612	-7.10	56.08	48.98	74.00	25.02	PASS	Н	PK
6	13761.7174	-1.68	51.00	49.32	74.00	24.68	PASS	Н	PK
7	1398.0398	1.38	43.39	44.77	74.00	29.23	Pass	V	PK
8	1794.6795	3.26	41.95	45.21	74.00	28.79	Pass	V	PK
9	4960.1307	-15.97	60.08	44.11	74.00	29.89	Pass	V	PK
10	7439.2960	-11.34	62.21	50.87	74.00	23.13	Pass	V	PK
11	9919.4613	-7.10	58.58	51.48	74.00	22.52	Pass	V	PK
12	13731.7154	-1.73	51.21	49.48	74.00	24.52	Pass	V	PK

### Diagnostic board 2:

)	6	37)		G			6	
		GF	SK Transmi	itting	Channel:		2402 MH	Z
Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1198.6199	0.80	43.05	43.85	74.00	30.15	PASS	Н	PK
1682.6683	2.83	42.49	45.32	74.00	28.68	PASS	Н	PK
4804.1203	-16.23	59.22	42.99	74.00	31.01	PASS	Н	PK
7205.2804	-11.83	59.07	47.24	74.00	26.76	PASS	Н	PK
9606.4404	-7.36	55.92	48.56	74.00	25.44	PASS	н	PK
13774.7183	-1.67	50.15	48.48	74.00	25.52	PASS	Н	PK
1399.0399	1.39	44.07	45.46	74.00	28.54	Pass	V	PK
1992.8993	4.51	43.96	48.47	74.00	25.53	Pass	V	PK
3196.0131	-20.36	64.08	43.72	74.00	30.28	Pass	V	PK
5760.1840	-13.71	58.30	44.59	74.00	29.41	Pass	V	PK
7205.2804	-11.83	61.66	49.83	74.00	24.17	Pass	V	PK
9607.4405	-7.37	58.04	50.67	74.00	23.33	Pass	V	PK
	[MHz] 1198.6199 1682.6683 4804.1203 7205.2804 9606.4404 13774.7183 1399.0399 1992.8993 3196.0131 5760.1840 7205.2804	[MHz]         [dB]           1198.6199         0.80           1682.6683         2.83           4804.1203         -16.23           7205.2804         -11.83           9606.4404         -7.36           13774.7183         -1.67           1399.0399         1.39           1992.8993         4.51           3196.0131         -20.36           5760.1840         -11.83	Freq. [MHz]Factor [dB]Reading [dBµV]1198.61990.8043.051682.66832.8342.494804.1203-16.2359.227205.2804-11.8359.079606.4404-7.3655.9213774.7183-1.6750.151399.03991.3944.071992.89934.5143.963196.0131-20.3664.085760.1840-13.7158.307205.2804-11.8361.66	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dB µV/m]1198.61990.8043.0543.851682.66832.8342.4945.324804.1203-16.2359.2242.997205.2804-11.8359.0747.249606.4404-7.3655.9248.5613774.7183-1.6750.1548.481399.03991.3944.0745.461992.89934.5143.9648.473196.0131-20.3664.0843.725760.1840-13.7158.3044.597205.2804-11.8361.6649.83	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dB μV/m]Limit [dBµV/m]Margin [dB]1198.61990.8043.0543.8574.0030.151682.66832.8342.4945.3274.0028.684804.1203-16.2359.2242.9974.0031.017205.2804-11.8359.0747.2474.0026.769606.4404-7.3655.9248.5674.0025.4413774.7183-1.6750.1548.4874.0025.521399.03991.3944.0745.4674.0025.533196.0131-20.3664.0843.7274.0030.285760.1840-13.7158.3044.5974.0029.417205.2804-11.8361.6649.8374.0024.17	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dB µV/m]Limit [dBµV/m]Margin [dB]Result1198.61990.8043.0543.8574.0030.15PASS1682.66832.8342.4945.3274.0028.68PASS4804.1203-16.2359.2242.9974.0031.01PASS7205.2804-11.8359.0747.2474.0026.76PASS9606.4404-7.3655.9248.5674.0025.44PASS13774.7183-1.6750.1548.4874.0025.52PASS1399.03991.3944.0745.4674.0025.53Pass3196.0131-20.3664.0843.7274.0030.28Pass5760.1840-11.8361.6649.8374.0024.17Pass	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dB µV/m]Limit [dBµV/m]Margin [dB]ResultPolarity1198.61990.8043.0543.8574.0030.15PASSH1682.66832.8342.4945.3274.0028.68PASSH4804.1203-16.2359.2242.9974.0031.01PASSH7205.2804-11.8359.0747.2474.0026.76PASSH9606.4404-7.3655.9248.5674.0025.44PASSH13774.7183-1.6750.1548.4874.0025.52PASSH1399.03991.3944.0745.4674.0028.54PassV1992.89934.5143.9648.4774.0025.53PassV3196.0131-20.3664.0843.7274.0030.28PassV5760.1840-11.8361.6649.8374.0024.17PassV







