

FCC Test Report

FCC ID : XU8TEW813DRU

Equipment : AC1200 Dual Band Wireless Router

Model No. : TEW-813DR, TEW-813DRU

Brand Name : TRENDnet

Applicant : TRENDnet, Inc.

Address : 20675 Manhattan Place, Torrance, CA 90501,

USA

Standard : 47 CFR FCC Part 15.247

Received Date : Jul. 03, 2013

Tested Date : Sep. 02 ~ Sep. 14, 2013

Mar. 20, 2014

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Iac-MRA

Page: 1 of 57

Report No.: FR370301AI

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	
1.5	Test Standards	10
1.6	Measurement Uncertainty	11
2	TEST CONFIGURATION	12
2.1	Testing Condition	12
2.2	The Worst Test Modes and Channel Details	12
3	TRANSMITTER TEST RESULTS	13
3.1	Conducted Emissions	13
3.2	6dB and Occupied Bandwidth	18
3.3	RF Output Power	
3.4	Power Spectral Density	23
3.5	Unwanted Emissions into Restricted Frequency Bands	25
3.6	Unwanted Emissions into Non-Restricted Frequency Bands	49
4	TEST LABORATORY INFORMATION	57

Release Record

Report No.	Version	Description	Issued Date
FR370301AI	Rev. 01	Initial issue	Apr. 23, 2014

Report No.: FR370301AI Page: 3 of 57

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.152MHz 55.51 (Margin -10.40dB) - QP	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 11490.00MHz	Pass
15.209	INdulated Lillissions	50.86 (Margin -3.14dB) - AV	rass
15.247(b)(3)	Fundamental Emission Output Power	Power [dBm]: 25.26	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR370301AI Page: 4 of 57

General Description 1

Information 1.1

The following models are provided to this EUT.

Brand Name	Brand Name Model Name Product Name		Description
TDENDnot	TEW-813DR		w/o USB port.
TRENDnet	TEW-813DRU	AC1200 Dual Band Wireless Router	with USB port.

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
IEEE Std. 802.11	Frequency Range (MHz)	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS	
а	5725-5850	5745-5825	149-165 [5]	2	6-54 Mbps	
n (HT20)	5725-5850	5745-5825	149-165 [5]	2	MCS 0-15	
n (HT40)	5725-5850	5755-5795	151-159 [2]	2	MCS 0-15	
ac (VHT20)	5725-5850	5745-5825	149-165 [5]	2	MCS 0-8	
ac (VHT40)	5725-5850	5755-5795	151-159 [2]	2	MCS 0-9	
ac (VHT80)	5725-5850	5775	155 [1]	2	MCS 0-9	

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: IEEE802.11ac is draft version.

1.1.2 Antenna Details

Ant. No.	Туре	Gain (dBi)	Connector	Remark
1	PCB	2	Ipex	
2	PCB	2	Ipex	

1.1.3 EUT Operational Condition

Supply Voltage		☐ DC	
Type of DC Source	☐ Internal DC supply	☐ External DC adapter	☐ From Host

Report No.: FR370301AI Page: 5 of 57

1.1.4 Accessories

	Accessories					
For T	For TEW-813DRU					
FOI II	-W-013DKU					
1	AC adapter 1	Brand Name: AMIGO Model Name: AMS3-1202000FU Power Rating: I/P: 100-240Vac, 50-60Hz, 0.8A O/P: 12Vdc, 2.0A Power Line: DC 1.2m non-shielded cable w/o core.				
2	AC adapter 2	Brand Name: OEM Model Name: ADS0271-W 120200 Power Rating: I/P: 100-240Vac, 50-60Hz, 0.6A O/P: 12Vdc, 2.0A Power Line: DC 1.22m non-shielded cable w/o core.				
For TE	EW-813DR					
No.	Equipment	Description				
3	AC adapter 3	Brand Name: AMIGO Model Name: AMS9-1201000FU2 Power Rating: I/P: 100-240Vac, 50-60Hz, 0.5A O/P: 12Vdc, 1.0A Power Line: DC 1.22m non-shielded cable w/o core.				
4	AC adapter 4	Brand Name: FRECOM Model Name: F12W-120100SPAU Power Rating: I/P: 100-240Vac, 50-60Hz, 0.3A O/P: 12Vdc, 1.0A Power Line: DC 1.2m non-shielded cable w/o core.				

1.1.5 Channel List

Frequency	band (MHz)	5725 <i>-</i>	~5850	
802.11 a / H	T20 / VHT20	HT40 / VHT40		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
149	5745	151	5755	
153	153 5765		5795	
157	5785	VH	Г 80	
161	5805	155	5775	
165	5825			

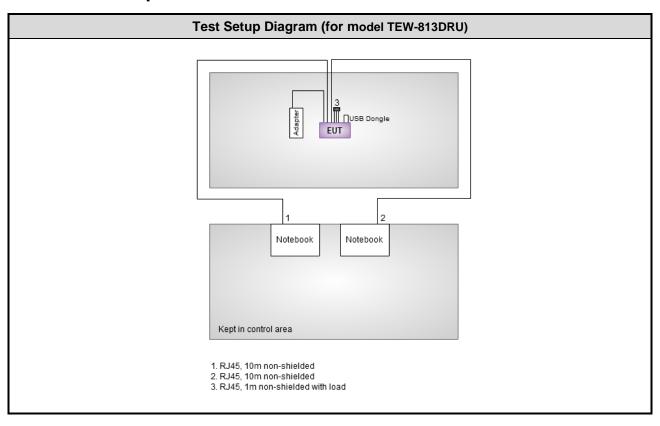
Report No.: FR370301AI Page: 6 of 57

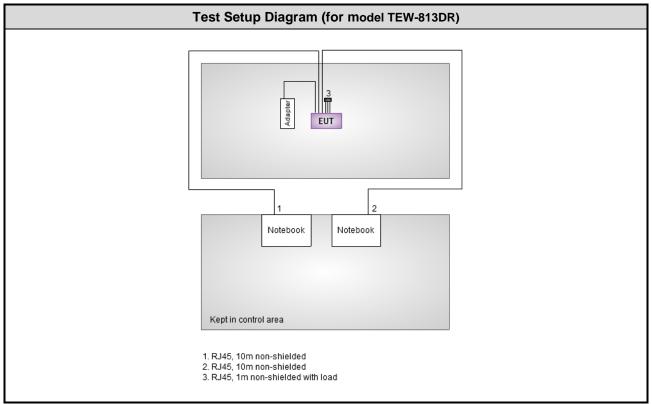
1.1.6 Test Tool and Duty Cycle

Test Tool	MP_TEST, V1.3.8.0				
	Mode	Duty cycle (%)	Duty factor (dB)		
	11a	90.70%	0.42		
Duty Cycle and Duty Factor	VHT20	90.59%	0.43		
	VHT40	79.44%	1.00		
	VHT80	89.17%	0.50		

1.1.7 Power Setting

Modulation Mode	Test Frequency (MHz)	Power Set
11a	5745	60/60
11a	5785	63/63
11a	5825	63/63
HT20	5745	58/58
HT20	5785	63/63
HT20	5825	63/63
HT40	5755	51/51
HT40	5795	63/63
VHT20	5745	58/58
VHT20	5785	63/63
VHT20	5825	63/63
VHT40	5755	51/51
VHT40	5795	63/63
VHT80	5775	47/47


1.2 Local Support Equipment List


	Support Equipment List						
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)	
1	Notebook	DELL	E6430		DoC	RJ45 10m non-shielded cable w/o core.	
2	Notebook	DELL	E6430		DoC	RJ45 10m non-shielded cable w/o core.	
3	USB Dongle	Transcend 8G					

Report No.: FR370301AI Page: 7 of 57

1.3 Test Setup Chart

Report No.: FR370301AI Page: 8 of 57

1.4 The Equipment List

Conducted Emission									
Conduction room 1 / (C	Conduction room 1 / (CO01-WS)								
Sep. 24, 2013	Sep. 24, 2013								
Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until					
R&S	ESCS 30	100169	Oct. 15, 2013	Oct. 14, 2014					
SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-667	Nov. 23, 2013	Nov. 22, 2014					
SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-666	Dec. 04, 2013	Dec. 03, 2014					
Woken	CFD200-NL	CFD200-NL-001	Apr. 24, 2013	Apr. 23, 2014					
NA	50	04	Apr. 22, 2013	Apr. 21, 2014					
	Sep. 24, 2013 Manufacturer R&S SCHWARZBECK MESS-ELEKTRONIK SCHWARZBECK MESS-ELEKTRONIK Woken	Conduction room 1 / (CO01-WS) Sep. 24, 2013 Manufacturer Model No. R&S ESCS 30 SCHWARZBECK MESS-ELEKTRONIK Schwarzbeck 8127 SCHWARZBECK MESS-ELEKTRONIK Schwarzbeck 8127 Woken CFD200-NL	Conduction room 1 / (CO01-WS) Sep. 24, 2013 Model No. Serial No. R&S ESCS 30 100169 SCHWARZBECK MESS-ELEKTRONIK Schwarzbeck 8127 8127-667 SCHWARZBECK MESS-ELEKTRONIK Schwarzbeck 8127 8127-666 Woken CFD200-NL CFD200-NL-001	Conduction room 1 / (CO01-WS) Sep. 24, 2013 Manufacturer Model No. Serial No. Calibration Date R&S ESCS 30 100169 Oct. 15, 2013 SCHWARZBECK MESS-ELEKTRONIK Schwarzbeck 8127 8127-667 Nov. 23, 2013 SCHWARZBECK MESS-ELEKTRONIK Schwarzbeck 8127 8127-666 Dec. 04, 2013 Woken CFD200-NL CFD200-NL-001 Apr. 24, 2013					

Test Item	Radiated Emission below 1GHz								
Test Site	966 chamber 2 / (03CH02-WS)								
Test date	Sep. 13, 2013								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
Spectrum Analyzer	R&S	FSV40	101499	Jan. 28, 2013	Jan. 27, 2014				
Receiver	R&S	ESR3	101657	Jan. 30,2013	Jan. 29, 2014				
Bilog Antenna	ScHwarzbeck	VULB9168	VULB9168-524	Jan. 11, 2013	Jan. 10, 2014				
Amplifier	Burgeon	BPA-530	100218	Dec. 09, 2013	Dec. 08, 2014				
Amplifier	Agilent	83017A	MY39501309	Dec. 09, 2013	Dec. 08, 2014				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 25, 2012	Dec. 24, 2013				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 25, 2012	Dec. 24, 2013				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 25, 2012	Dec. 24, 2013				
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-003	Dec. 25, 2012	Dec. 24, 2013				
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-004	Dec. 25, 2012	Dec. 24, 2013				
Note: Calibration Inter	val of instruments listed	l above is one year.							

