FCC COMPLLANCE TEST REPORT

Technical Statement of Conformity in accordance with 47 CFR Part 15 Subpart C

The product

Equipment Under Test	: Bluetooth Speaker microphone
Model Number	: BTH-600-ZU-MOB
Product Series	: C600-M12
Report Number	: HA190470-RA
Issue Date	: 21-June-2019
Test Result	: Compliance

is produced by Mobility Sound Technology LTD. 5F, No.100, Jian 1st Road, ZhongHe Dist., New Taipei City #23585, Taiwan

HongAn TECHNOLOGY CO., LTD.

NO.15-1, CWEISHUH KENG, CWEIPIN VILLAGE, LINKOU, TAIPEI COUNTY, TAIWAN, R. O. C.

BSMI Registration No.: SL2-IN-E-0023, SL2-A1-E-0023, SL2-IS-E-0023, SL2-R1-E-0023, SL2-R2-E-0023, SL2-L1-E-0023

TEL: +886-2-26030362 FAX: +886-2-26019259 E-mail: hatlab@ms19.hinet.net

FCC Designation No.: TW1071, TW1163 TAF Accreditation No.: 1163 VCCI Registration No.: R-2156, C-2329, T-219 (and

Contents

1	General Description	6
∎ 1.1	Description of EUT	6
1.1	Test Instruments	8
1.3	Auxiliary Equipments	9
1.4	EUT SETUP	9
1.5	Identifying the Final Test Mode	9
1.6	Final Test Mode	10
1.7	Condition of Power Supply	10
1.8	EUT Configuration	10
1.9	Test Methodology	10
1.10		10
1.11	Modification	10
1.12	FCC Part 15.205 restricted bands of operations	11
1.13	Qualification of Test Facility	12
2	Power line Conducted Emission Measurement	13
2.1	Test Instruments	13
2.2	Test Arrangement and Procedure	13
2.3	Limit (§ 15.207)	13
2.4	Test Result	13
3	Radiated Emission Test	16
3.1	Test Instruments	16
3.2	Test Arrangement and Procedure	16
3.3	Limit of Field Strength of Fundamental (§ 15.249)	17
3.4	Limit of Spurious Emission (§ 15.209)	17
3.5	Test Result	17
4	Out of Band Emission Test	44
4.1	Test Instruments	44
4.2	Test Arrangement and Procedure	44
4.3	Limit of Field Strength of Fundamental (§ 15.249(d))	44
4.4	Test Result	44
5	20 dB Bandwidth	57
5.1	Test Instruments	57
5.2	Test Arrangement and Procedure	57
5.3	Limit	57
5.4	Test Result	57

6	Antenna requirement	67
6.1	Limit (§ 15.203)	67
6.2	Test Result	67
7	Photographs of the Tests	68
7.1	Power line Conducted Emission Test (at Mains Terminals)	68
7.2	Radiated Disturbances Emission Test	69
8	Photographs of the EUT	70

Test Result Certification

Applicant	: Mobility Sound Technology LTD.
Address of Applicant	5F, No.100, Jian 1 st Road, ZhongHe Dist., New Taipei City #23585, Taiwan
Manufacturer	: Mobility Sound Technology LTD.
Address of Manufacturer	5F, No.100, Jian 1 st Road, ZhongHe Dist., New Taipei City #23585, Taiwan
Trade Name	: MobilitySound
Equipment Under Test	: Bluetooth Speaker microphone
Model Number	: BTH-600-ZU-MOB
Product Series	: C600-M12
FCC ID	: XTS-BTH-60M
Filing Type	: Certification
Sample Received Date	: 16-May-2019
Test Standard	:

FCC Part 15 Subpart C §15.249

Deviations from standard test methods & any other specifications : NONE

- 1. This report details the results of the test carried out on one sample.
- 2. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in both ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.203, 15.207, 15.209, 15.247.
- 3. This report applies to the above sample only and shall not be reproduced in part without written approval of HongAn Technology Co., Ltd.
- Test Location: HongAn Technology Co., Ltd., No.15-1 Cweishuh Keng, Cweipin Village, Linkou Dist., New Taipei City, Taiwan, R.O.C. FCC Designation No.: TW1071, TW1163.

Andrew Tested by: 2019-06-06 Andrew Lin / ENG. Dept. Staff Bason Hsieh Approved by: 2019-06-21 Date: Eason Hsieh / Section Manager

Summary of Test Result

	Test Item	Applicable Standard	Test Result
1	Antenna Requirement	FCC part 15 subpart C §203	Compliance
2	Conducted Emission	FCC part 15 subpart C §207	Compliance
3	Restricted Band of	FCC part 15 subpart C §205	Compliance
5	Operation	FCC part 13 Subpart C §203	Compliance
4	Radiated Emission	FCC part 15 subpart C §209	Compliance
5	Field Strength	FCC part 15 subpart C §249(a)	Compliance
6	Out of Band Emission	FCC part 15 subpart C §249(d)	Compliance
7	20dB Bandwidth	FCC part 15 subpart C §215(c)	Compliance

1 General Description

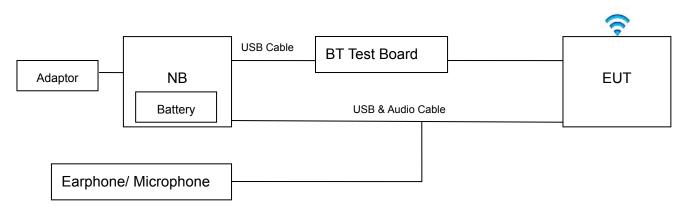
1.1 Description of EUT

Equipment Under Test	:	Bluetoot	Bluetooth Speaker microphone						
Model Number of EUT	:	BTH-600	BTH-600-ZU-MOB						
Product Series	:	C600-M	12						
Power Supply	:	Input: U	SB DC 5	V					
Frequency Range	:	2402~24	480 MHz						
Number of Channels	:	79 Chan	nels						
		00	2402	20	2422	40	2442	60	2462
		01	2403	21	2423	41	2443	61	2463
		02	2404	22	2424	42	2444	62	2464
		03	2405	23	2425	43	2445	63	2465
		04	2406	24	2426	44	2446	64	2466
		05	2407	25	2427	45	2447	65	2467
		06	2408	26	2428	46	2448	66	2468
		07	2409	27	2429	47	2449	67	2469
	:	08	2410	28	2430	48	2450	68	2470
Carrier Frequency of		09	2411	29	2431	49	2451	69	2471
Each Channel		10	2412	30	2432	50	2452	70	2472
		11	2413	31	2433	51	2453	71	2473
		12	2414	32	2434	52	2454	72	2474
		13	2415	33	2435	53	2455	73	2475
		14	2416	34	2436	54	2456	74	2476
		15	2417	35	2437	55	2457	75	2477
		16	2418	36	2438	56	2458	76	2478
		17	2419	37	2439	57	2459	77	2479
		18	2420	38	2440	58	2460	78	2480
		19	2421	39	2441	59	2461	-	-
Antenna Specification	:	Chip An	tenna/ Ga	ain: 1.3 c	dBi				
		FHSS							
Modulation Technique	:	Bluetoot	h : GFSK						
••••		Bluetooth EDR : π/4-DQPSK, 8-DPSK							
Transmit Data Rate	:	Bluetooth : 1Mbps, 2Mbps, 3Mbps							
		Dimensions : 8.7 cm (L) X 6 cm (W) X 2.3 cm (H)							
Specification	:	Weight	: 150 g						

1.2 Test Instruments

Instrument	Manufacturer	Model	Serial	Last Cal.	Next Cal.
Name	Mode	Number	Number	Date	Date
Spectrum Analyzer	R&S	FSV 30	101629	25-Dec-2018	24-Dec-2019
ESCI7 EMI Test Receiver	R&S	ESCI7	100931	09-Aug-2018	08-Aug-2019
Pre-Amplifier	Schaffner	CPA9231A	0405	24-Dec-2018	23-Dec-2019
Pre-Amplifier	Com-Power	PAM-118A	443027	27-Dec-2018	26-Dec-2019
Microwave Preamplifier	Com-Power	PAM-840	461269	17-May-2019	16-May-2020
Bilog Antenna	TESEQ	CBL6111D	25769	29-Jan-2019	28-Jan-2020
Horn Antenna	EMCO	3115	9912-5992	15-May-2019	14-May-2020
Horn Antenna	Com-Power	AH-840	101042	21-May-2019	20-May-2020
Four-Phase-V- Network	Rolf Heine Hochfrequenzt echnik	NNB-4/32T	00001	10-Mar-2019	09-Mar-2020
LISN	EMCO	3810/2NM	9702-1819	09-Jul-2018	08-Jul-2019
Active Loop Antenna	EMCO	6502	9202-2717	21-Aug-2018	20-Aug-2019
Coaxial Cable	n/a	8D-FB	HA2-10MSI TE-01	24-Aug-2018	23-Aug-2019
Microflex Cable	HUBER SUHNER	SUCOFLEX 102	MY3368/2	17-May-2019	16-May-2020
Microflex Cable	HUBER SUHNER	SUCOFLEX 102	MY3367/2	17-May-2019	16-May-2020
Coaxial Cable	n/a	RG 223/U	HA2-CE-01	24-Aug-2018	23-Aug-2019

% The test equipments used are calibrated and can be traced to National ITRI and International Standards.