Mode:			GF	SK Transmi	tting	Channel:		2440 MH	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1262.8263	0.96	44.11	45.07	74.00	28.93	PASS	Н	PK
2	1853.2853	3.68	41.67	45.35	74.00	28.65	PASS	н	PK
3	4880.1253	-16.21	61.23	45.02	74.00	28.98	PASS	н	PK
4	7319.2880	-11.66	63.46	51.80	74.00	22.20	PASS	Н	PK
5	9759.4506	-7.51	56.32	48.81	74.00	25.19	PASS	Н	PK
6	14402.7602	1.18	49.25	50.43	74.00	23.57	PASS	н	PK
7	1225.2225	0.87	42.83	43.70	74.00	30.30	Pass	V	PK
8	1792.6793	3.26	43.55	46.81	74.00	27.19	Pass	V	PK
9	4880.1253	-16.21	58.63	42.42	74.00	31.58	Pass	V	PK
10	7319.2880	-11.66	61.74	50.08	74.00	23.92	Pass	V	PK
11	9760.4507	-7.51	58.73	51.22	74.00	22.78	Pass	V	PK
12	14367.7579	0.68	48.98	49.66	74.00	24.34	Pass	V	PK

Mode:			GF	SK Transmi	tting	Channel:		2480 MH	z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dΒ μV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1192.6193	0.80	42.69	43.49	74.00	30.51	PASS	Н	PK
2	1833.4833	3.53	41.63	45.16	74.00	28.84	PASS	Н	PK
3	4959.1306	-15.98	61.29	45.31	74.00	28.69	PASS	Н	PK
4	7439.2960	-11.34	60.32	48.98	74.00	25.02	PASS	н	PK
5	9919.4613	-7.10	57.65	50.55	74.00	23.45	PASS	н	PK
6	13429.6953	-2.79	50.27	47.48	74.00	26.52	PASS	н	PK
7	1294.2294	1.04	42.74	43.78	74.00	30.22	Pass	V	PK
8	1993.2993	4.52	43.00	47.52	74.00	26.48	Pass	V	PK
9	3801.0534	-19.24	57.12	37.88	74.00	36.12	Pass	V	PK
10	5760.1840	-13.71	57.25	43.54	74.00	30.46	Pass	V	PK
11	7439.2960	-11.34	60.68	49.34	74.00	24.66	Pass	V	PK
12	9918.4612	-7.10	60.29	53.19	74.00	20.81	Pass	V	PK

#### Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
- Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

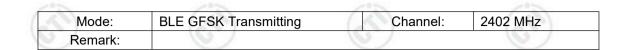


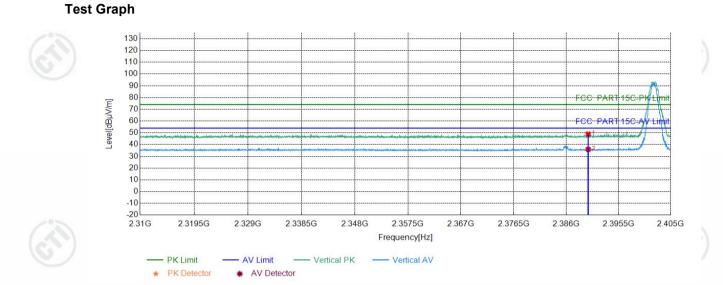


#### **Restricted bands:**

(S)