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Test date	Sep. 14, 2013				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 29, 2012	Nov. 28, 2013
Power Meter	Anritsu	ML2495A	1241002	Oct. 15, 2012	Oct. 14, 2013
Power Sensor	Anritsu	MA2411B	1027366	Oct. 24, 2012	Oct. 23, 2013
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 13, 2014

Report No.: FR370301AI Page: 9 of 57

Test Item	Radiated Emission above 1GHz								
Test Site	966 chamber 2 / (03CH02-WS)								
Test date	Mar. 20, 2014								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
Spectrum Analyzer	R&S	FSV40	101499	Feb. 08, 2014	Feb. 07, 2015				
Receiver	R&S	ESR3	101657	Jan. 18, 2014	Jan. 17, 2015				
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-524	Jan. 08, 2014	Jan. 07, 2015				
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Jan. 07, 2014	Jan. 06, 2015				
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Dec. 27, 2013	Dec. 26, 2014				
Preamplifier	Burgeon	BPA-530	100218	Dec. 09, 2013	Dec. 08, 2014				
Preamplifier	Agilent	83017A	MY39501309	Dec. 09, 2013	Dec. 08, 2014				
Preamplifier	EM	EM18G40G	060572	Jun. 20, 2013	Jun. 19, 2014				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 17, 2013	Dec. 16, 2014				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 17, 2013	Dec. 16, 2014				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 17, 2013	Dec. 16, 2014				
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-003	Dec. 17, 2013	Dec. 16, 2014				
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-004	Dec. 17, 2013	Dec. 16, 2014				
Note: Calibration Inter	val of instruments liste	d above is one year.			•				

Test Item	Radiated Emission ab	Radiated Emission above 1GHz							
Test Site	966 chamber 2 / (03C	966 chamber 2 / (03CH02-WS)							
Test date	Mar. 20, 2014	Mar. 20, 2014							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 15, 2012	Nov. 14, 2014				
Amplifier	EM	EM18G40G	060572	Jun. 20, 2013	Jun. 19, 2015				

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

ANSI C63.10-2009

FCC KDB 558074 D01 DTS Meas Guidance v03r01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

Report No.: FR370301AI Page: 10 of 57

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty							
Parameters	Uncertainty						
Bandwidth	±35.286 Hz						
Conducted power	±0.536 dB						
Frequency error	±35.286 Hz						
Temperature	±0.3 °C						
Conducted emission	±2.946 dB						
AC conducted emission	±2.43 dB						
Radiated emission	±2.49 dB						

Report No.: FR370301AI Page: 11 of 57

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	23°C / 53%	Peter Lin
Radiated Emissions	03CH02-WS	23°C / 68% 24°C / 63%	Anderson Hong
RF Conducted	TH01-WS	24°C / 61%	Brad Wu

FCC site registration No.: 657002IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration
Conducted Emissions	VHT20	5785	MCS 0	1, 2
Radiated Emissions ≤1GHz	VHT20	5785	MCS 0	1, 2
	11a	5745 / 5785 / 5825	6 Mbps	
	HT20	5745 / 5785 / 5825	MCS 0	
RF Output Power	HT40	5755 / 5795	MCS 0	4
Tri Odiput i owei	VHT20	5745 / 5785 / 5825	MCS 0	1
	VHT40	5755 / 5795	MCS 0	
	VHT80	5775	MCS 0	
Dedicted Federica 4011	11a	5745 / 5785 / 5825	6 Mbps	
Radiated Emissions >1GHz 6dB bandwidth	VHT20	5745 / 5785 / 5825	MCS 0	4
Power spectral density	VHT40	5755 / 5795	MCS 0	1
,	VHT80	5775	MCS 0	

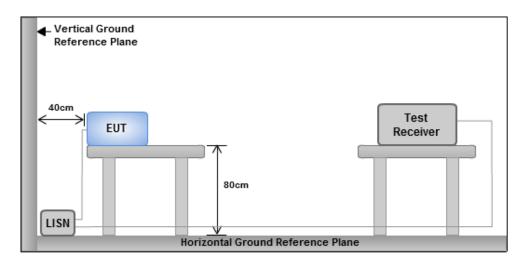
NOTE:

- 1. Adapter 1 & 2 had been pretested and found that adapter 2 was the worst for model TEW-813DRU for final testing.
- 2. Adapter 3 & 4 had been pretested and found that adapter 4 was the worst for model TEW-813DR for final testing.
- 3. Two samples had been tested on the following test configurations.
 - 1) Configuration 1: Model TEW-813DRU (with USB port), with adapter 2.
 - 2) Configuration 2: Model TEW-813DR (w/o USB port), with adapter 4.

Report No.: FR370301AI Page: 12 of 57

3 Transmitter Test Results

3.1 Conducted Emissions

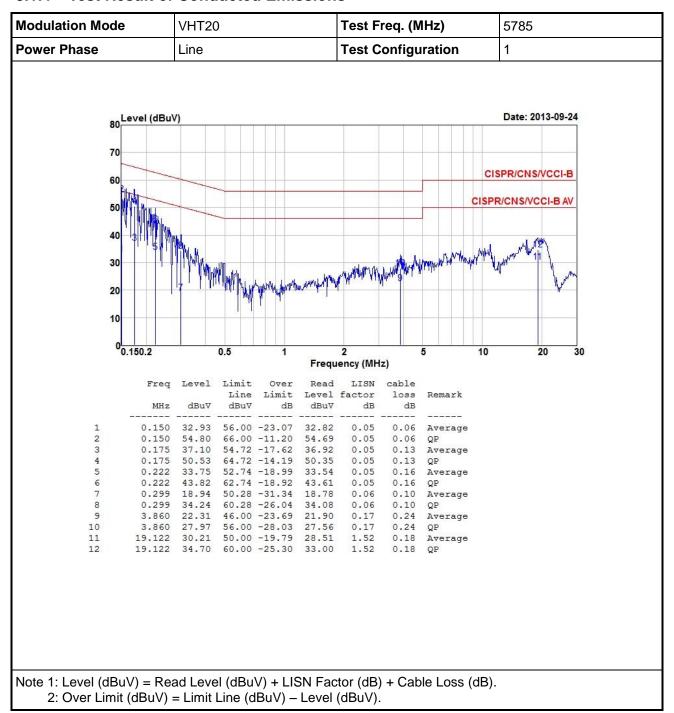

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit								
Frequency Emission (MHz) Quasi-Peak Average								
0.15-0.5	66 - 56 *	56 - 46 *						
0.5-5	56	46						
5-30	60	50						
Note 1: * Decreases with the logarith	Note 1: * Decreases with the logarithm of the frequency.							

3.1.2 Test Procedures

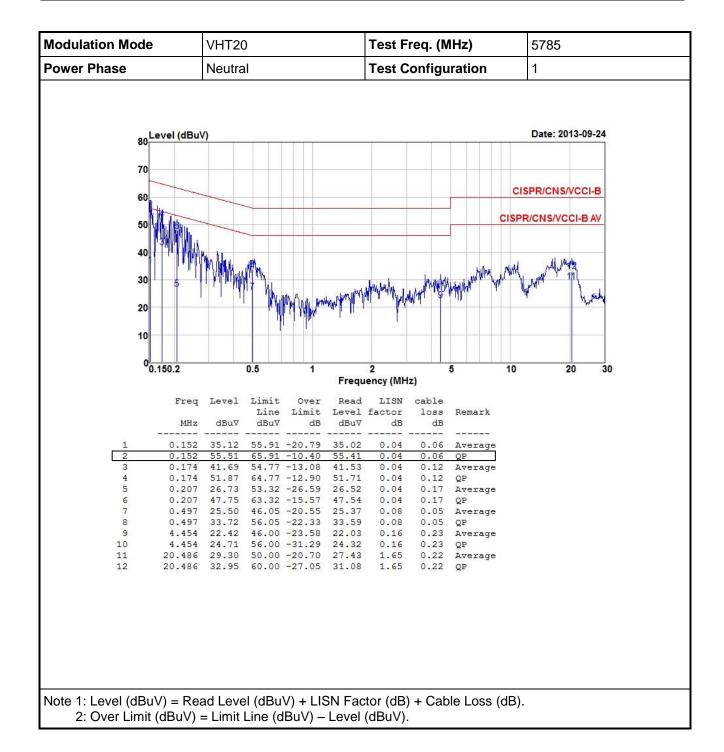
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup


Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

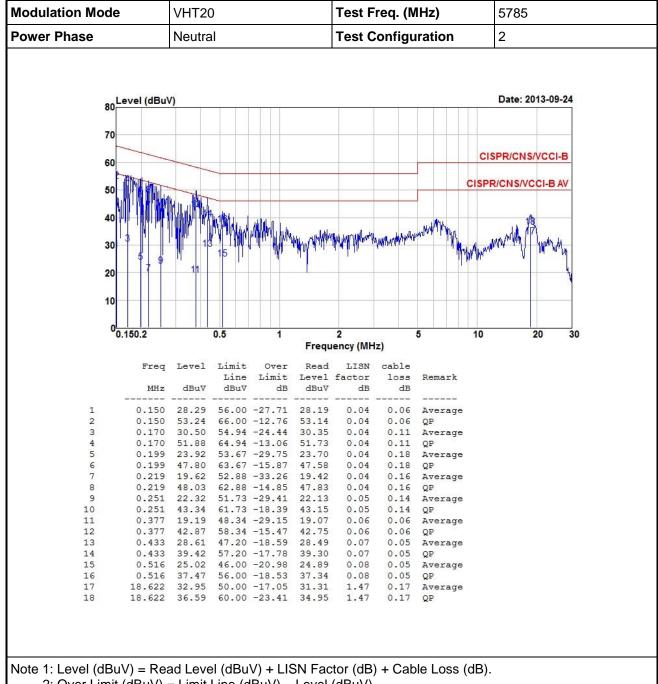
Report No.: FR370301AI Page: 13 of 57



3.1.4 Test Result of Conducted Emissions

Report No.: FR370301AI Page: 14 of 57

Report No.: FR370301AI Page: 15 of 57



Modulation Mo	oae	VHT20)			Test F	req. (N	/IHz)	5785	
Power Phase		Line				Test C	onfigu	ıration	2	
	80 Level (dBu	V)							Date: 2	2013-09-24
	70								CISPR/CN:	S/VCCI-B
	60								Marine Services	y - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	50, 7							CI	SPR/CNS/V	CCI-B AV
	20	1 1 1		1		2		5 1	Y	
	0.150.2		0.5			2		0 1	0	20 30
	0.150.2		0.5		Frequ	ency (MH		5 1	0	20 30
	0.150.2		Limit	Over	Read	ency (MH	z) cable		0	20 30
	Freq		Limit	Over Limit dB	Read Level dBuV	LISN factor	z) cable loss dB	Remark	0	20 30
1	Freq	Level dBuV	Limit Line	Over Limit dB	Read Level dBuV	LISN factor	z) cable loss dB	Remark	0	20 30
2	Freq MHz 0.165 0.165	Level dBuV 27.91 49.23	Limit Line dBuV 55.21 65.21	Over Limit dB -27.30 -15.98	Read Level dBuV 27.76 49.08	LISN factor dB 0.05 0.05	cable loss dB 0.10 0.10	Remark Average QP	0	20 30
2 3	Freq MHz 0.165 0.165 0.175	dBuV 27.91 49.23 42.91	Limit Line dBuV 55.21 65.21 54.72	Over Limit dB -27.30 -15.98 -11.81	Read Level dBuV 	LISN factor dB	cable loss dB 0.10 0.10 0.13	Remark Average QP Average	0	20 30
2 3 4	Freq MHz 0.165 0.165 0.175 0.175	Level dBuV 27.91 49.23 42.91 50.89	Limit Line dBuV 55.21 65.21 54.72 64.72	Over Limit dB -27.30 -15.98 -11.81 -13.83	Read Level dBuV 27.76 49.08 42.73 50.71	LISN factor dB 0.05 0.05 0.05 0.05	cable loss dB 0.10 0.10 0.13 0.13	Remark Average QP Average QP	0	20 30
2 3 4 5	MHz 0.165 0.165 0.175 0.175 0.175	Level dBuV 27.91 49.23 42.91 50.89 29.04	Limit Line dBuV 55.21 65.21 54.72 64.72 53.80	Over Limit dB -27.30 -15.98 -11.81 -13.83 -24.76	Read Level dBuV 27.76 49.08 42.73 50.71 28.82	LISN factor dB	cable loss dB 0.10 0.10 0.13 0.13 0.17	Remark Average QP Average QP Average	0	20 30
2 3 4	MHz 0.165 0.165 0.175 0.175 0.175	dBuV 27.91 49.23 42.91 50.89 29.04 49.76	Limit Line dBuV 55.21 65.21 54.72 64.72 53.80 63.80	Over Limit dB -27.30 -15.98 -11.81 -13.83 -24.76	Read Level dBuV 27.76 49.08 42.73 50.71 28.82 49.54	LISN factor dB	cable loss dB 0.10 0.13 0.13 0.17 0.17	Remark Average QP Average QP Average	0	20 30
2 3 4 5 6	MHz 0.165 0.165 0.175 0.175 0.195 0.195	dBuV 27.91 49.23 42.91 50.89 29.04 49.76	Limit Line dBuV 55.21 65.21 54.72 64.72 53.80 63.80 52.44	Over Limit dB -27.30 -15.98 -11.81 -13.83 -24.76 -14.04 -29.21	Read Level dBuV 27.76 49.08 42.73 50.71 28.82 49.54 23.03	LISN factor dB	cable loss dB 0.10 0.13 0.13 0.17 0.17	Remark Average QP Average QP Average QP Average Average	0	20 30
2 3 4 5 6 7	Freq MHz 0.165 0.165 0.175 0.175 0.195 0.195 0.230 0.230	dBuV 27.91 49.23 42.91 50.89 29.04 49.76 23.23	Limit Line dBuV 55.21 65.21 54.72 64.72 53.80 63.80 63.80 52.44 62.44	Over Limit dB -27.30 -15.98 -11.81 -13.83 -24.76 -14.04 -29.21 -15.78	Read Level dBuV 27.76 49.08 42.73 50.71 28.82 49.54 23.03 46.46	LISN factor dB	cable loss dB 0.10 0.13 0.13 0.17 0.15 0.15	Remark Average QP Average QP Average QP Average Average	0	20 30
2 3 4 5 6 7 8 9	Freq MHz 0.165 0.165 0.175 0.175 0.195 0.195 0.230 0.230 0.270 0.270	dBuV 	Limit Line dBuV 55.21 65.21 54.72 64.72 53.80 63.80 52.44 62.44 51.12 61.12	Over Limit dB -27.30 -15.98 -11.81 -13.83 -24.76 -14.04 -29.21 -15.78 -31.17 -15.01	Read Levell dBuV 27.76 49.08 42.73 50.71 28.82 49.54 23.03 46.46 19.77 45.93	LISN factor dB	cable loss dB 0.10 0.10 0.13 0.17 0.15 0.15 0.12 0.12	Remark Average QP Average QP Average QP Average QP Average QP	0	20 30
2 3 4 5 6 7 8 9 10	MHz 0.165 0.165 0.175 0.175 0.195 0.195 0.230 0.230 0.230 0.270 0.270	dBuV 27.91 49.23 42.91 50.89 29.04 49.76 23.23 46.66 19.95 46.11 23.04	Limit Line dBuV 55.21 65.21 54.72 53.80 63.80 52.44 62.44 51.12 47.86	Over Limit dB -27.30 -15.98 -11.81 -13.83 -24.76 -14.04 -29.21 -15.78 -31.17 -15.01 -24.82	Read Level. dBuV 27.76 49.08 42.73 50.71 28.82 49.54 23.03 46.46 19.77 45.93 22.92	LISN factor dB	cable loss dB 0.10 0.10 0.13 0.13 0.17 0.15 0.15 0.12 0.05	Remark Average QP Average QP Average QP Average QP Average QP Average	0	20 30
2 3 4 5 6 7 8 9 10 11 12	Freq MHz 0.165 0.165 0.175 0.175 0.195 0.230 0.230 0.270 0.270 0.400 0.400	dBuV 27.91 49.23 42.91 50.89 29.04 49.76 23.23 46.66 19.95 46.11 23.04 45.57	Limit Line dBuV 55.21 65.21 54.72 64.72 53.80 63.80 52.44 62.44 51.12 61.12 47.86 57.86	Over Limit dB -27.30 -15.98 -11.81 -13.83 -24.76 -14.04 -29.21 -15.78 -31.17 -24.82 -12.29	Read Level1 dBuV 27.76 49.08 42.73 50.71 28.82 49.54 23.03 46.46 19.77 45.93 22.92 45.45	LISN factor dB	cable loss dB 0.10 0.10 0.13 0.17 0.15 0.15 0.12 0.12 0.05 0.05	Remark Average QP Average QP Average QP Average QP Average QP Average QP	0	20 30
2 3 4 5 6 7 8 9 10	Freq MHz 0.165 0.165 0.175 0.175 0.195 0.195 0.230 0.230 0.270 0.270 0.400 0.400 18.721	dBuV 27.91 49.23 42.91 50.89 29.04 49.76 23.23 46.66 19.95 46.11 23.04	Limit Line dBuV 55.21 65.21 54.72 64.72 53.80 63.80 52.44 62.44 51.12 61.12 47.86 57.86 50.00	Over Limit dB -27.30 -15.98 -11.81 -13.83 -24.76 -14.04 -29.21 -15.78 -31.17 -15.01 -24.82 -12.29 -20.82	Read Level1 	LISN factor dB	cable loss dB 0.10 0.10 0.13 0.17 0.15 0.15 0.12 0.12 0.05 0.05	Remark Average QP Average	0	20 30

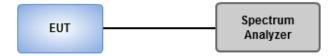
Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dBuV) = Limit Line (dBuV) – Level (dBuV).

Report No.: FR370301AI Page: 16 of 57

2: Over Limit (dBuV) = Limit Line (dBuV) - Level (dBuV).

