

FCC Co-Location Test Report

FCC ID	:	XU8TEW825DAP
Equipment	:	AC1750 Dual Band PoE Access Point
Model No.	:	TEW-825DAP
Multiple Listing	:	Refer to item 1.1.1 for more details
Brand Name	:	TRENDnet
Applicant	:	TRENDnet, Inc.
Address	:	20675 Manhattan Place, Torrance, CA 90501, USA
Standard	:	47 CFR FCC Part 15.247 47 CFR FCC Part 15.407
Received Date	:	Jan. 14, 2016
Tested Date	:	Jan. 19 ~ Jan. 27, 2016

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Approved by:

Long Chem

Along Cheld/ Assistant Manager Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	.5
1.1	Information	
1.2	The Equipment List	
1.3	Test Standards	.7
1.4	Measurement Uncertainty	.7
2	TEST CONFIGURATION	.8
2.1	Testing Condition	
2.2	The Worst Test Modes and Channel Details	.8
3	TRANSMITTER TEST RESULTS	.9
3.1	Unwanted Emissions into Restricted Frequency Bands	.9
4	TEST LABORATORY INFORMATION	17

Release Record

Report No.	Version	Description	Issued Date
FR621702CO	Rev. 01	Initial issue	Oct. 03, 2016
FR621702CO	Rev. 02	Modified KDB No. and FCC site registration No.	Dec. 21, 2016

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.247(d)			
15.407(b)	Radiated Emissions	[dBuV/m at 3m]: 38.73MHz 38.22 (Margin -1.78dB) – QP	Pass
15.209			

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description			
	TEW-825DAP	AC1750 Dual Band PoE Access Point	Main test model			
	TEW-825DAP3K	AC1750 Dual Band PoE Preconfigured Access Point Kit				
TRENDnet	TEW-825DAP2K	AC1750 Dual Band PoE Preconfigured Access Point Kit	Markating purpage			
	TEW-825DAP3KAC	AC1750 Dual Band Wireless Controller Kit	Marketing purpose			
	TEW-825DAP2KAC	AC1750 Dual Band Wireless Controller Kit				
+ All models a	+ All models are electrically identical, different model names are for marketing purpose.					

1.1.2 Specification of the Equipment under Test (EUT)

Operating Frequency	802.11b/g/n: 2412 MHz ~ 2462 MHz 802.11a/n/ac: 5180 MHz ~ 5240 MHz; 5745 ~ 5825 MHz
Modulation Type	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n/ac: OFDM (BPSK / QPSK / 16QAM / 64QAM/256QAM)

1.1.3 Antenna Details

Ant. No. Type		Connector	Antenna Gain (dBi)			
		Connector	2400~2483.5MHz	5150~5250 MHz	5725~5850 MHz	
1	PIFA	N/A	4	4	4	

1.1.4 Accessories

	Accessories			
No.	Equipment	Description		
1	AC adapter 1	Brand Name: CWT Model Name: 2ABB018F US I/P: 100-240Vac, 50-60Hz, 0.6A O/P: 12Vdc, 1.5A DC 1.2m non-shielded cable w/o core		
2	AC adapter 2	Brand Name: AMIGO Model Name: AMS115-1201500FU I/P: 100-240Vac, 50-60Hz, 0.8A O/P: 12Vdc, 1.5A DC 1.2m non-shielded cable w/o core		

1.2 The Equipment List

Test Item	Radiated Emission					
Test Site	966 chamber 2 / (03CH02-WS)					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until	
Spectrum Analyzer	R&S	FSV40	101499	Dec. 17, 2015	Dec. 16, 2016	
Receiver	R&S	ESR3	101657	Jan. 12, 2016	Jan. 11, 2017	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-523	Nov. 09, 2015	Nov. 08, 2016	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Oct. 07, 2015	Oct. 06, 2016	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2015	Nov. 03, 2016	
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 16, 2015	Nov. 15, 2016	
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 10, 2015	Dec. 09, 2016	
Preamplifier	Burgeon	BPA-530	100218	Nov. 03, 2015	Nov. 02, 2016	
Preamplifier	Agilent	83017A	MY39501309	Sep. 22, 2015	Sep. 21, 2016	
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 10, 2015	Dec. 09, 2016	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 10, 2015	Dec. 09, 2016	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 10, 2015	Dec. 09, 2016	
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-003	Dec. 10, 2015	Dec. 09, 2016	
LF cable 10M	EMCC	CFD400-E	CFD400-001	Dec. 10, 2015	Dec. 09, 2016	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	
Note: Calibration Inter	val of instruments listed	d above is one year.			•	