Diagnostic board 1:

	— AV Limit r * AV Dr Factor Re		Freq	2.3575G 2.367 uency[Hz] – Horizontal AV	G 2.3765G		CC- PART 15C-PV1 CC- PV1 CC-	2.405G
and 2.3195G → PK Limit ★ PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G		CC PART 15C-A/Li	*
and 2.3195G → PK Limit ★ PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G		CC PART 15C-A/Li	*
and 2.3195G → PK Limit ★ PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G		CC PART 15C-A/Li	*
alig 2.3195G → PK Limit ★ PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G		CC PART 15C-A/Li	*
31G 2.3195G PK Limit PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G		CC PART 15C-A/Li	7
a1G 2.3195G → PK Limit ★ PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G			7
→ PK Limit ★ PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G			2.405G
a1G 2.3195G → PK Limit ★ PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G	2.386G	2.3955G 2	2.405G
31G 2.3195G PK Limit * PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G	2.386G	2.3955G 2	2.405G
PK Limit PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G	2.386G	2.3955G 2	2.405G
PK Limit PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G	2.386G	2.3955G 2	2.405G
PK Limit     PK Detector List Freq. F	— AV Limit r * AV Dr Factor Re	it — Hori letector	Freq	uency[Hz] – Horizontal AV	G 2.3765G	2.386G	2.3955G 2	2.405G
		eaung	LEVEI		Margin			
	[dB] [d		[dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Rema
		40.98	46.75	74.00	27.25	PASS	Horizontal	PK
0.0000	5.77 2	29.84	35.61	54.00	18.39	PASS	Horizontal	AV









Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	43.16	48.93	74.00	25.07	PASS	Vertical	PK
2	2390.0000	5.77	30.11	35.88	54.00	18.12	PASS	Vertical	AV

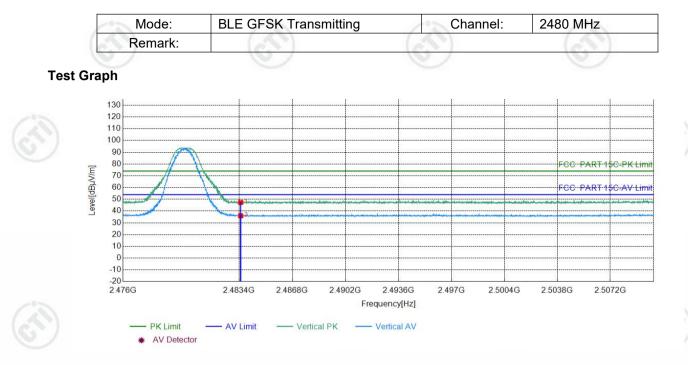























Susp	pected List			_	_				
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.71	47.28	74.00	26.72	PASS	Horizontal	PK
2	2483.5000	6.57	30.24	36.81	54.00	17.19	PASS	Vertical	AV













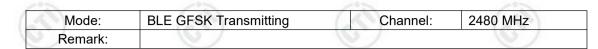




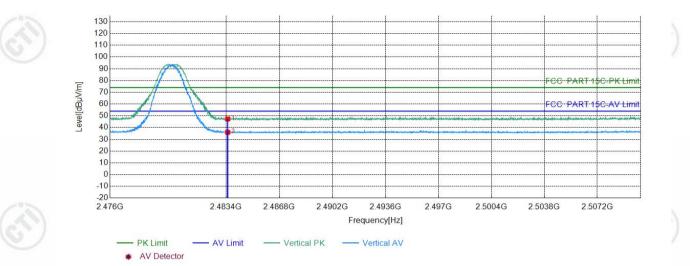












Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com











Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.76	47.33	74.00	26.67	PASS	Vertical	PK
2	2483.5000	6.57	29.41	35.98	54.00	18.02	PASS	Vertical	AV