Report No.: FR370301AI Page: 17 of 57

3.2 6dB and Occupied Bandwidth

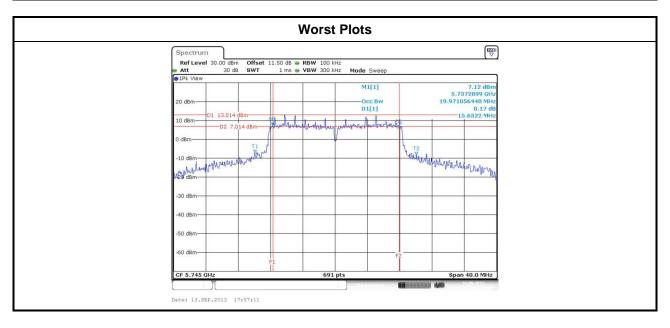

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

3.2.3 Test Setup



Report No.: FR370301AI Page: 18 of 57

3.2.4 Test Result of 6dB and Occupied Bandwidth


Modulation	N	Erog (MUz)		Limit (kU=)			
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Limit (kHz)
11a	2	5745	15.65	16.29			500
11a	2	5785	15.77	16.35			500
11a	2	5825	15.94	16.29			500
VHT20	2	5745	17.33	17.33			500
VHT20	2	5785	16.29	15.48			500
VHT20	2	5825	16.35	16.29			500
VHT40	2	5755	35.83	35.48			500
VHT40	2	5795	35.48	35.48			500
VHT80	2	5775	75.36	75.13			500

Report No.: FR370301AI Page: 19 of 57

Modulation	N	Eron (MU=)		99% Occupied E	Bandwidth (MHz)	
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3
11a	2	5745	22.87	20.67		
11a	2	5785	26.05	23.97		
11a	2	5825	27.09	24.08		
VHT20	2	5745	21.01	20.09		
VHT20	2	5785	26.63	24.31		
VHT20	2	5825	28.02	25.64		
VHT40	2	5755	37.63	37.51		
VHT40	2	5795	52.68	51.40		
VHT80	2	5775	75.95	76.18		

Report No.: FR370301AI Page: 20 of 57

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Cor	duct	ed po	ower shall not exceed 1Watt.						
\boxtimes	Ante	enna	gain <= 6dBi, no any corresponding reduction is in output power limit.						
	Antenna gain > 6dBi								
		Syst Ope	ed, point to point operations tems operations tems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-pointerations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 hat the directional gain of the antenna exceeds 6 dBi.						
			tems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point rations ,no any corresponding reduction is in transmitter peak output power						
3.3.			Procedures						
	Max	ximum Peak Conducted Output Power							
		Spe	ctrum analyzer						
		1.	Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.						
		2.	Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.						
		3.	Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.						
		Pov	ver meter						
		1.	A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.						
\boxtimes	Max	kimun	n Conducted Output Power (For reference only)						
	\boxtimes	Pov	ver meter						
		1.	A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.						
3.3.	3	Test	Setup						

Report No.: FR370301AI Page: 21 of 57

Power Sensor

Power Meter

Report Version: Rev. 01

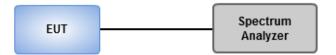
EUT

3.3.4 Test Result of Maximum Output Power

Modulation Mode	N _{TX}	Freq.	Conduc		age) outpu Bm)	Total Power	Total Power	Limit	
Wode		(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(mW)	(dBm)	(dBm)
11a	2	5745	21.38	21.64			283.286	24.52	30.00
11a	2	5785	22.12	22.17			327.746	25.16	30.00
11a	2	5825	22.05	22.32			330.933	25.20	30.00
HT20	2	5745	20.33	20.86			229.794	23.61	30.00
HT20	2	5785	22.04	22.22			326.681	25.14	30.00
HT20	2	5825	22.06	22.27			329.349	25.18	30.00
HT40	2	5755	18.60	19.11			153.914	21.87	30.00
HT40	2	5795	22.12	22.26			331.197	25.20	30.00
VHT20	2	5745	20.69	21.19			248.742	23.96	30.00
VHT20	2	5785	22.18	22.30			335.021	25.25	30.00
VHT20	2	5825	22.13	22.36			335.492	25.26	30.00
VHT40	2	5755	18.65	19.18			156.077	21.93	30.00
VHT40	2	5795	22.15	22.30			333.883	25.24	30.00
VHT80	2	5775	17.28	18.02			116.843	20.68	30.00

Report No.: FR370301AI Page: 22 of 57

3.4 Power Spectral Density

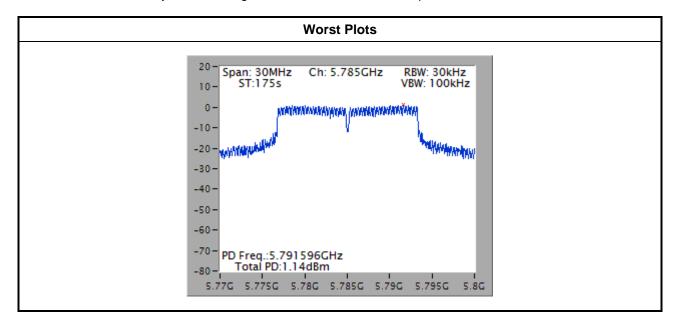

3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 30kHz, VBW = 100kHz.
 - Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 30kHz, VBW = 100 kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Set the sweep time to: ≥ 10 x (number of measurement points in sweep) x (maximum data rate per stream).
 - 4. Perform the measurement over a single sweep.
 - 5. Use the peak marker function to determine the maximum amplitude level.
 - 6. Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time

3.4.3 Test Setup


Report No.: FR370301AI Page: 23 of 57

3.4.4 Test Result of Power Spectral Density

Modulation Mode	N _{TX}	Freq. (MHz)	Total Power Spectral Density (dBm/30kHz)	Limit (dBm/3kHz)
11a	2	5745	0.18	8
11a	2	5785	1.14	8
11a	2	5825	0.79	8
VHT20	2	5745	-0.27	8
VHT20	2	5785	0.68	8
VHT20	2	5825	0.60	8
VHT40	2	5755	-5.11	8
VHT40	2	5795	-1.86	8
VHT80	2	5775	-7.49	8

Note: Test result is bin-by-bin summing measured value of each TX port.

Report No.: FR370301AI Page: 24 of 57

3.5 Unwanted Emissions into Restricted Frequency Bands

3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit									
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)						
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300						
0.490~1.705	24000/F(kHz)	33.8 - 23	30						
1.705~30.0	30	29	30						
30~88	100	40	3						
88~216	150	43.5	3						
216~960	200	46	3						
Above 960	500	54	3						

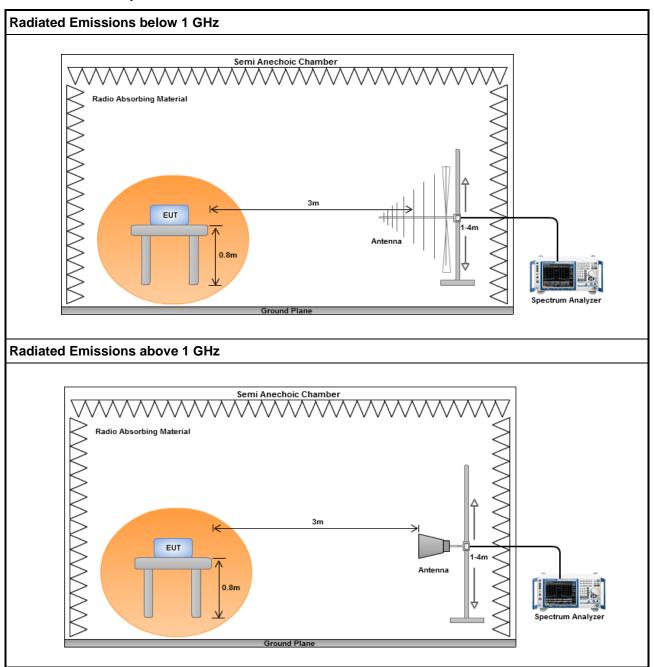
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

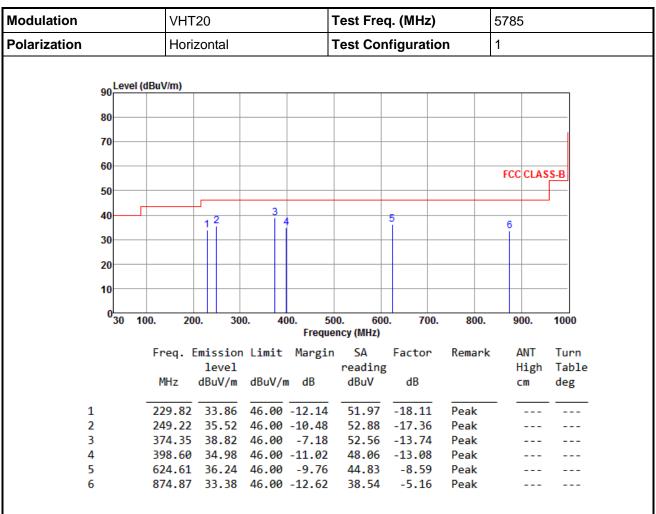
3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

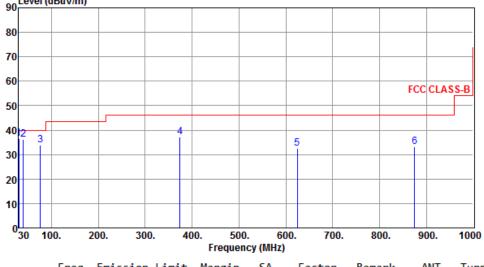
Report No.: FR370301Al Page: 25 of 57


3.5.3 Test Setup

Report No.: FR370301AI Page: 26 of 57

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

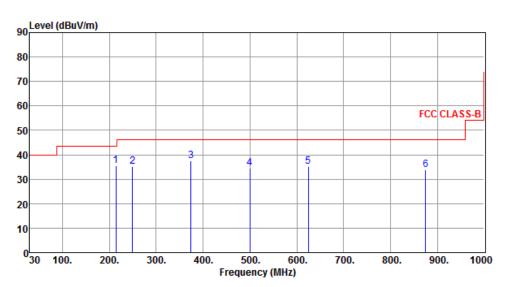
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR370301AI Page: 27 of 57

