APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

Date of Issue: May 3, 2010

EUT Specification

EUT	450Mbps Wireless N Gigabit Router
Frequency band (Operating)	 ✓ WLAN: 2.412GHz ~ 2.462GHz ✓ WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz ✓ WLAN: 5.745GHz ~ 5.825GHz ✓ Others
Device category	Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)
Antenna diversity	☐ Single antenna ☐ Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity
Max. output power	IEEE 802.11b mode: 18.87 dBm(77.1 mW) IEEE 802.11g mode: 15.37 dBm(34.4 mW) draft 802.11n Standard-20 MHz Channel mode: 18.91 dBm(77.7 mW) draft 802.11n Wide-40 MHz Channel mode: 18.70 dBm(74.2 mW)
Antenna gain (Max)	Gina: IEEE 802.11b/g: 4 dBi (Numeric gain: 2.51) Gina: MIMO: 4 dBi + 10 log (3) = 8.77 dBi (Numeric gain: 7.53)
Evaluation applied	
Remark: 1. The maximum output power is 18.91dBm (77.7mW) at 2462MHz (with 7.53 numeric antenna	

- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Page 132 Rev. 00

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

 $S = Power\ density\ in\ milliwatts\ /\ square\ centimeter$

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power\ density\ in\ mW/cm^2$

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power\ density\ in\ mW/cm^2$

Page 133 Rev. 00

Date of Issue: May 3, 2010

IEEE 802.11b mode:

EUT output power = 77.1mW

Numeric Antenna gain = 2.51

 \rightarrow Power density = 0.0385 mW/cm²

IEEE 802.11g mode:

EUT output power = 34.4mW

Numeric Antenna gain = 2.51

 \rightarrow Power density = 0.0172 mW/cm²

draft 802.11n Standard-20 MHz Channel mode:

EUT output power = 77.7mW

Numeric Antenna gain = 7.53

 \rightarrow Power density = 0.1164 mW/cm²

draft 802.11n Wide-40 MHz Channel mode:

EUT output power = 74.2mW

Numeric Antenna gain = 7.53

 \rightarrow Power density = 0.1112 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)

Page 134 Rev. 00

Date of Issue: May 3, 2010