1.3 Auxiliary Equipments

1.3.1.	Provided by HongAn	Technology Co.	, Ltd. for Test.
--------	--------------------	----------------	------------------

No.	Equipment	Model No.	Serial No.	EMC	Brand	Power Cord
	_4			Approved		
01	NataDaak	V4 Carbon				Adapter to Notebook
01	01 NoteBook	X1 Carbon	PF-0QGYKK	CE,FCC,	LENOVO	Unshielded*1.95m
02	USB Cable	N/A	N/A	N/A	N/A	Non-Shielded; Detachable, 0.2m w/o core
	Microphone,					
03	Earphone No. 10	CJ323	N/A	N/A	CJ	Audio cable, Un-detachable, 2m
1.3.	1.3.2. Provided by the Manufacturer					
				EMC		

No.	Equipment	Model No.	Serial No.	EMC Approved	Brand	Specification
01	BT Test Board	N/A	N/A	N/A	N/A	N/A
02	USB & Audio Cable	N/A	N/A	N/A	N/A	Shielded; Un-Detachable, 1.25m w/o core

1.4 EUT SETUP

Note: Main Test Sample: BTH-600-ZU-MOB

1.5 Identifying the Final Test Mode

- 1. Mode 1: TX BT mode (1Mbps) CH 00.
- 2. Mode 2: TX BT mode (1Mbps) CH 39.
- 3. Mode 3: TX BT mode (1Mbps) CH 78.
- 4. Mode 4: TX BT mode EDR (2Mbps) CH 00.
- 5. Mode 5: TX BT mode EDR (2Mbps) CH 39.
- 6. Mode 6: TX BT mode EDR (2Mbps) CH 78.
- 7. Mode 7: TX BT mode EDR (3Mbps) CH 00.
- 8. Mode 8: TX BT mode EDR (3Mbps) CH 39.
- 9. Mode 9: TX BT mode EDR (3Mbps) CH 78.

Note:

1. After pre-test, we identified that the Test Mode 1 was most likely to produce the maximum transmitting power and cause maximum disturbance. Therefore, the Final Assessment was

performed for the worst case.

- 2. The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements. During the tests, there was no Test Software has been used.
- 3. Channel Low (2402 MHz), Mid (2442 MHz) and High (2480 MHz) were chosen for full testing.
- According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.
- Test Software: BlueTest3 V2.5.8; RF parameter setting: Channel: 00, 39, 78/ Data Rate: 1Mbps, 2Mbps, 3Mbps/ Packet: DH1, DH3, DH5, 2DH1, 2DH3, 2DH5, 3DH1, 3DH3, 3DH5/ TX POWER: 50.

1.6 Final Test Mode

Conducted Emission: Mode 1.

Radiated Emission (30~1000 MHz): Mode 1. Radiated Emission (1~26.5GHz): All Modes.

1.7 Condition of Power Supply

DC 5V through USB port

1.8 EUT Configuration

- 1. Setup the EUT as shown in Sec.1.4 Block Diagram.
- 2. Turn on the power of all equipments.
- 3. Activate the selected Final Test Mode.

1.9 Test Methodology

The tests documented in this report were performed in accordance with ANSI C63.10 (2013) and FCC CFR 47 15.203, 15.207, 15.209 and 15.249.

1.10 General Test Procedures

Conducted Emissions

The EUT is set according to the requirements in Section 6.2 of ANSI C63.10 (2013).

Radiated Emissions

The EUT is set according to the requirements in Section 6.3 of ANSI C63.10 (2013).

1.11 Modification

N/A

the frequency bands listed below:

1.12 FCC Part 15.205 restricted bands of operations

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of

the nequency bund			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37635-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

1.13 Qualification of Test Facility

Name of Test Facility	: HongAn Technology
Address of Test Facility	No. 15-1, Cweishuh Keng, Cweipin Village, Linkou, New Taipei City, Taiwan, R.O.C
FCC Designation No.	: TW1071, TW1163
TAF Accreditation No.	: 1163

2 Power line Conducted Emission Measurement

2.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

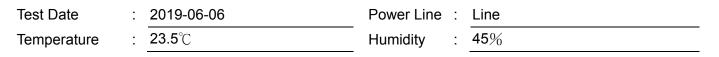
2.2 Test Arrangement and Procedure

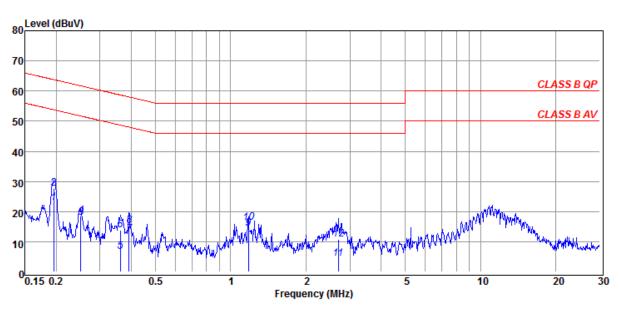
- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

2.3 Limit (§ 15.207)

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency (MHz)	Limits (dBuV)				
	Q.P. (Quasi-Peak)	A.V. (Average)			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5.0	56	46			
5.0 to 30	60	50			

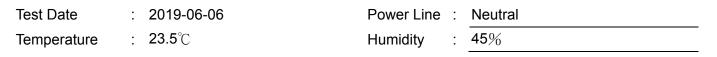

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

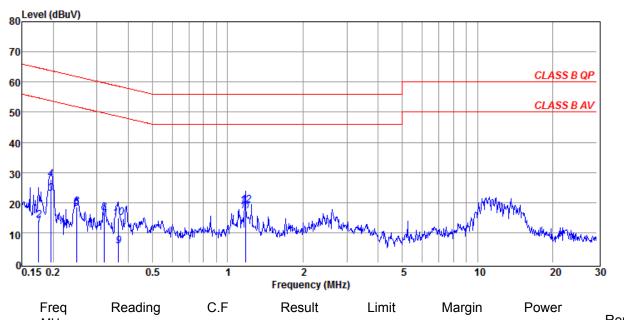

2.4 Test Result

Compliance

The final test data are shown on the following page(s).

Conducted Emission Test Data




Freq No. MHz	Reading	C.F	Result	Limit	Margin	Power	Remark	
	dBµV	dB	dBµV	dBµV	dB	Line		
1	0.196	22.84	0.15	22.99	53.80	-30.81	LINE	Average
2	0.196	27.41	0.15	27.56	63.80	-36.24	LINE	QP
3	0.251	17.93	0.17	18.10	51.73	-33.63	LINE	Average
4	0.251	18.31	0.17	18.48	61.73	-43.25	LINE	QP
5	0.361	6.36	0.18	6.54	48.69	-42.15	LINE	Average
6	0.361	13.79	0.18	13.97	58.69	-44.72	LINE	QP
7	0.391	12.17	0.18	12.35	48.03	-35.68	LINE	Average
8	0.391	14.96	0.18	15.14	58.03	-42.89	LINE	QP
9	1.178	14.01	0.26	14.27	46.00	-31.73	LINE	Average
10	1.178	16.13	0.26	16.39	56.00	-39.61	LINE	QP
11	2.692	4.16	0.36	4.52	46.00	-41.48	LINE	Average
12	2.692	10.48	0.36	10.84	56.00	-45.16	LINE	QP

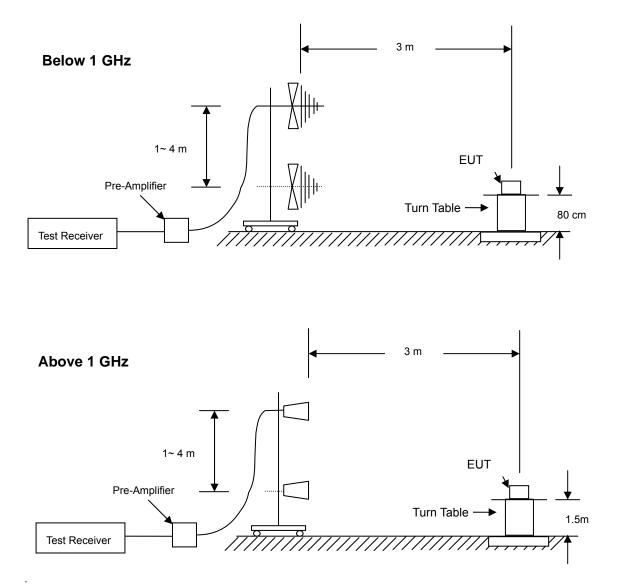
Note 1. C.F (Correction Factor) = LISN Factor + Cable loss •

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Conducted Emission Test Data

N	⊢req	Reading	C.F	Result	Limit	Margin	Power	
No.	MHz	dBµV	dB	dBµV	dBµV	dB	Line	Remark
1	0.175	12.46	0.13	12.59	54.72	-42.13	NEUTRAL	Average
2	0.175	14.11	0.13	14.24	64.72	-50.48	NEUTRAL	QP
3	0.196	22.91	0.14	23.05	53.80	-30.75	NEUTRAL	Average
4	0.196	27.44	0.14	27.58	63.80	-36.22	NEUTRAL	QP
5	0.248	17.79	0.14	17.93	51.82	-33.89	NEUTRAL	Average
6	0.248	18.51	0.14	18.65	61.82	-43.17	NEUTRAL	QP
7	0.320	14.32	0.15	14.47	49.71	-35.24	NEUTRAL	Average
8	0.320	16.34	0.15	16.49	59.71	-43.22	NEUTRAL	QP
9	0.365	5.30	0.15	5.45	48.61	-43.16	NEUTRAL	Average
10	0.365	14.85	0.15	15.00	58.61	-43.61	NEUTRAL	QP
11	1.178	16.92	0.23	17.15	46.00	-28.85	NEUTRAL	Average
12	1.178	18.75	0.23	18.98	56.00	-37.02	NEUTRAL	QP
-								

Note 1. C.F (Correction Factor) = LISN Factor + Cable loss •


Note 2. Margin = Result - Limit ; Result = Reading + C.F .