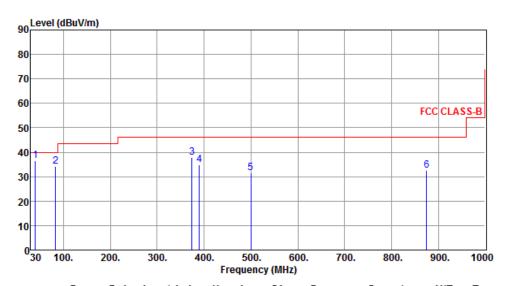
Modulation	VHT20	Test Freq. (MHz)	5785				
Polarization	Vertical	Test Configuration	1				
90 Level (dBuV/m)							
80-							


	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	30.00	36.40	40.00	-3.60	53.44	-17.04	QP		
2	39.70	36.16	40.00	-3.84	52.58	-16.42	QP		
3	76.56	34.01	40.00	-5.99	54.22	-20.21	QP		
4	374.35	37.35	46.00	-8.65	51.09	-13.74	Peak		
5	624.61	32.43	46.00	-13.57	41.02	-8.59	Peak		
6	874.87	33.32	46.00	-12.68	38.48	-5.16	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 28 of 57

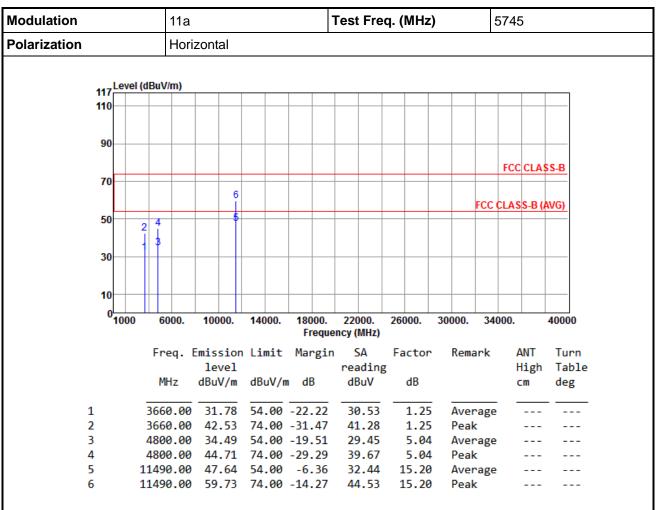
Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	2


	Freq.	Emission	Limit	Margin		Factor	Remark	ANT	Turn
		level			reading			High	Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	214.30	35.50	43.50	-8.00	54.24	-18.74	Peak		
2	249.22	35.06	46.00	-10.94	52.42	-17.36	Peak		
3	374.35	37.60	46.00	-8.40	51.34	-13.74	Peak		
4	499.48	34.53	46.00	-11.47	45.49	-10.96	Peak		
5	624.61	35.29	46.00	-10.71	43.88	-8.59	Peak		
6	874.87	33.77	46.00	-12.23	38.93	-5.16	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 29 of 57

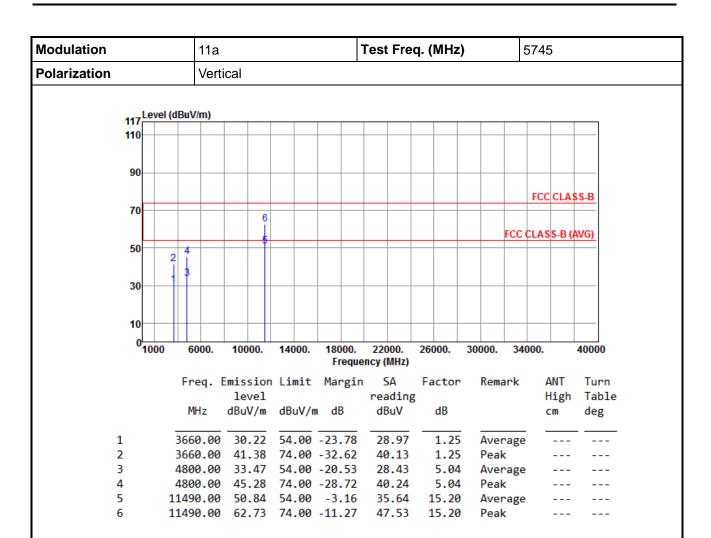
Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	2


	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	39.70	36.69	40.00	-3.31	53.11	-16.42	QP		
2	83.35	34.22	40.00	-5.78	55.73	-21.51	QP		
3	374.35	37.78	46.00	-8.22	51.52	-13.74	Peak		
4	389.87	34.92	46.00	-11.08	48.23	-13.31	Peak		
5	499.48	31.53	46.00	-14.47	42.49	-10.96	Peak		
6	874.87	32.69	46.00	-13.31	37.85	-5.16	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Page: 30 of 57 Report No.: FR370301AI

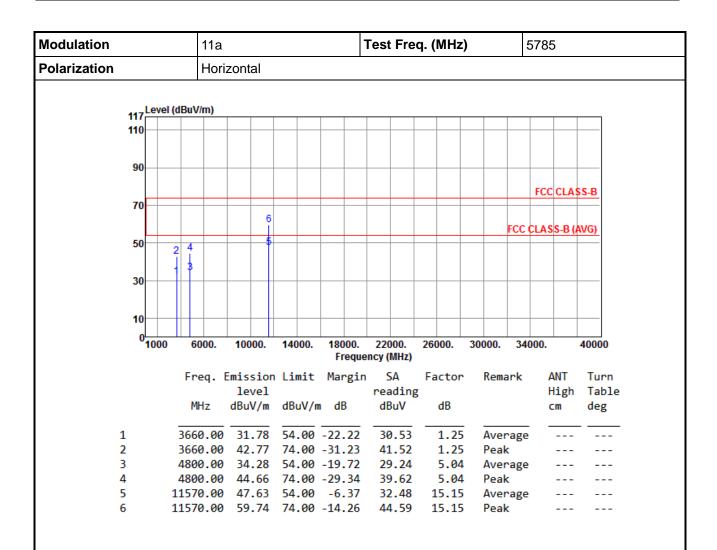
3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 31 of 57

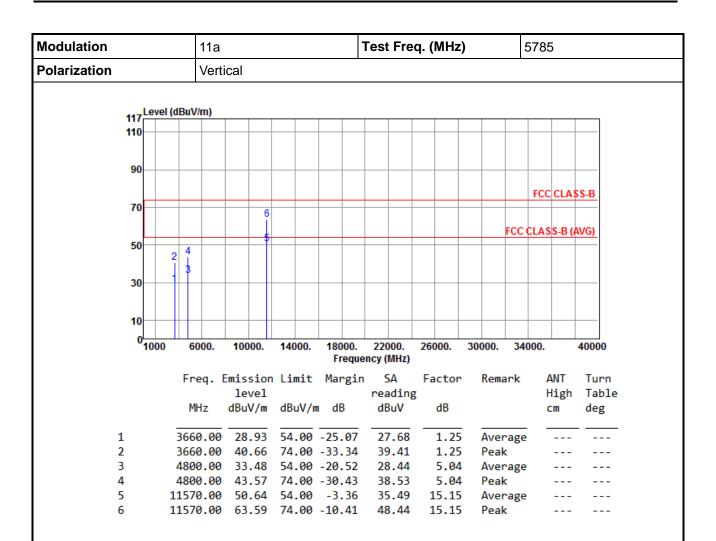
^{*}Factor includes antenna factor, cable loss and amplifier gain



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

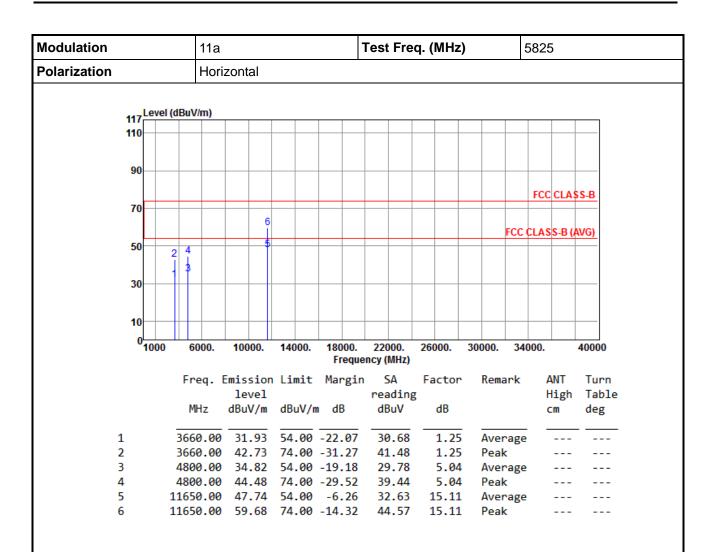
Report No.: FR370301AI Page: 32 of 57



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 33 of 57



*Factor includes antenna factor, cable loss and amplifier gain

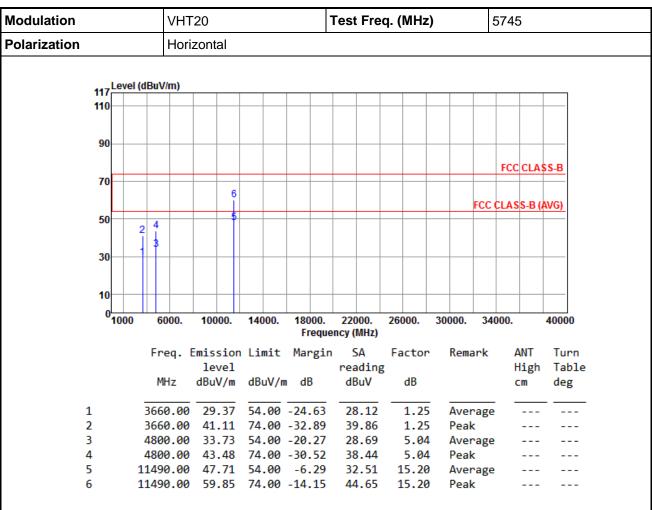
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 34 of 57