1.3 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 47 CFR FCC Part 15.407 ANSI C63.10-2013 FCC KDB 558074 D01 DTS Meas Guidance v03r05 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03 FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01 FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty			
Parameters	Uncertainty		
Radiated emission \leq 1GHz	±3.87 dB		
Radiated emission > 1GHz	±5.60 dB		

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	03CH02-WS	19°C / 60%	Morgan Chen

➢ FCC site registration No.: TW2732

➢ IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration	
Radiated Emissions ≤1GHz	2.4G 11n 40 + 5G 11ac VHT40	CH6 + CH46	6Mbps + MCS 0	1, 2	
Radiated Emissions >1GHz	2.4G 11n 40 + 5G 11ac VHT40	CH6 + CH46	6Mbps + MCS 0	1	
2. The following power supp	NOTE: 1. The selected channel is the maximum power channel of Wi-Fi mode. 2. The following power supplies are used on this EUT: 1) Configuration 1: POE mode.				

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

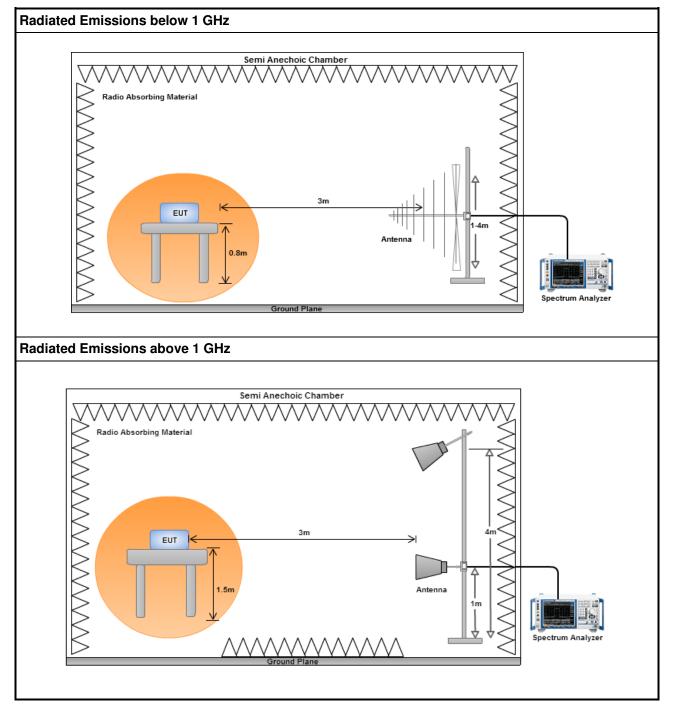
	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

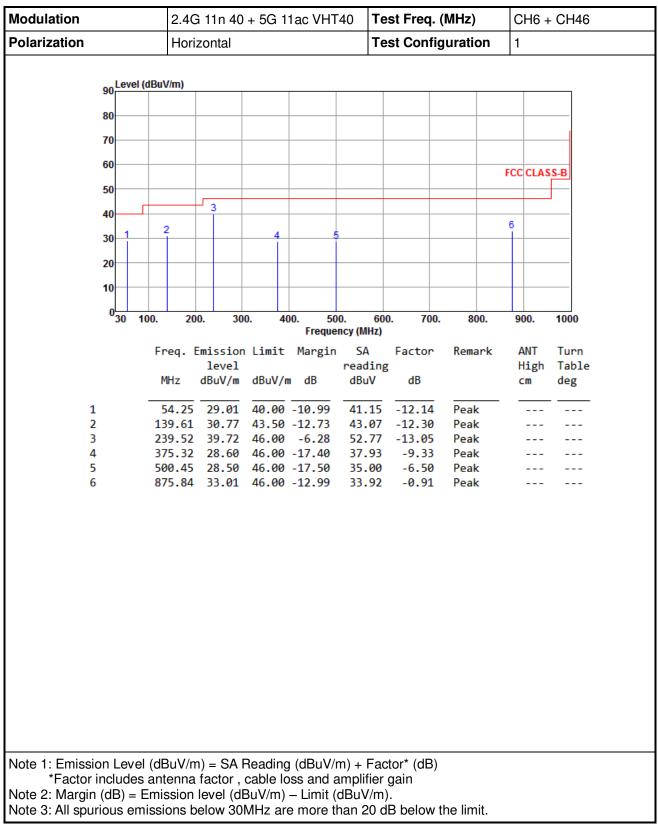
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.1.2 Test Procedures


- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

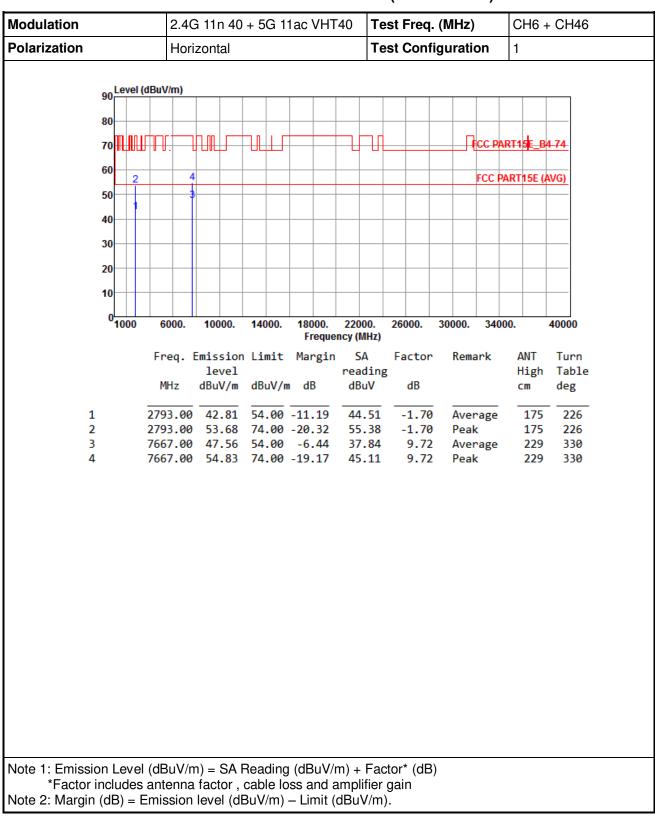
Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.



3.1.3 Test Setup

Modulation	2.4G 11n 4	0 + 5G 11ac VHT	40 T	est Freq. (MHz)	CH6 + CH46		
Polarization	Vertical		Т	est Config	uration	1		
Lovel (r	(Du)//m)							
90 Level (c								
80								
70								
60						FCC CLAS	S-B	
50								
40 2 3	5						-	
40	4 Ĭ							
30		6						
20								
10								
0 <mark></mark>	0. 200. 3	00. 400. 50	0. 6	00. 700.	800.	900.	1000	
			ncy (MHz)					
		n Limit Margin		Factor	Remark	ANT	Turn	
	level		readin	-		High	Table	
	MHz dBuV/n	ı dBuV∕m dB	dBuV	dB		CM	deg	
1	38.73 38.22	40.00 -1.78	50.20	-11.98	QP	122	12	
2		40.00 -1.88	49.80		QP	100	280	
3	99.84 40.04		56.71		Peak			
4 5		43.50 -12.19) -11.98 -12.95	Peak Peak			
6		46.00 -17.09	38.24		Peak			
Ŭ	575152 20153	10100 17105	5012		- Cuit			
ote 1: Emission Level								
*Factor includes								
ote 2: Margin (dB) = E	mission level (3BuV/m) – Limit (dBuV/m	1). dD halas t	n n Harris			
ote 3: All spurious emi	ssions below 3	JIVIEZ are more tr	ian 20	u poiou au	ne imit.			