3 Radiated Emission Test

3.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

3.2 Test Arrangement and Procedure

- 1. The EUT is placed on a turntable, which is 0.8 m (below 1GHz) and 1.5m (above 1GHz) above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maxium procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer. Refer to each test results for detail setting up.
- 7. Repeat above procedures until the meausreemnts for all frequencies are complete.

3.3 Limit of Field Strength of Fundamental (§ 15.249)

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

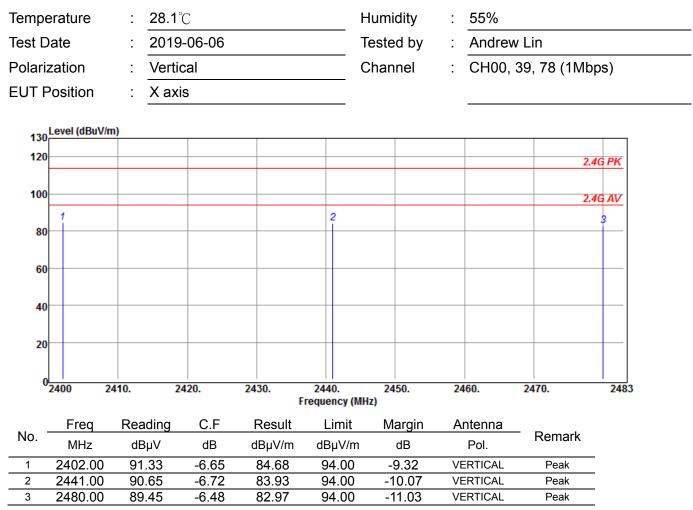
Fundamental Frequency	Field strength of fundamental	Field strength of harmonics		
(MHz)	(microvolts/ meter)	(meters)		
902-928	50	500		
2400-2483.5	50	500		
5725-5875	50	500		
24000-24250	250	2500		

Note:

- 1. Field strength limits are specified at a distance of 3 meters.
- For frequencies above 1000 MHz, the field strength limits in above table are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

3.4 Limit of Spurious Emission (§ 15.209)

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is lesser attenuation.

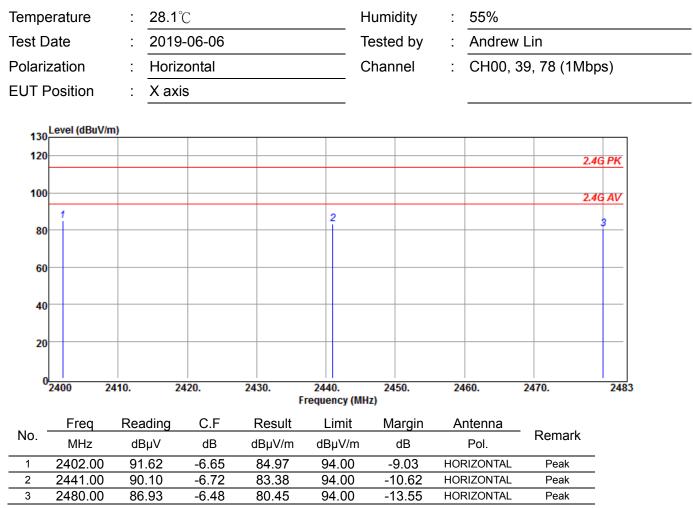

Frequency	Field strength	Measurement distance		
(MHz)	(microvolts/ meter)	(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100**	3		
88-216	150**	3		
216-960	200**	3		
Above 960	500	3		

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g.§§ 15.231 and 15.241.

3.5 Test Result

Compliance

The final test data are shown on the following page(s).