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 35 of 57


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 36 of 57

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR370301AI Page: 37 of 57

Modulation		VH ⁻	T20				1	Γest F	rec	q. (MHz	z)			5745	5	
Polarization		Ver	tical				ı									
117 L	evel (dBuV/m)														
110									+							
90-									_							
70														FCC	CLA	22-B
10				6												
				-					_				FCC	CLAS	S-B (AVG)
50	1 2	2 4														
] 3														
30									\dashv							
10	+								+							
0 1	000	6000.	100	INN	14000.	180	000.	22000		26000.	30	000.	3/4	000.		40000
•	000	0000.	100		14000.			ncy (MF		20000.	50		-	000.		40000
		Freq.	Emis	sion	Limit	Mai	rgin	SA		Factor	r	Rema	ark	1	ANT	Turn
				vel				read:	_					H	ligh	Table
		MHz	dBu'	V/m	dBuV/	m di	В	dBu\	V	dB				(m	deg
1		3660.00	20	.78	54.00	25	22	27.		1.2	_	Ave	2000	-		
2		3660.00		. 82	74.00			39.		1.2		Peal				
3		4800.00						28.4		5.04		Ave				
4					74.00			38.	- 4	5.04		Peal	_			

54.00 -3.14

63.68 74.00 -10.32

15.20

15.20

Average

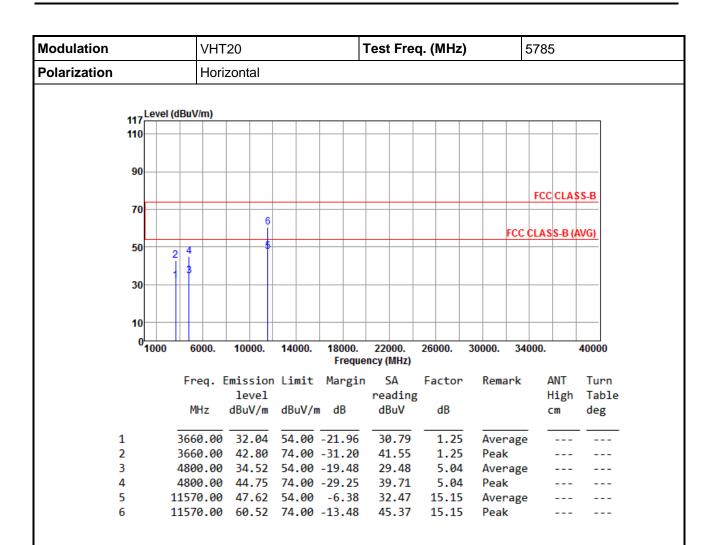
Peak

35.66

48.48

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


11490.00

11490.00

50.86

Report No.: FR370301AI Page: 38 of 57

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 39 of 57

Modulation				VHT	20				1	Γest F	rec	ą. (MHz	:)			5785	5	
Polarization				Vert	ical				1									
	447	Leve	l (dBu	V/m)														
	110																	
	90																	
	90															FCC	CLA	SS_R
	70					6					+					100	CLA	33-5
						į									FCC	CLAS	S-B (AVG)
	50		2 4			-		+										
	20		1 3															
	30																	
	10							_										
	0																	
	· ·	1000	•	6000.	100	00.	14000).	18000. Freque	22000 ncy (MH		26000.	30	000.	34	000.		40000
			Fi	req.	Emis	sion	Limi	t	Margin	SA		Factor		Rema	ark	1	ANT	Tur
						vel				readi						H	ligh	
			ı	MHz	dBu'	V/m	dBuV	/m	dB	dBu\	/	dB				(-m	deg
	1		366	60.00	29	.91	54.0	 0 -	24.09	28.6	56	1.25	,	Aver	rage	-		
	2		366	60.00	41	.71			32.29	40.4		1.25		Peal				
	3		480	00.00	33	.72	54.0	0 -	20.28	28.6	58	5.04	ļ	Aver	rage			
	4		480	00.00	43	.95	74.0	0 -	30.05	38.9	91	5.04	ļ	Peal	<			
	5		1157	70.00	50	.83	54.0	0	-3.17	35.6	58	15.15	,	Aver	rage			

Peak

48.47

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

11570.00 63.62 74.00 -10.38

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

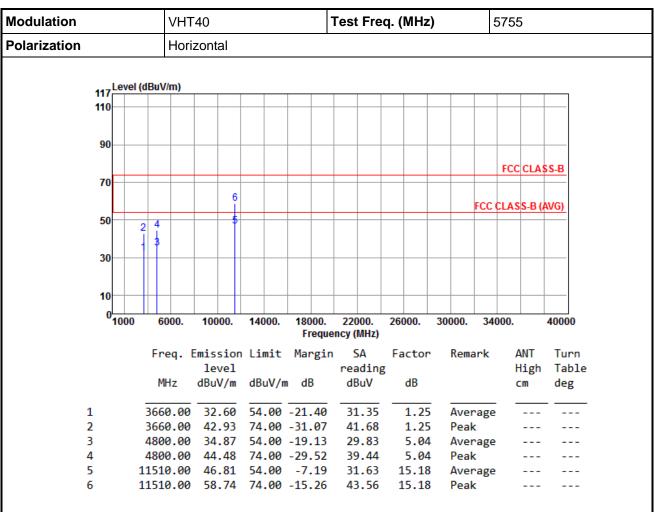
Page: 40 of 57 Report No.: FR370301AI

Modulation				VHT	20					Γest	Fre	q. (I	MHz)		5	5825	5	
Polarization				Hori	zonta	al													
	117	Leve	l (dBu	V/m)															
	110																		
	90																		
																	FCC	CLAS	SS-B
	70																		
						6										FCC (CLAS	S-B (AVG)
	50		2 4			-5								\rightarrow					
	20		1 3																
	30																		
	10																		
	0	1000	(5000.	100	00.	14000		000. reque	220 ncy (260	000.	3000	00.	340	000.		40000
			Fr	req. [miss	ion	Limi	t Ma	rgin	5	A	Fa	ctor	R	Rema	rk	Δ	ANT	Turn
					lev				•		ding	3					Н	ligh	Tabl
			1	ИHz	dBu\	//m	dBuV	/m d	В	dB	₿uV		dB				C	m	deg
	1		366	50.00	31.	.80	54.0	0 -22	.20	36	.55	-	1.25	Δ	ver	age	-		
	2			50.00						41	.43		1.25		eak				
	3			00.00							.72		5.04			age			
	4			00.00							.49		5.04		eak				
	5			50.00							.75		5.11			age			
	6		116	50.00	60.	.39	74.0	0 -13	.61	45	.28	1	5.11	. Р	eak?				

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 41 of 57

Modulation				VHT	20					Test	Fre	q. (MHz)		5	5825	5	
Polarization				Verti	cal				•							•			
	117	Leve	l (dBu\	//m)															
	110																		
	90																		
																	FCC	CLAS	SS-B
	70					6													
						Ĭ										FCC (CLAS	S-B (AVG)
	50		0 4			Ť													
			2 7																
	30	\vdash	1											\rightarrow					
	10																		
	0	1000	6	000.	100	00.	1400	0.	18000. Freque		000. MHz)	26	000.	3000	00.	340	000.		40000
			Fr	ea. F	mis	sion	Lim	it	Margir			Fa	actor	R	lema	rk	_	MT	Turn
				-4.		/el			62.		ading						_	ligh	Tab1
			M	Ηz	dBu\	//m	dBu'	V/m	dB	di	3uV		dB					m	deg
	1		366	0.00	29	.48	54.	90	-24.52	28	3.23	_	1.25	Δ	ver	age	-		
	2		366	0.00		.59			-32.41		3.34		1.25		eak				
	3			0.00		.49			-20.51		3.45		5.04			age			
	4								-29.62		9.34		5.04		eak				
	5								-3.16		5.73		15.11			age			
	6		1165	0.00	63.	. 55	74.	90	-10.45	48	3.44	1	15.11	. Р	eak				


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 42 of 57

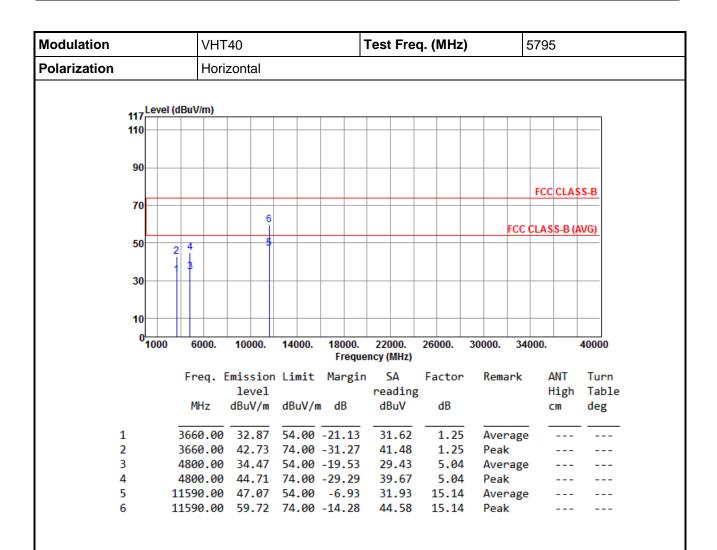
3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR370301AI Page: 43 of 57