Modulation		2.4G	11n 40	+ 5G 1	1ac VHT	40	Tes	st Freq. (CH6 + CH46		
Polarization		Horiz	zontal			-	Tes	t Config	juration	2	
	Lovol (dE	201/021									
90	Devel (dE	ouvillij									
8	0						_				
7											
6	0						+			FCC CLAS	S-B
5	0						_				
			<u>_</u>				-				6
40		1		3	4		1	5			
3	0						_				
20											
20											
10	0			_							
	0 30 100	200	200)0. <u>5</u> 0	•		700	000		1000
	30 100	. 20). 30	J. 41		o. ncy (MH	600. z)	700.	800.	900.	1000
		Freq. E	mission	Limit	Margin	SA		Factor	Remark	ANT	Turn
			level			readi				High	Table
		MHz	dBuV/m	dBuV/n	ı dB	dBuV	/	dB		cm	deg
1		125.06	36.04	43.50	-7.46	49.6	1	-13.57	Peak		
2			42.52			55.4		-12.97	QP	118	258
3		324.88	33.67	46.00	-12.33	44.2		-10.57	Peak		
4			33.83			40.3		-6.50	Peak		
5					-10.33				Peak		
ь	1	000.00	40.34	54.00	-13.66	39.6		0.67	Peak		
Note 1: Emission	Level (dBuV/m) = SA F	Reading	ı (dBuV/r	n) + F	act	or* (dB)			
*Factor inc											
Note 2: Margin (d	IB) = En	nission	ievel (dE	SuV/m)	– Limit (dBuV/	m).) holow +	ha limit		
Note 3: All spurio	us emis	SIONS D	eiow 301	vinz ar	e more tr	an 20	i aF	b wolea d	ne ilmit.		

Modulation	2.40	à 11n 40	+ 5G 1	1ac VHT	40	Tes	st Freq. (CH6 + CH46		
Polarization	Verti	cal			٦	Tes	st Config	guration	2	
Laval	dDu\//m									
90	ubuv/III)									
80						_				
70										
60									FCC CLAS	SS-B
50						_				
40 1										
	2 3	4	5				6			
30										
20						-				
10						_				
0 <mark></mark>	00. 20	0. 30	0. 40)0. 50		600.	. 700.	800.	900.	1000
					ncy (MH)		- .			-
	Freq. 1	mission: level	Limit	Margin	SA readi		Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/n	n dB	dBuV		dB		Cm	deg
						_				
1		35.91			47.8		-11.93	Peak		
2 3	125.06 173.56	34.50 35.71	43.50 43.50		48.0		-13.57 -12.45	Peak Peak		
4				-12.75			-12.95	Peak		
5				-15.75			-10.57	Peak		
6	624.61	33.05	46.00	-12.95	37.3	34	-4.29	Peak		
Note 1: Emission Leve										
*Factor includes	antenna	factor,	cable lo	ss and a	mplifie	er g	gain			
Note 2: Margin (dB) =	mission	level (dl	uV/m)	– Limit (dBuV/I	m).	bolow	ha limit		
Note 3: All spurious em	iissions b	elow 30	whz ar	e more th	ian 20) dF	t woisa a	ne imit.		

3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Modulation	2.4	2.4G 11n 40 + 5G 11ac VHT40								Test Freq. (MHz)				
Polarization		Vertical Test Configuration 1												
90 ^L	.evel ((dBuV/m)												
80														
70												CC PAF	кт15 Е_ В	4-74
60-														
50	2		4									FCC PA	RT15E (/	AVG)
40-														
30-														
20-														
10														
0	000	6000.	100	000.	140	00.	18000.	220	00.	26000.	30000.	3400	0.	40000
							Freque							
		Freq.		sion vel	Lir	nit	Margin		A ding	Factor	Rem	ark	ANT High	Turn Table
		MHz			dBu	uV/n	ı dB		uV	dB			cm	deg
1		2793.00	41	.95	54	.00	-12.05	43	.65	-1.70	Ave	rage	322	299
2		2793.00	52	.92	74	.00	-21.08	54	.62	-1.70	Pea	k	322	299
3 4							-7.15 -20.05		.13	9.72 9.72		rage k	311 311	
					_									
Note 1: Emission L *Factor inclu)			

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd

St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—