

8. APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	High Power Wireless Outdoor Access Point
Frequency band (Operating)	WLAN: 2.412GHz ~ 2.462GHz
	🔀 WLAN: 5.745GHz ~ 5.825GHz
	Others: <u>Bluetooth: 2.402GHz ~ 2.480GHz</u>
Device category	Portable (<20cm separation)
	Mobile (>20cm separation)
	Others
Exposure classification	Occupational/Controlled exposure (S = 5mW/cm2)
	General Population/Uncontrolled exposure
	(S=1mW/cm2)
Antenna diversity	Single antenna
	Multiple antennas
	Tx diversity
	Rx diversity
	Tx/Rx diversity
	IEEE 802.11a mode: 20.31 dBm (107.4mW)
Max. output power	IEEE 802.11n HT 20 MHz Channel mode: 14.76 dBm (29.9mW)
	IEEE 802.11n HT 40 MHz Channel mode: 16.26 dBm (42.2mW)
Antenna gain (Max)	Gain: IEEE 802.11a: 12 dBi (Numeric gain: 15.84)
	Gain: MIMO: 12 dBi + 10 log (2) = 15 dBi (Numeric gain: 31.62)
Evaluation applied	MPE Evaluation
	SAR Evaluation
	└」 N/A
Downault	

Remark:

- The maximum output power is <u>20.31dBm (107.4mW) at 5745MHz</u> (with <u>15.84 numeric antenna</u> <u>gain</u>.)
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given

 $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$ Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where
$$d = Distance$$
 in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ density in mW / cm^2

Maximum Permissible Exposure

EUT output power = 107.4mW

Numeric Antenna gain = 15.84

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain $S = Power density in mW / cm^{2}$

 \rightarrow Power density = 0.3385 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)