

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to \$15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See \$ 1.1307(b)(1) of this chapter.

EUT Specification

EUT	450Mbps Wireless N Gaming Adapter
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz WLAN: 5.745GHz ~ 5.825GHz Others
Device category	 Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	$\square Occupational/Controlled exposure (S = 5mW/cm2) \square General Population/Uncontrolled exposure (S=1mW/cm2)$
Antenna diversity	 Single antenna Multiple antennas Tx diversity Rx diversity Xr/Rx diversity
Max. output power	IEEE 802.11b mode: 18.32 dBm(67.9204 mW) IEEE 802.11g mode: 15.44 dBm(34.9945 mW) IEEE 802.11n HT 20 MHz mode: 18.83 dBm(76.3836 mW) IEEE 802.11n HT 40 MHz mode: 17.71 dBm(59.0201 mW)
Antenna gain (Max)	1. Gain: 3 dBi 2. Gain: 3.3 dBi 3. Gain: 2 dBi 3.3 dBi= 8.07 dBi (Numeric gain: 2.41) Antenna Calculation for Mimo Mode: 10*LOG(((10^(3/20)+10^(3.3/20)+10^(2/20))^2)/3)=7.56dBi(Numeric gain:5.70)
Evaluation applied	MPE Evaluation* SAR Evaluation N/A

Remark:

- 1. The maximum output power is <u>18.83dBm (76.3836mW) at 2462MHz (with 5.70 numeric antenna</u> gain.)
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power
- density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

MPE EVALUATION

No non-compliance noted.

Calculation

Given

 $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$ Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1
Where $d = Distance$ in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ density in mW/cm^2

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

IEEE 802.11b mode:

EUT output power = 67.920 mW

Numeric Antenna gain = 2.41

 \rightarrow Power density = 0.0325 mW/cm2

IEEE 802.11g mode:

EUT output power = 34.9945 mW Numeric Antenna gain = 2.41

 \rightarrow Power density = 0.0167 mW/cm2

IEEE 802.11n HT 20 MHz mode:

EUT output power = 76.3836 mW Numeric Antenna gain = 5.70

 \rightarrow Power density = 0.0866 mW / cm2

IEEE 802.11n HT 40 MHz mode:

EUT output power = 59.0201mW

Numeric Antenna gain = 5.70

 \rightarrow Power density = 0.0866 mW / cm2

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)