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

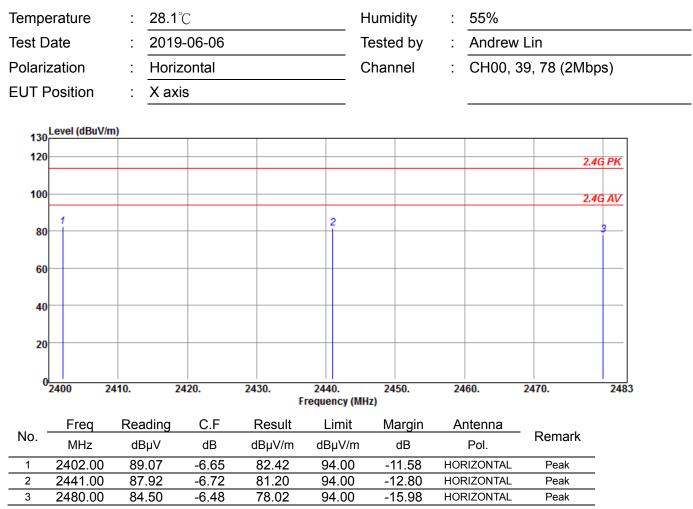


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

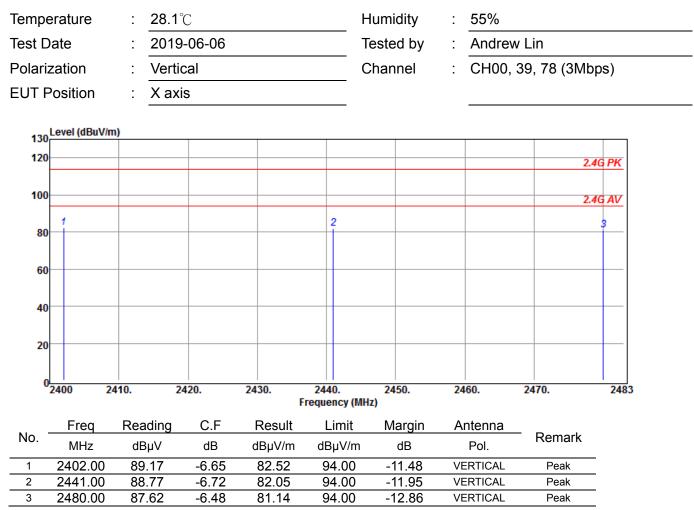


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

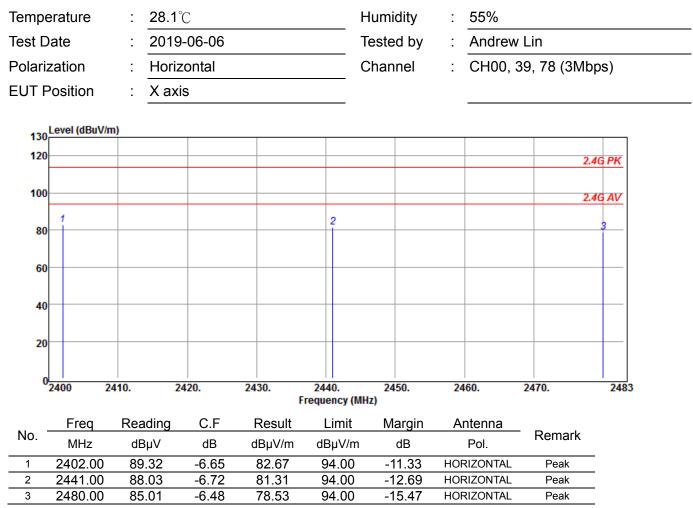


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

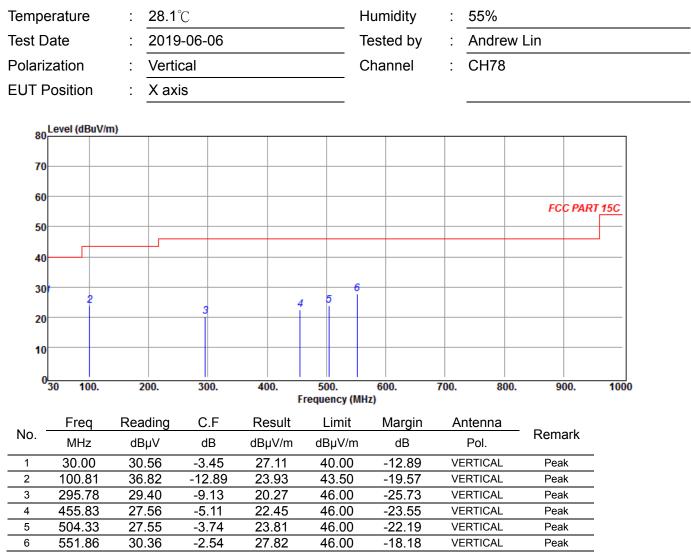


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain -

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

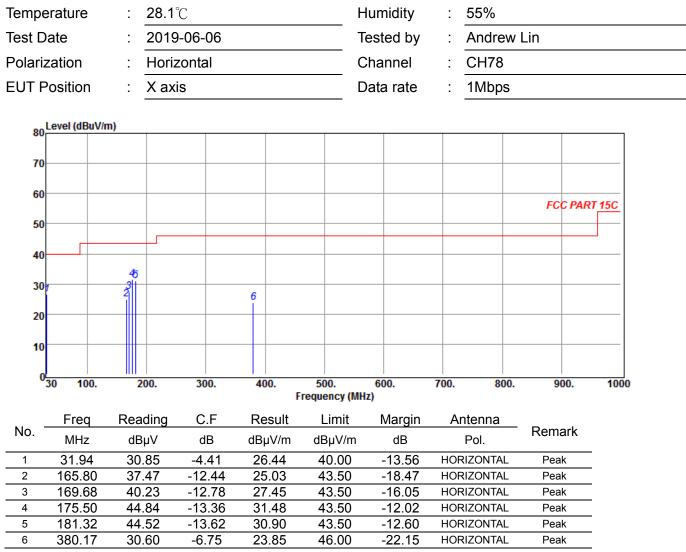

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

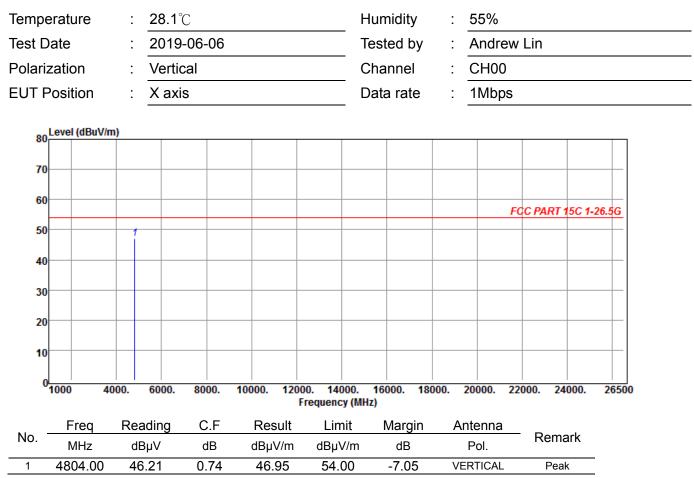
Radiated Emission Test Data (Below 1 GHz)



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain •

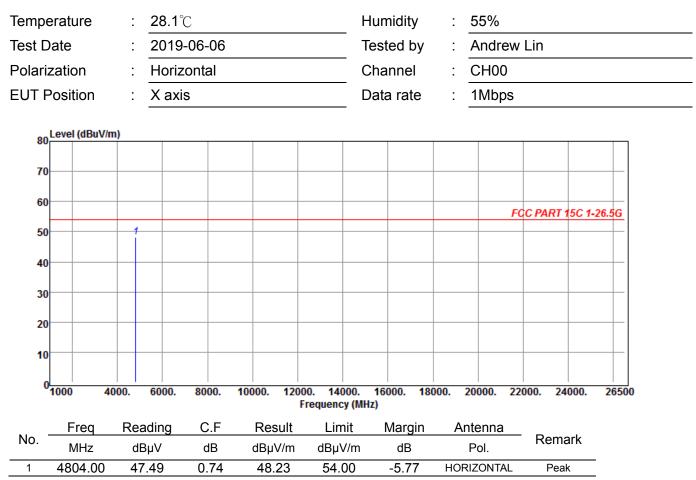
Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 30 MHz to 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 4. All readings are Peak values. None of the peak value reading exceeds the Q.P. limit. Hence, Q.P. reading was not measured.
- 5. The IF bandwidth of SPA between 30 MHz to 1 GHz was 100 kHz.


Radiated Emission Test Data (Below 1 GHz)

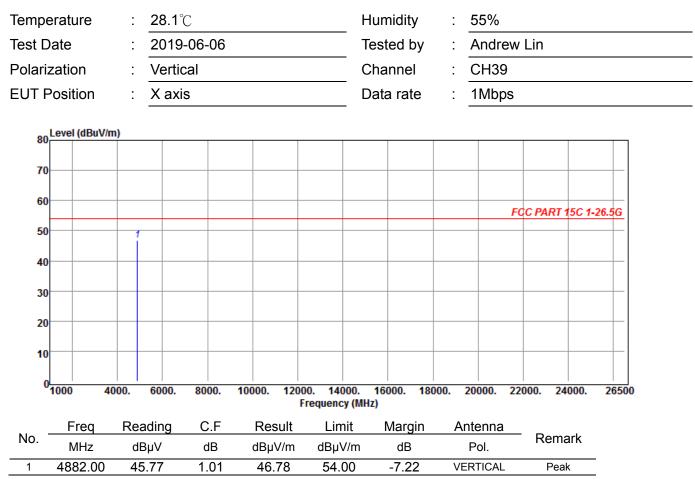
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain 。

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 30 MHz to 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 4. All readings are Peak values. None of the peak value reading exceeds the Q.P. limit. Hence, Q.P. reading was not measured.
- 5. The IF bandwidth of SPA between 30 MHz to 1 GHz was 100 kHz.

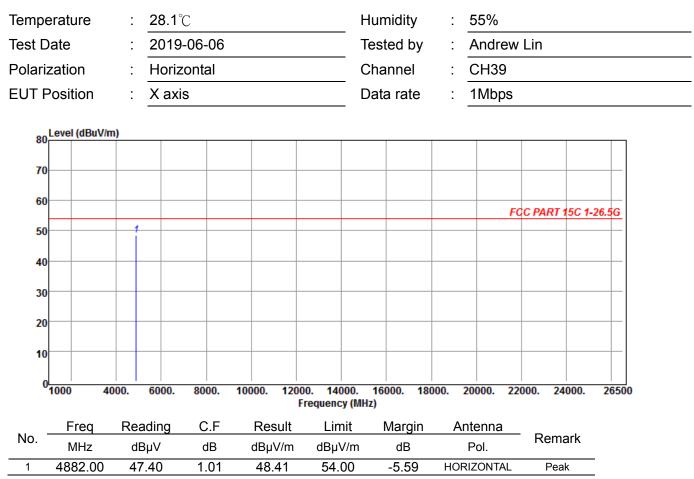
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

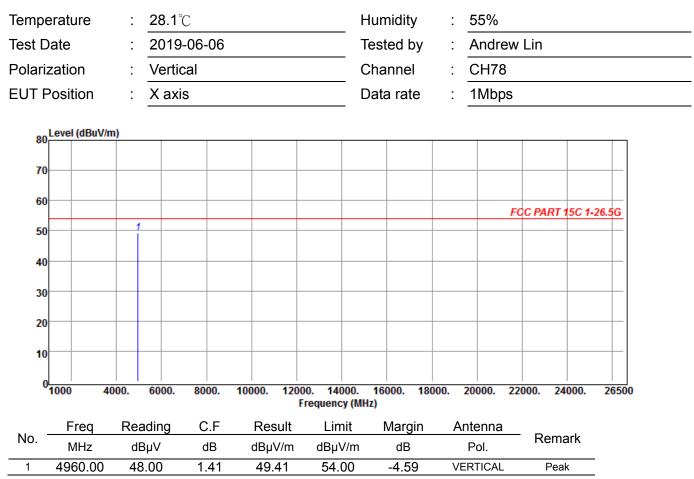
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain 。

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

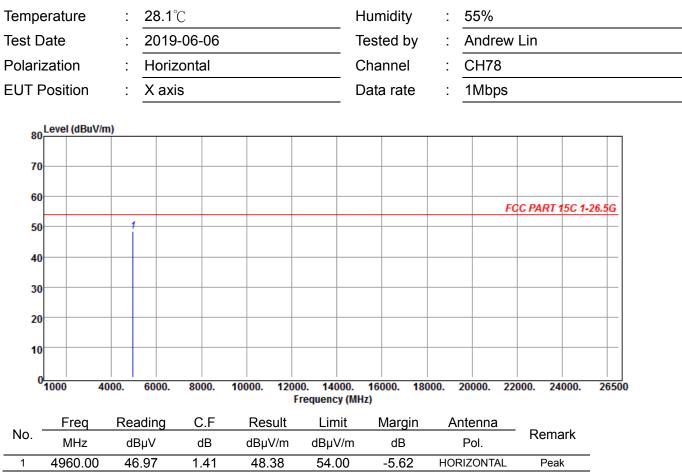
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain 。

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain •

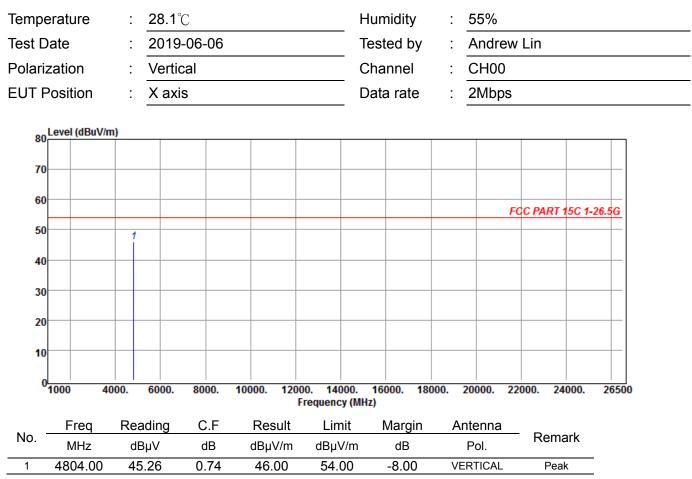
Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