Modulation			VHT	40				Т	est	Fre	q. (l	MHz))		57	755		
Polarization			Verti	cal											•			
117	7 Lev	el (dB	uV/m)															
110	0	_						+		_				_		\dashv		
90	0							_		_								
																FCC	CLAS	SS-B
7(0				6											-	UL711	
					ì									E	CC CI	۸ς	s B //	WG
50	٥		4		5												י) ט-נ	100)
		2 1	į															
30		1																
10																		
	^U 100	0	6000.	100	00.	14000			2200		260	000.	3000	0.	3400	0.		40000
									icy (N		_							_
		•	req. I		sion vel	Limi	t Marg		read			ctor	Re	emar	٦K		NT igh	Turn Tabl
			MHz			dBuV	/m dB		dBı			dB				C	_	deg
					_		<u> </u>	_					_					
1			60.00		.69		0 -24.3		28.			1.25		vera				
2			60.00		.56		32.4		40			1.25		eak				
3 4			300.00 300 00				0 -20.0 0 -30.0			.96 .95		5.04 5.04		vera eak	_			
5							0 -30.6 0 -4.1		34.			5.18		eak vera				
6				-			0 -11.3	_	47			5.18		eak	_			

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 44 of 57

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

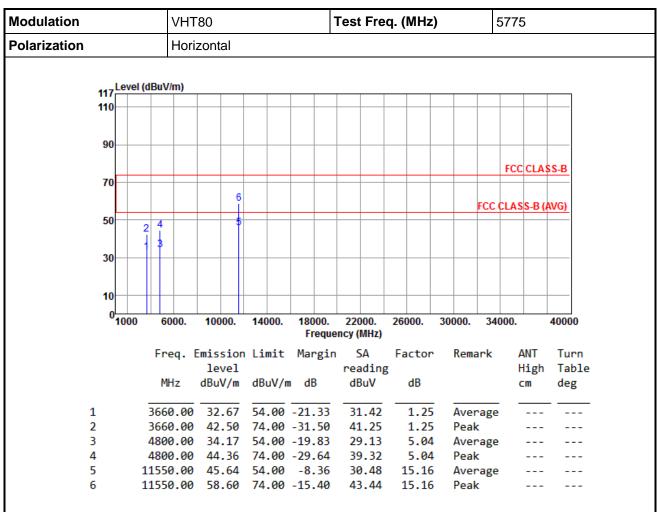
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 45 of 57

Modulation				VHT	40					٦	Γest F	re	q. (N	ИHz)			579	5	
Polarization				Verti	ical														
	117L	_evel	(dBuV/	m)															
	110											_							
	90																		
	70																FC	CLA	SS-B
	70					6										FC	C CLA	SS-B (AVG)
	50		2 4			- 5													
	30		1 3									_							
	10																		
	0	1000	60	00.	100	00.	1400	0.	1800 Fre		2200 ncy (Mi		260	00.	30000	0. 3	4000.		4000
			Fre	eq. E		sion vel	Limi	it	Marg					ctor	Re	emark		ANT High	Tu Ta
			MH	lz			dBu\	//n	ı dB		dBu	_		dB				cm	de
	1			0.00		.21			-23.7		28.			1.25		/erag	ge		
	2 3			00.0					-31.9 -20.7		40. 28.			1.25		ak ⁄erag	10		-
	4								-29.8		39.			5.04		era _E	Se.		-
	5		11596	00.0	50	.07	54.6	90	-3.9	93	34.	93	15	5.14	Αν	rerag	ge		-

Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


11590.00 62.76 74.00 -11.24 47.62

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Page: 46 of 57 Report No.: FR370301AI

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 47 of 57

Modulation			١	/HT	80					٦	Γest	Fre	q. (I	MHz))			5775	5	
Polarization			١	∕erti	cal												•			
	I۵	vel (dBuV/r	m)																
	17			,																
	90-																			
,																		FCC	CLA	SS-B
	70					6														
!	50	2	2 4			- 5											FCC	CLAS	S-B (AVG)
:	30-		3																	
,	10																			
	10	00	600	00.	100	00.	1400	0.	180 Fr		2200 ncy (N		260	00.	300	00.	34	000.		4000
			Fre	q. E		sion vel	Lim	it	Mar	gin	S/ read			ctor	F	Rema	ark		NT ligh	Tu: Tal
			МН	Z			dBu'	//n	ı dB	1	dBı			dB					m	deg
1			3660	.00	29	.67	54.	90	-24.	33	28	42	_	1.25	7	٩ver	rage	_		
2			3660				74.				40.			1.25		Peak				
3			4800								28.			5.04			age			
4 5			4800 1550									63		5.04 5.16		Peak	c rage			

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

11550.00 61.91 74.00 -12.09 46.75

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR370301AI Page: 48 of 57

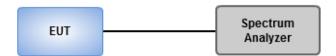
3.6 Unwanted Emissions into Non-Restricted Frequency Bands

3.6.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band
shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

The peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.6.2 Test Procedures


Reference Level Measurement

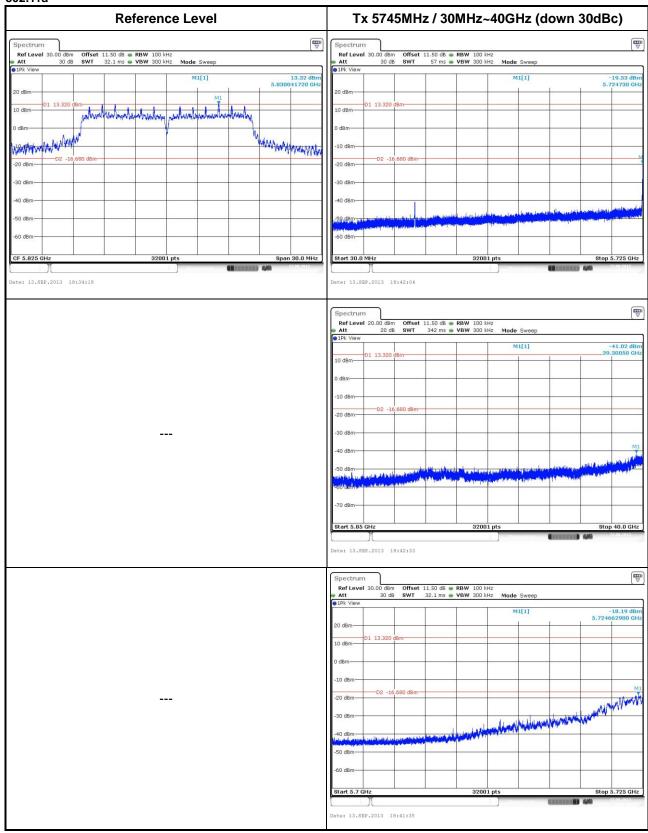
- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

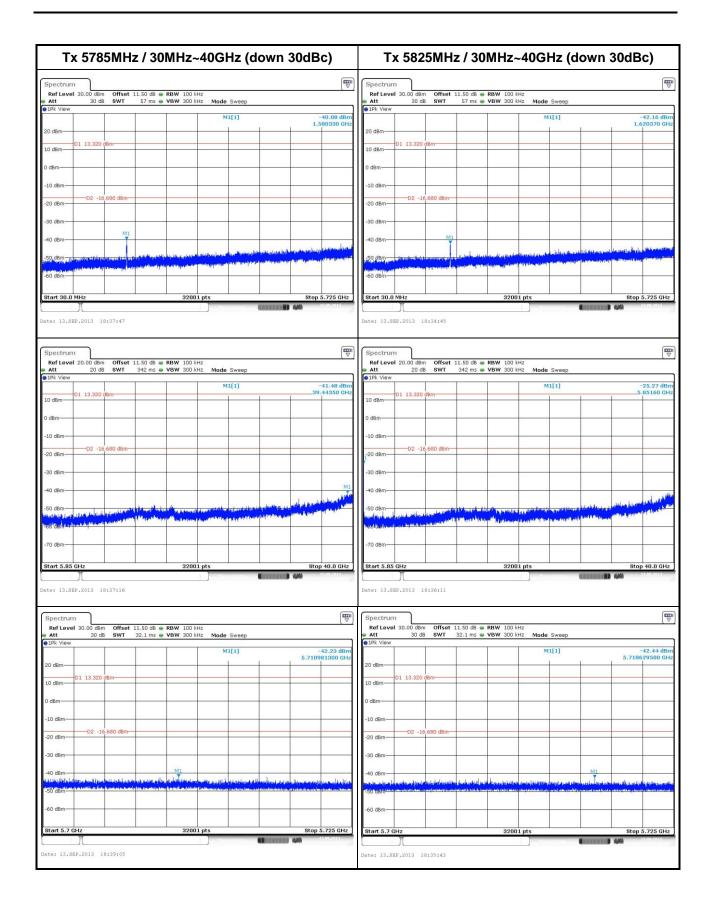
- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.6.3 Test Setup

3.6.4 Test Result of Emissions in non-restricted frequency bands

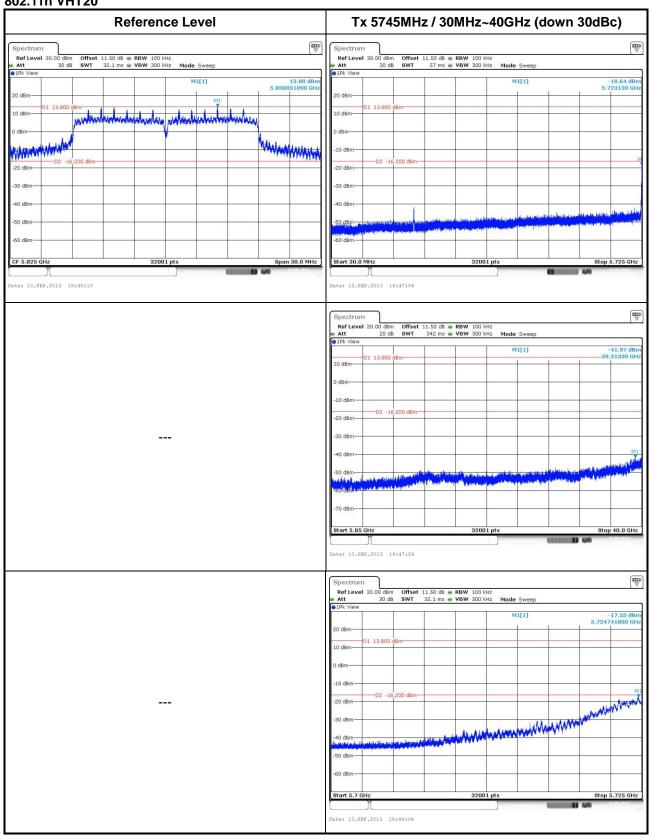

This test item is performed on each TX output individually without summing or adding 10 $log(N_{ANT})$ since measurements are made relative to the in-band emissions on the individual outputs. Only worst test result of each operating mode is presented.