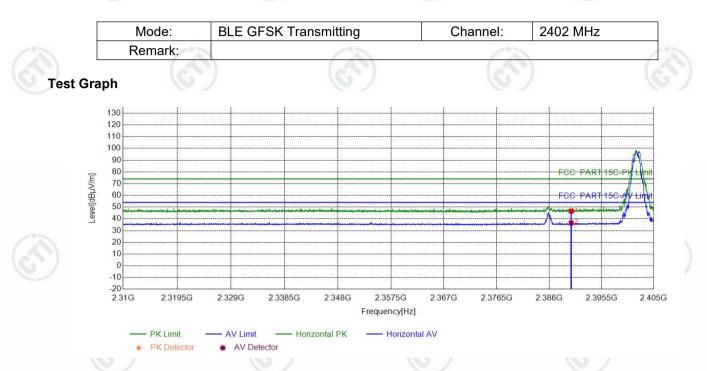










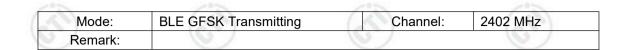


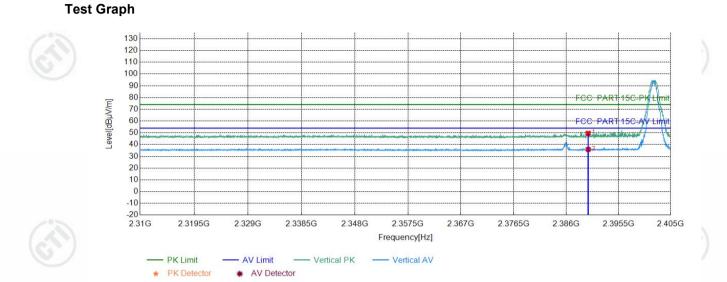





Diagnostic board 2:

#### Test plot as follows:





	Susp	ected List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
G	1	2390.0000	5.77	40.80	46.57	74.00	27.43	PASS	Horizontal	PK
0	2	2390.0000	5.77	30.67	36.44	54.00	17.56	PASS	Horizontal	AV











Sus	pected List			-	-				
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	43.79	49.56	74.00	24.44	PASS	Vertical	PK
2	2390.0000	5.77	30.11	35.88	54.00	18.12	PASS	Vertical	AV



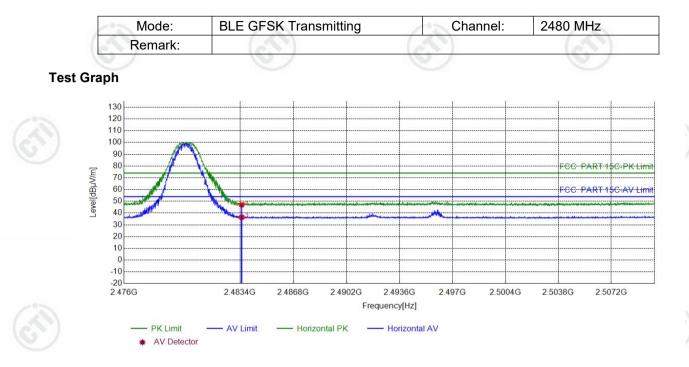















Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com







Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5000	6.57	40.45	47.02	74.00	26.98	PASS	Horizontal	PK	
2	2483.5000	6.57	29.87	36.44	54.00	17.56	PASS	Vertical	AV	











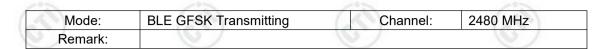




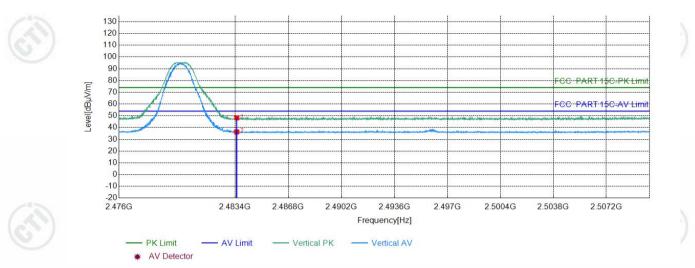

















#### Test Graph



Susp	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5000	6.57	41.70	48.27	74.00	25.73	PASS	Vertical	PK		
2	2483.5000	6.57	29.75	36.32	54.00	17.68	PASS	Vertical	AV		

#### Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor





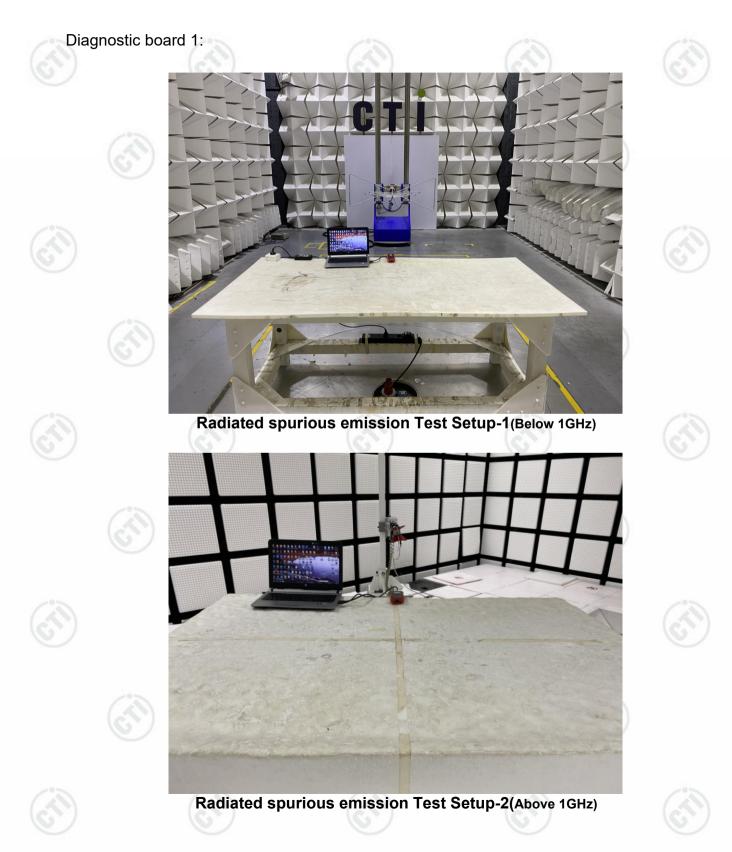


Page 36 of 63

#### Appendix A 8

Refer to Appendix: Bluetooth LE of EED32N80682001.








Page 37 of 63

## PHOTOGRAPHS OF TEST SETUP

Test model No.:DBScar VII







Page 38 of 63

#### Diagnostic board 2:



Radiated spurious emission Test Setup-1(Below 1GHz)



Radiated spurious emission Test Setup-2(Above 1GHz)