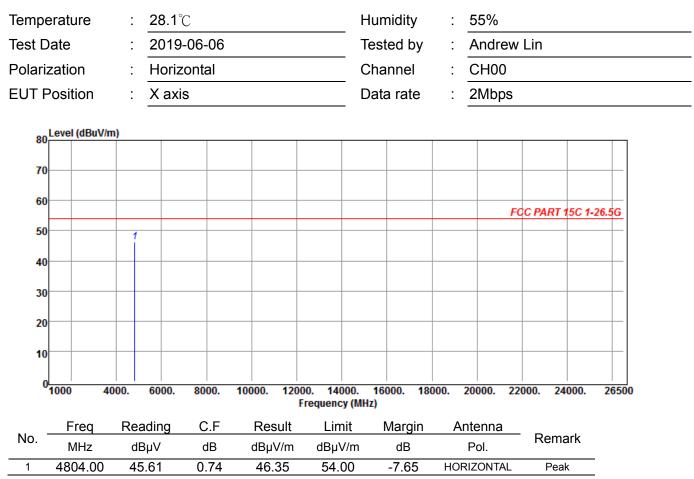
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

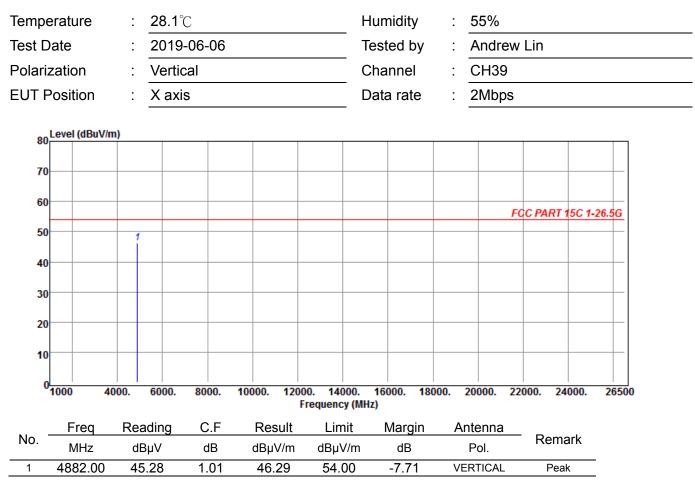


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

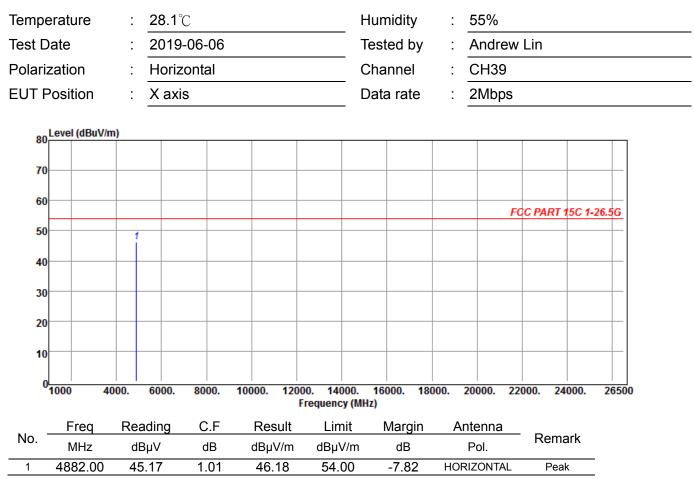
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain •


Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

5. Spectrum setting:

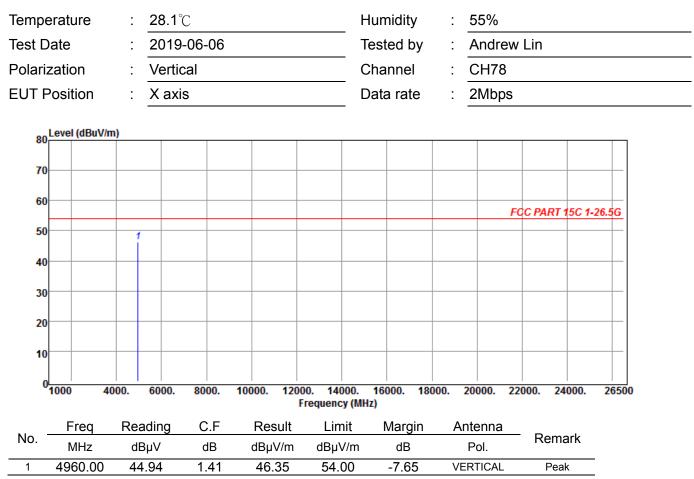

(a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain 。

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain •


Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

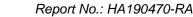
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

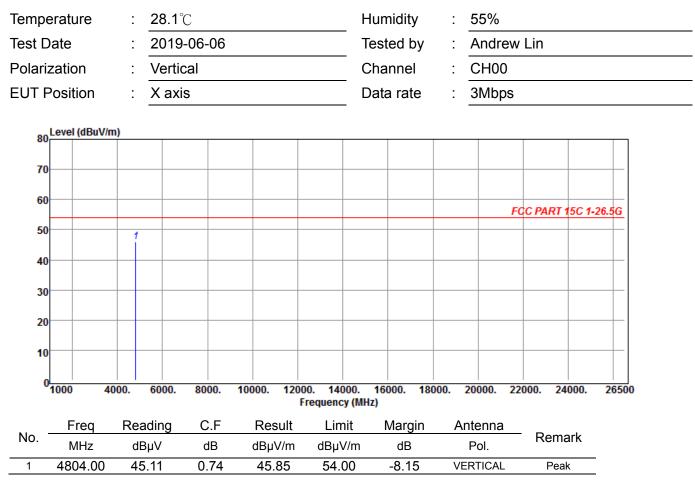
5. Spectrum setting:


(a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

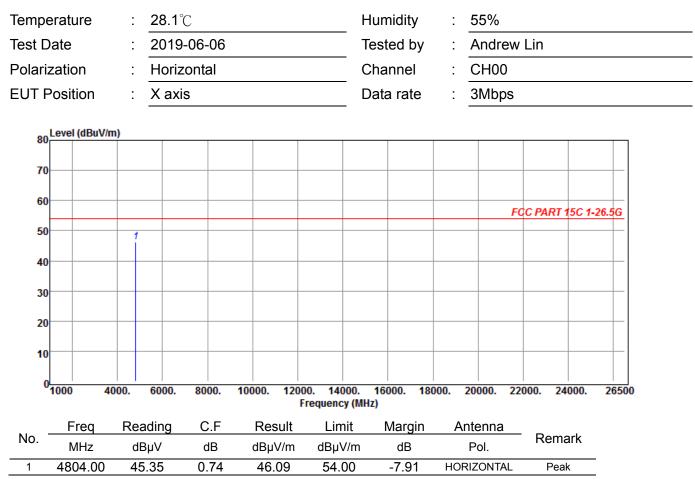

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

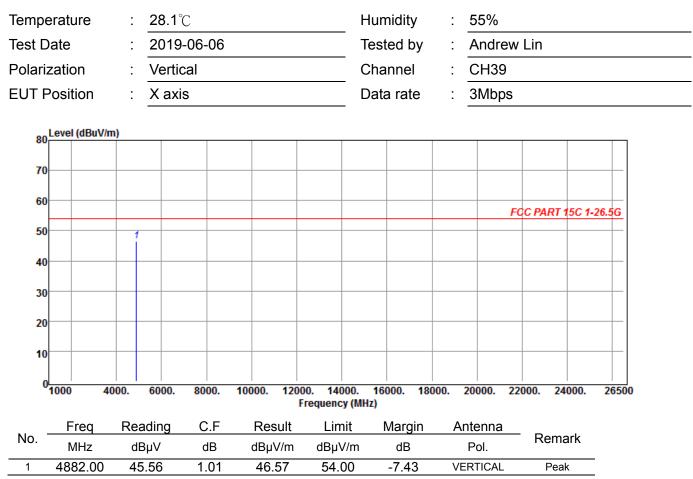
Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



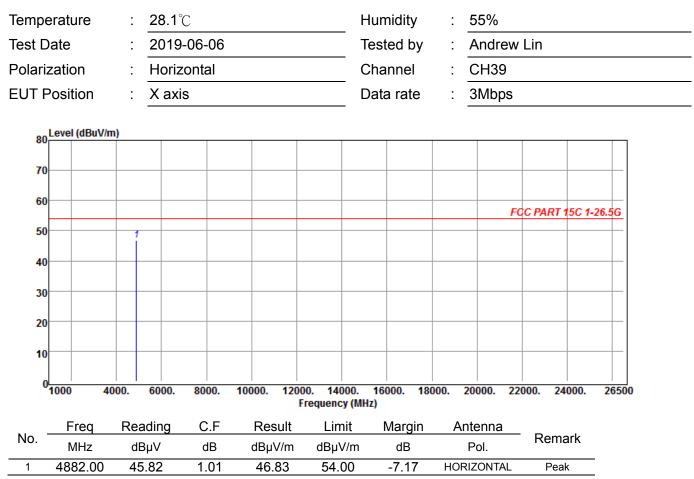
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain 。