Report No.: FR370301AI Page: 49 of 57

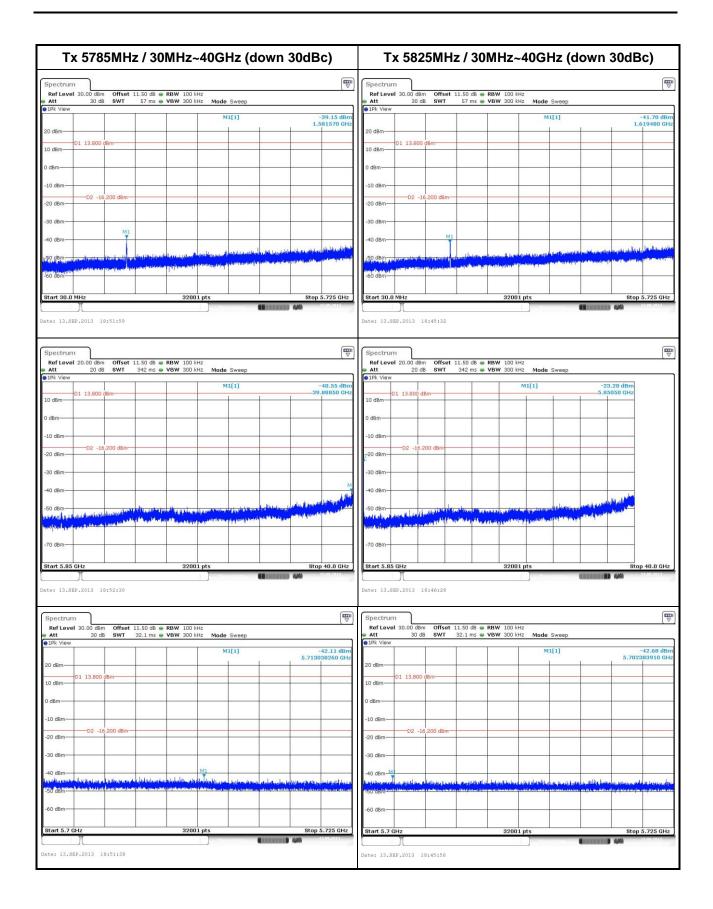

3.6.5 Unwanted Emissions into Non-Restricted Frequency Bands

802.11a

Report No.: FR370301AI Report Version: Rev. 01

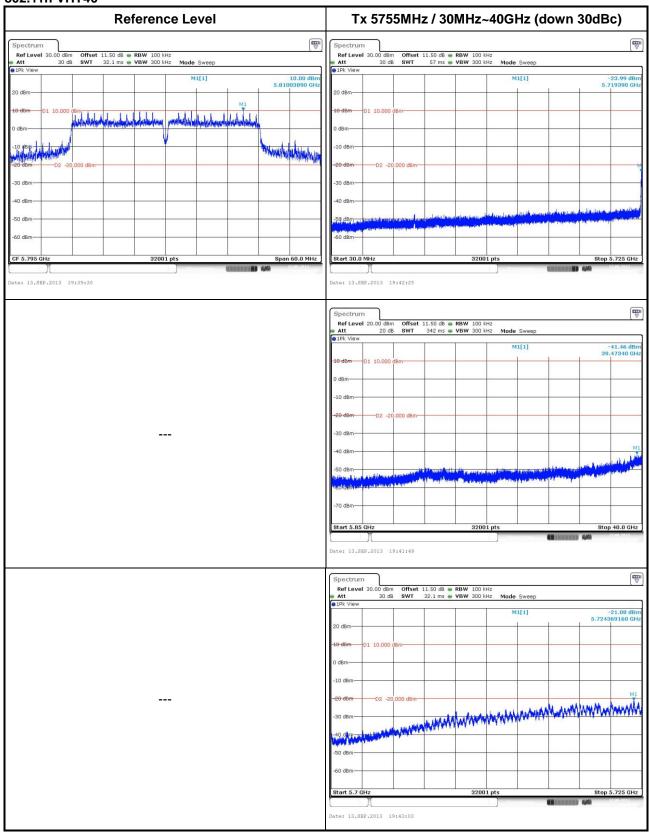


Report No.: FR370301AI Page: 51 of 57

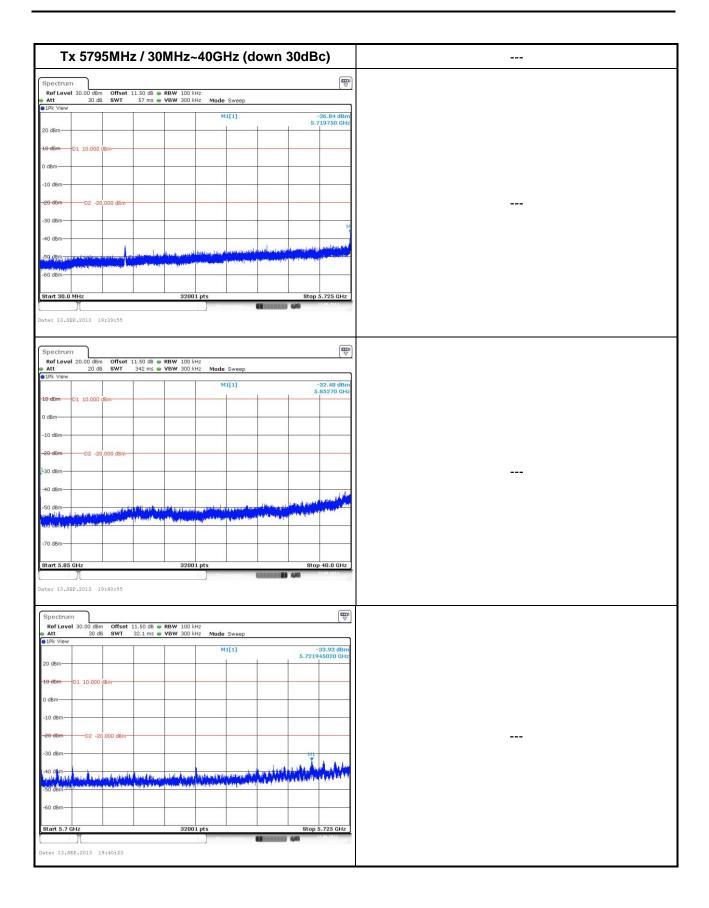


802.11n VHT20

Report No.: FR370301AI Page: 52 of 57

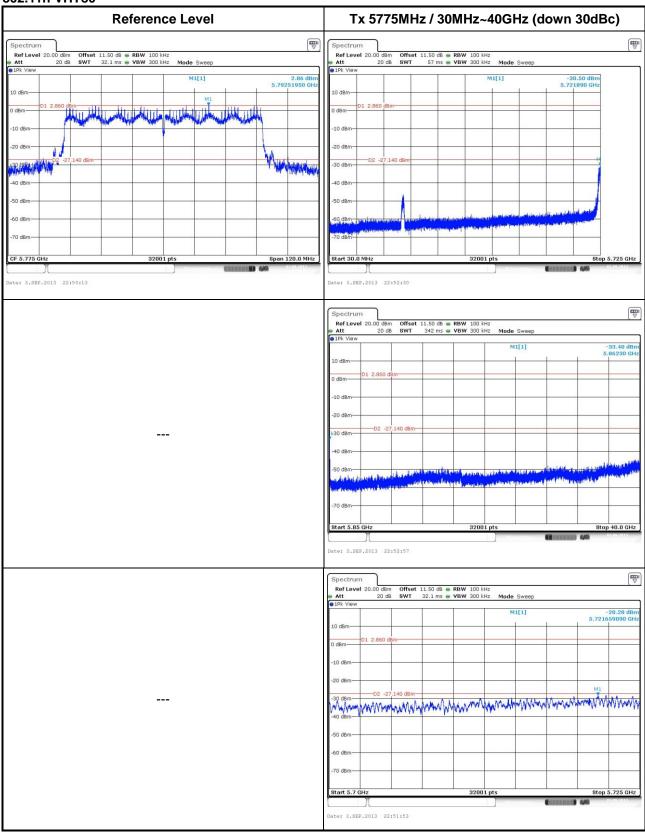


Report No.: FR370301AI Page: 53 of 57



802.11n VHT40

Report No.: FR370301AI Page: 54 of 57



Report No.: FR370301AI Page: 55 of 57

802.11n VHT80

Report No.: FR370301AI Page: 56 of 57

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou Kwei Shan

Tel: 886-2-2601-1640 Tel: 886-3-271-8666

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei
City, Taiwan, R.O.C.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan
Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR370301AI Page: 57 of 57