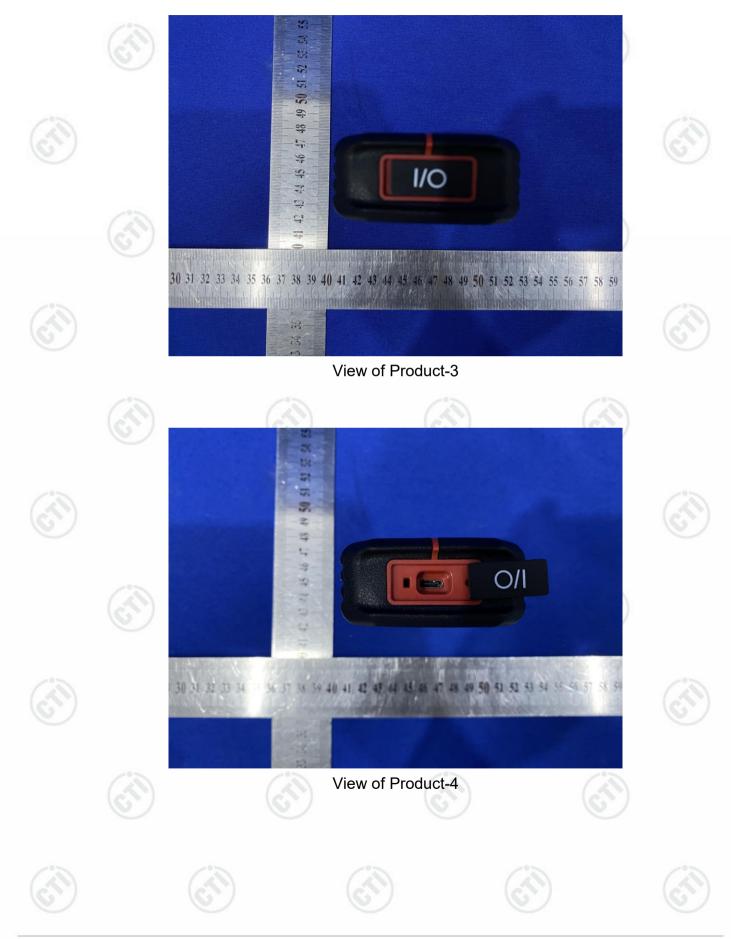






Page 40 of 63

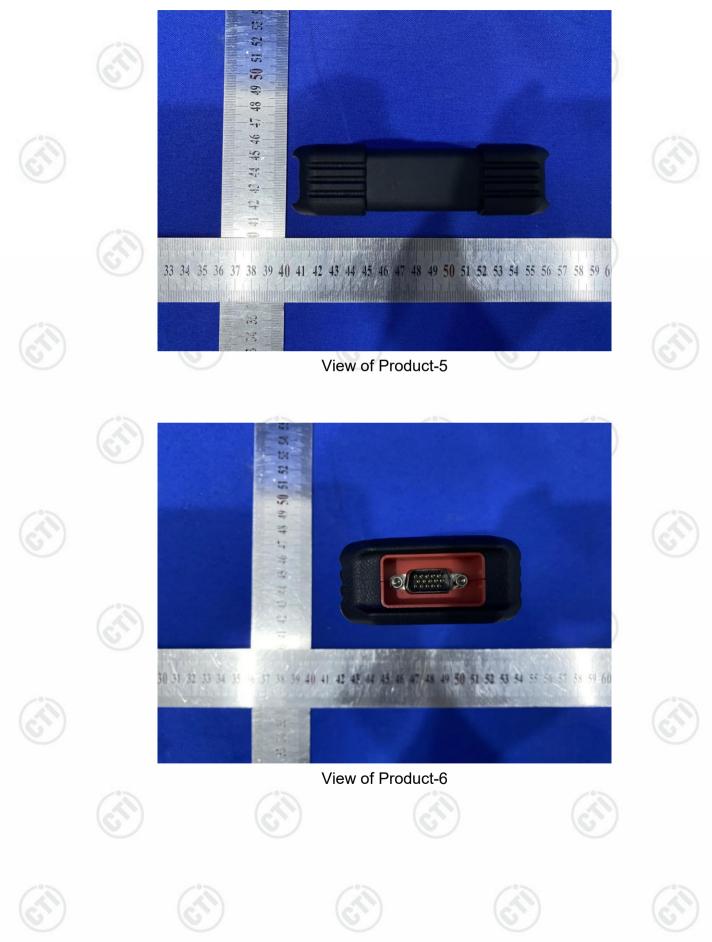
# PHOTOGRAPHS OF EUT Constructional Details


Test model No.:DBScar VII







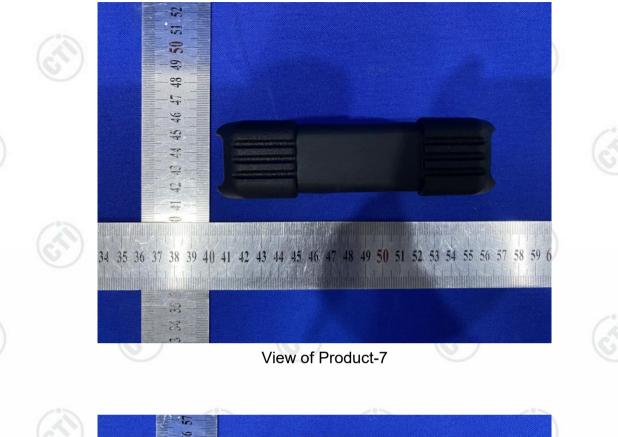









### Page 42 of 63




Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com





## Page 43 of 63





#### View of Product-8







## Page 44 of 63









### Page 45 of 63



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com