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

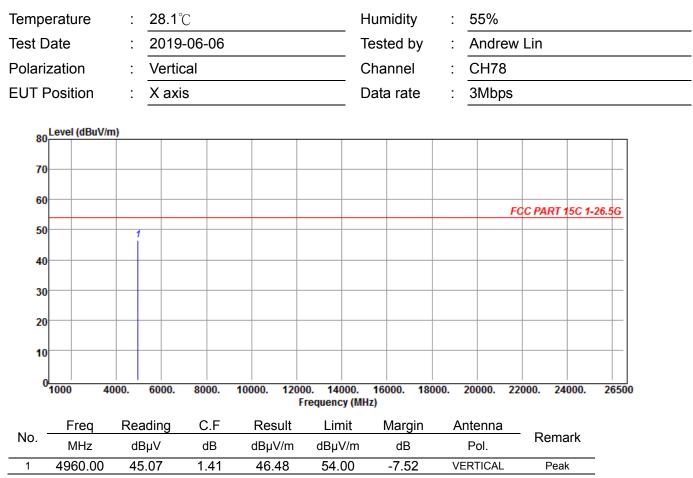

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain 。

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

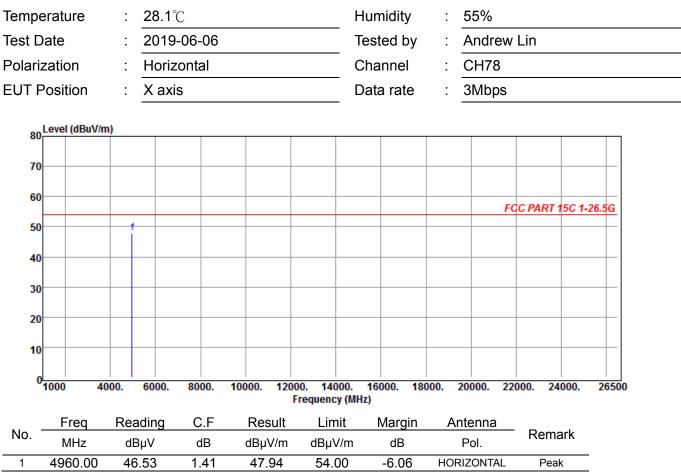
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain 。


Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

5. Spectrum setting:


(a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

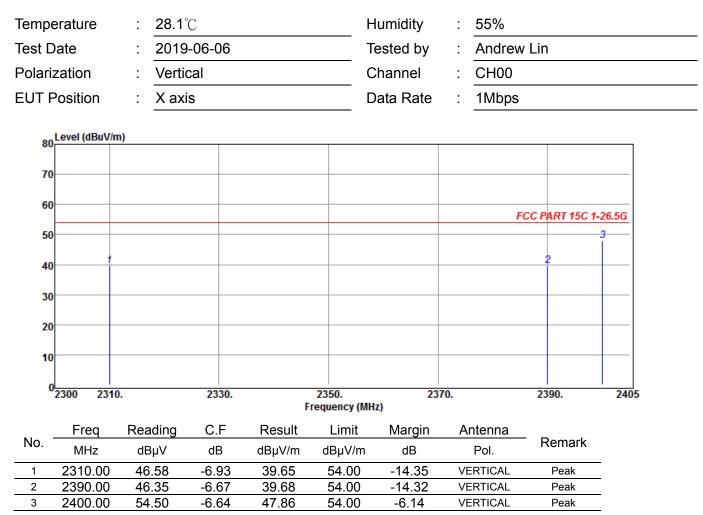
4 Out of Band Emission Test

4.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

4.2 Test Arrangement and Procedure

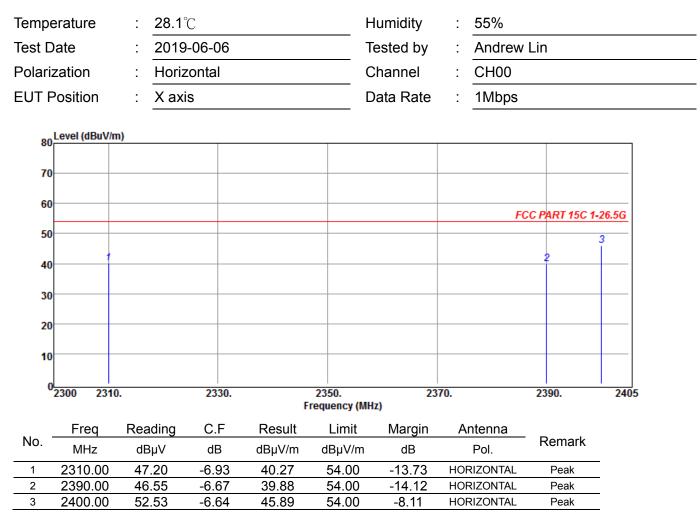
Refer to Sec. 3.2.


4.3 Limit of Field Strength of Fundamental (§ 15.249(d))

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

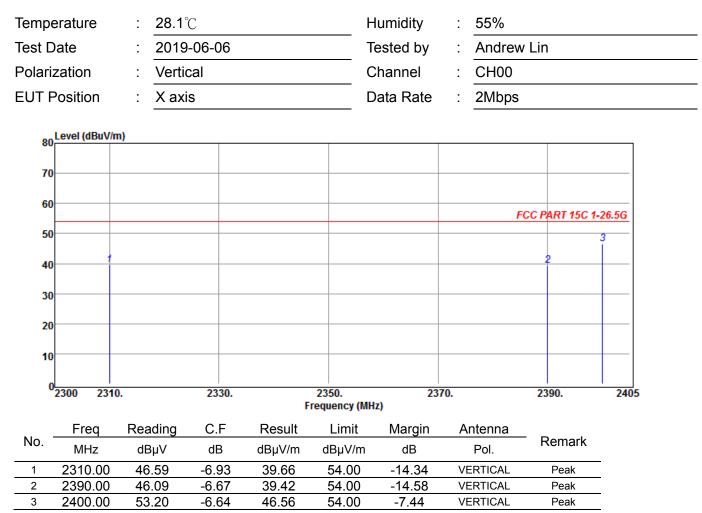
4.4 Test Result

Compliance


The final test data are shown on the following page(s).

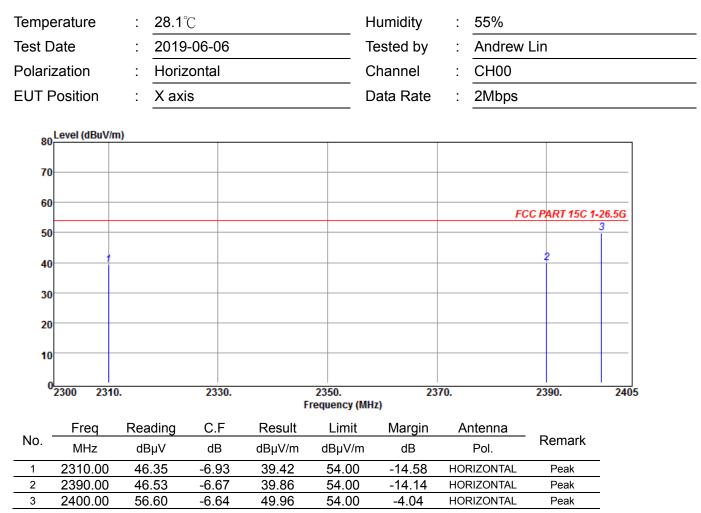
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

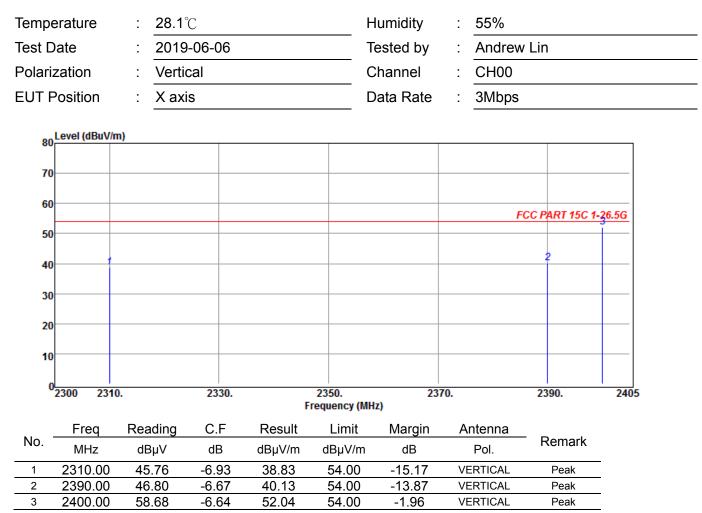
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

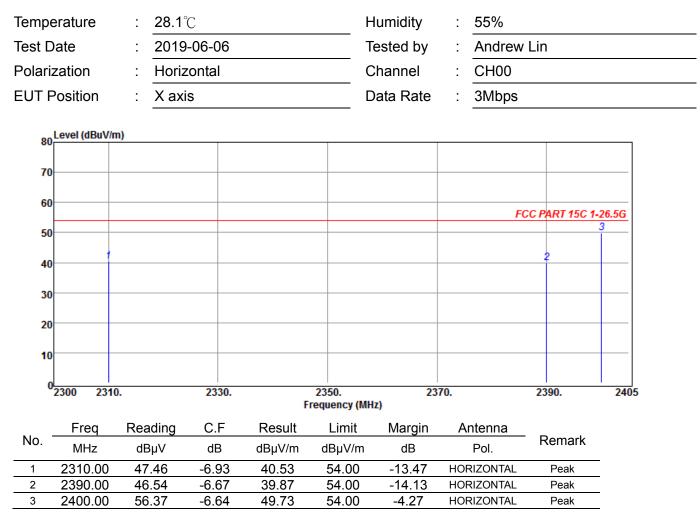
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain •

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

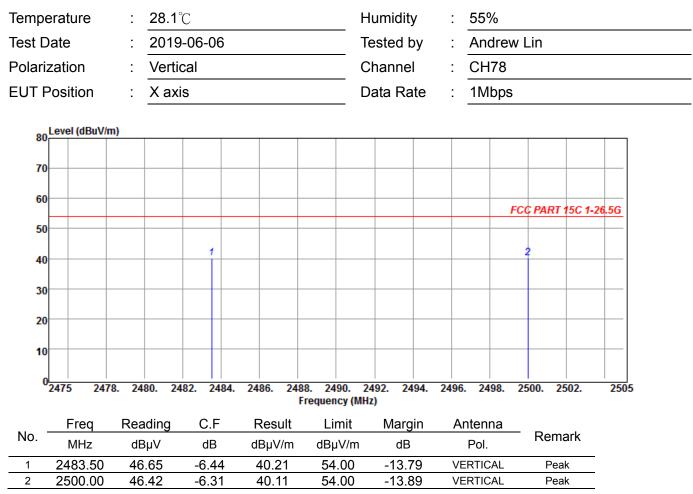
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

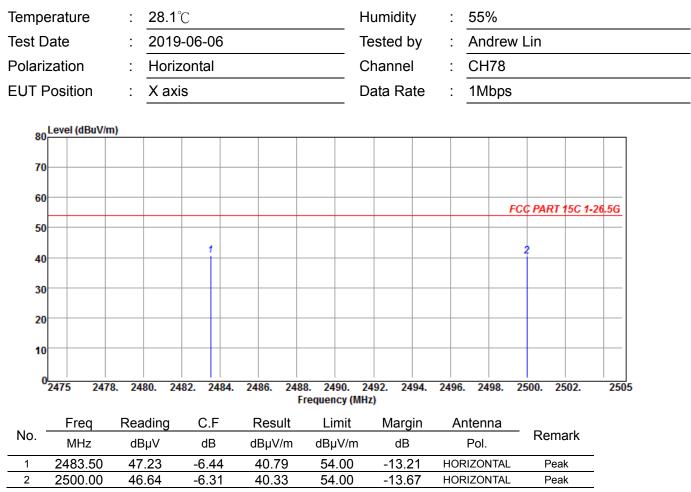
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain •

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

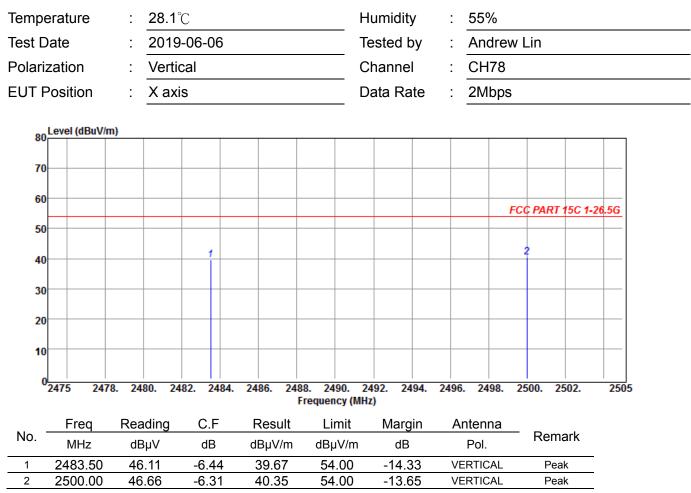
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (b) Peak Setting 1GHz to 10^{th} harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ${\scriptstyle \circ}$

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain 。

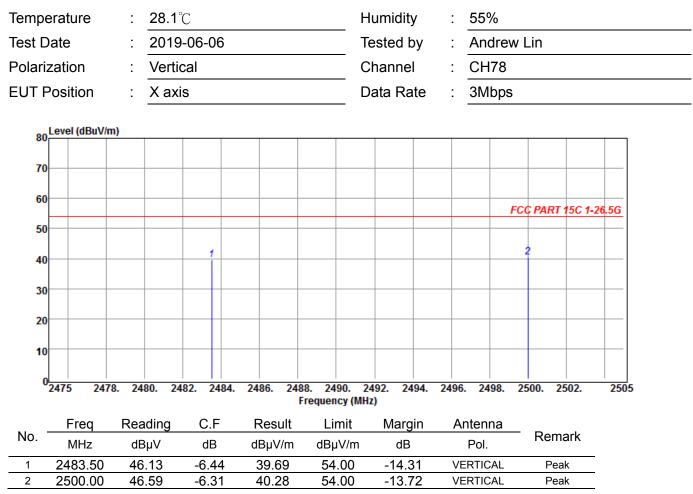
Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

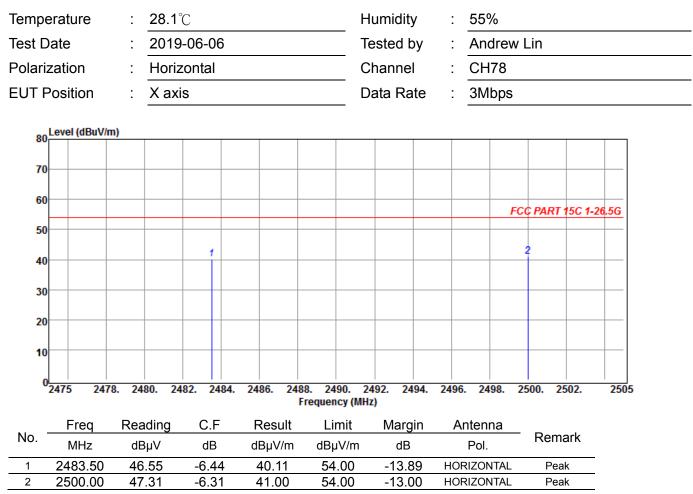
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain 。

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:


Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ${\scriptstyle \circ}$

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

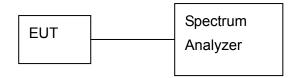
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain 。

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:


(a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

5 20 dB Bandwidth

5.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

5.2 Test Arrangement and Procedure

- 1. The transmitter output was connected to a spectrum analyzer (through an attenuator, if it's necessary).
- 2. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100kHz RBW and 300kHz VBW. Measured the -20 dB bandwidth and plotted the graph.

5.3 Limit

None; For report purpose only.

5.4 Test Result

No non-compliance noted.

The final test data are shown on the following page(s).

:

2

:

Temperature Test Date

Data Rate

28.1°C 2019-06-06 1 Mbps : <u>55%</u> : Andr

Humidity

Tested by

Channel

Andrew Lin

: 00

0

Spectrum									
Ref Level 1				RBW 100 kHz					
Att	30 (B SWT	18.9 µs 👄	VBW 300 kHz	Mode Auto	FFT			
)1Pk Max									
					M1[1]			91.34 dBµ
110 dBµV-								2.402	14470 GH
					ndB				20.00 d
100 dBµV-					Bw			1.1114	00000 MH
					Q factor 216:				
90 dBµV									
SO GDDA			1		X				
80 dBµV						5			
		T1	-			1.000	T2		
70 dBµV		T1 9					y		
, o dopo	-	1							
60 dBµV									
oo abpi									
50 dBµV-			_				_		
40 dBµV									
30 dBµV									
CF 2.402 Gł	Hz			691	pts			Spa	n 2.0 MHz
Marker									
Type Ref	Trc	Stimul	us	Response	Function	n	Fund	tion Result	
M1	1		447 GHz	91.34 dBµ					.1114 MHz
T1	1	2.4014	269 GHz	71.22 dBµ	V r	ndB			20.00 dB
T2	1	2.4025	384 GHz	71.40 dBµ	V Q fac	tor			2161.3
)(Measur	ing		170	

HongAn TECHNOLOGY CO., LTD.

Gene

Data Rate		: 1 Mbps			Channel :	39			
Spectrun	'n								
Ref Level				• RBW 100 kHz					
Att	2	BO dB SWT	18.9 µs 🦷	• VBW 300 kHz	Mode Auto FF1	Γ			
Тък мах					544[4]				00.00 db.uu
					M1[1]				90.08 dBµV)81770 GHz
110 dBµV—					ndB			2.110	20.00 dB
					Bw			1.1085	00000 MHz
100 dBµV—					Q factor				2201.8
				11					
90 dBµV				/					
80 dBµV—		- /				1			
70 dBµV—		T1				1	T2		
70 авру—							2		
60 dBµV		9							
50 dBµV			_						
40 dBµV									
30 dBµV									
CF 2.441 (GHz	I	1	691	pts			Spa	n 2.0 MHz
Marker					 Official design 				
Type Re	f Trc	Stimul	us	Response	Function		Fund	tion Result	t (
M1	1	2.4408	177 GHz	90.08 dBj	JV ndB down				L.1085 MHz
T1	1		211 GHz	70.14 dBj					20.00 dB
T2	1	2.4415	297 GHz	70.10 dBj	JV Q factor				2201.8
					Measuring.			4,00	

HongAn TECHNOLOGY CO., LTD.

Gard

Data Rate		: 11	Vbps				Ch	annel	:	78				
Spectrur	n													
Ref Level	120.00	dBµV		•	RBW	100 kHz	:							
Att		30 dB	SWT 18	.9 µs 🧉	VBW	300 kHz	M	ode Auto	FFT					
⊖1Pk Max														
								M1[1	1				86.	51 dBµV
												2.4	80144	70 GHz
110 dBµV—								ndB					2	0.00 dB
100 10 11								Bw				1.11	43000	00 MHz
100 dBµV—								Q fai	ctor					2225.7
oo do ar								M1						
90 dBµV—														
					1									
80 dBµV—				~					-					
		T 1	-						_	-	т2			
70 dBµV—		V									V			0
condour.		1									-			
60 dBµV—	1											1		
-														1
50 dBµV														-
40 dBµV—														
00 JD 11														
30 dBµV—														
CF 2.48 G	Hz					691	pts			•			pan 2	.0 MHz
Marker														
Type Re	ef Trc		Stimulus		Re	sponse		Functio	n		Fund	tion Res	ult	1
M1	1		2.480144	7 GHz		36.51 dBµ	JV	ndB do	wn					43 MHz
T1	1		2.479418			56.58 dBµ			ndB					0.00 dB
T2	1		2.480532	6 GHz		56.54 dBµ	JV .	Q fac	tor				2	2225.7
								Measu	ring			LXI		

: **28**.1℃

Temperature Test Date

Test Date	:	2
Data Rate	:	2

2019-06-06 : 2 Mbps

: 55%

:

:

Humidity

Tested by

Channel

Andrew Lin

00

Spect	rum										
Ref Le	vel 1	120.00 d	lΒµ∨		RBW 1	00 kHz					
Att		3	odb sw:	Γ 18.9 μs 🥌	VBW 3	00 kHz	Mode A	uto FFT			
😑 1Pk Ma	эх)
							M	1[1]			88.06 dBµV
110 dBµ								211-22		2.401	198550 GHz
110 000	·*						no				20.00 dB
100 dBµ	~ <u> </u>						Bi			1.3661	00000 MHz
100 000							Q	factor	1	1	1758.2
90 dBµV	/					M1					
					1	-					
80 dBµV	/ _		\neg								
		T 1								T2	
70 dBμV		TI								V	
		1									
60 dBµV		/									
	-										
50 dBµV											
40 dBµV											
loo do A	,										
30 dBµV	/										
CF 2.40	02 GH	Ηz				691 p	ts			Spa	in 2.0 MHz
Marker											
Туре	Ref	Trc	Stim			onse	Func		Fund	tion Result	
M1		1		19855 GHz		O6 dBµ∨		down		1	.3661 MHz
T1		1		12967 GHz		91 dBµV		ndB			20.00 dB
T2		1	2.40:	26628 GHz	68.	18 dBµV	Q :	factor			1758.2
][Mea	suring		120	

HongAn TECHNOLOGY CO., LTD.

Gard

Data Rat	te	:	2 Mbps				Chan	nel	:	39			
Spectr	um												
Ref Lev	rel 12	20.00 dB				100 kHz							
Att		30	dB SWT 1	8.9 µs	VBW	300 kHz	Mode	e Auto	FFT				
😑 1Pk Ma	X												
								M1[1]					87.05 dBµV
110 dBµ\												2.44	098260 GHz
TTO UDD	°							ndB					20.00 dB
100 dBµ\								BW				1.369	000000 MHz
100 000								Q fact	or	I		1	1783.0
90 dBµV-			_			M1							
					1	-	~~	~					
80 dBµV-					~	1000							
70 dBµV-		T1/										T2	
		1										X	
60 dBµV-	- /		_										
	X												
50 dBµV-													
40 dBµV-													
30 dBµV-													
CF 2.44	1 GH	z				691	pts					Sp	an 2.0 MHz
Marker							-						i
	Ref	Trc	Stimulu	s l	Re	sponse	Fi	inction	1		Fund	tion Resu	lt l
M1		1	2,44098			7.05 dBµ		ndB dow					1.369 MHz
T1		1	2.4402		E	7.08 dBµ	۷	no					20.00 dB
T2		1	2.4416	57 GHz	6	7.17 dBµ	V	Q fact	or				1783.0
)[) I	Measuri	ng			130	

HongAn TECHNOLOGY CO., LTD.

(and

Data Rate	:	2 Mbps		Channel :	78	
Spectrum						
Ref Level 1	.20.00 dl		📄 RBW 100 kHz			
Att	30	idB SWT 18.9 μs (📄 VBW 300 kHz	Mode Auto FFT		
⊖1Pk Max						
				M1[1]		83.09 dBµV
110 dBµV—						2.47998550 GHz
				ndB		20.00 dB
100 dBµV				Bw		1.366100000 MHz
100 0800				Q factor		1815.3
90 dBµV						
50 dbpv			M1			
80 dBµV				~		
00 abpv						
70 dBµV						
, o abpv	T1					T2
60 dBµV	1					X
00 000	1					
58-dBpV						
40 dBµV						
30 dBµV						
,						
	_					
CF 2.48 GHz	2		691 pt	ls		Span 2.0 MHz
Marker	1 1		1 -	1		
Type Ref		Stimulus	Response	Function	Fun	ction Result
M1	1	2.4799855 GHz	83.09 dBµV	ndB down ndB		1.3661 MHz
T1 T2	1	2.4792909 GHz 2.480657 GHz	63.23 dBµV 63.08 dBµV			20.00 dB 1815.3
		2.100037 012	1 05.00 dbpv	1		
	Л			Measuring		 4/0 //

:

Temperature Test Date

Test Date:Data Rate:3

2019-06-06 3 Mbps

28.1℃

Humidity : 55% Tested by : Andr

Channel

Andrew Lin

: 00

_

Spectrum	, T					
Ref Level	120.00 dBµV		RBW 100 kHz			
Att	30 dB	SWT 18.9 μs 🥌	• VBW 300 kHz	Mode Auto FFT	6	
⊖1Pk Max						
				M1[1]		88.22 dBµ'
110 dBµV-						2.40214470 GH
				ndB		20.00 di
100 dBµV-				Bw		1.369000000 MH
				Q factor		1754.
90 dBµV				M1		
SO GODA				~		
80 dBµV		\sim	-			
00 00 00	1	-0				5 8.300 C
70 dBµV	T1					T2
, o depi						
60 dBµV	1					
50 dBµV-						
40 dBµV						
30 dBµV						
CF 2.402 G	iHz			its		Span 2.0 MHz
Marker						
Type Ref	f Trc	Stimulus	Response	Function	Fund	tion Result
M1	1	2.4021447 GHz	88.22 dBµ\			1.369 MHz
T1	1	2.4013054 GHz	68.22 dBµ\			20.00 dB
T2	1	2.4026744 GHz	68.15 dBµ\	/ Q factor		1754.6
	Π			Measuring		1) 0
						1

🖌 Hon	gAn TECHN	IOLOGY CO., LT	D.					Repor	t No.: HA	190470-RA
Data Rate		: 3 Mbps			Channel	:	39			
Spectrur	n									
Ref Leve	120.00 c	lBµV		• RBW 100 kHz						
Att	3	D dB SWT 1	8.9 µs 🦷	• VBW 300 kHz	Mode Auto	FFT				
😑 1Pk Max										
					M1[1]]				87.16 dBµV
110 40.42									2.440	98260 GHz
110 dBµV–					ndB					20.00 dB
100 dBµV-					Bw				1.3690	00000 MHz
100 0600					Q fac	tor				1783.0
90 dBµV—				M1						
50 abµv										
80 dBµV—				-			-			
70 dBµV—	T1/								T2	
									X	
60 dBµV—										
	Ł									
50 dBµV—										
40 dBµV—										
30 dBµV—										
CF 2.441	ĠHz	-		691	ots		I		Spa	n 2.0 MHz
Marker										1
Type R	ef Trc	Stimulu	s	Response	Function	1		Functi	on Result	. 1
M1	1	2.44098		87.16 dBµ'	√ ndB dov					1.369 MHz
T1	1	2.44029		67.19 dBµ'		dB				20.00 dB
T2	1	2.44166	57 GHz	67.22 dBµ'	V Q fact	or				1783.0
(Measuri	ing			X	lin

HongAn TECHNOLOGY CO., LTD.

Gard

Data Rate		: 3 Mbps			C	Channel	:	78			
Spectrun	n										
Ref Level	120.00 d	lBµV		RBW 10	0 kHz					`	
Att	31	DdB SWT	18.9 µs 👄	VBW 30	0 kHz	Mode Auto A	FT				
😑 1Pk Max											
						M1[1]				83.73 dBµV	
A COLUMN A									2.47	981770 GHz	
110 dBµV—						ndB			20.00 dB		
100 40.42						Bw			1.377	700000 MHz	
100 dBµV—						Q fact	or			1800.0	
90 dBµV—				M1							
00 40.57				1		\sim					
80 dBµV—						-	~~~				
		1									
70 dBµV—	T1/								12		
60 dBus/	1								X		
60 dBµV—	1										
ED JD JD											
50 d8 рV—											
40 dBµV											
40 ивµV—											
30 dBµV											
30 uвµv—											
CF 2.48 GHz 691 pts Span 2.0 MHz											
Marker											
Type Re	f Trc	Stimulus		Response		Function		Function Result			
M1	1				3 dBµV	ndB dow				1.3777 MHz	
T1	1	2.4792909 GHz		63.77 dBµV		ndB				20.00 dB	
T2	1	2.4806	686 GHz	63.6	6 dBµV	Q facto	or			1800.0	
						Measurin	1g		1,70	11.	

6 Antenna requirement

6.1 Limit (§ 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a uniue coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

6.2 Test Result

Compliance.

The EUT applies a Chip Ceramic antenna.

-----End Of Test Report------