

FCC COMPLIANCE TEST REPORT

Technical Statement of Conformity in accordance with FCC Part 15 Subpart C

The Product

Equipment Under Test Bluetooth Dongle **Model Number** : BT-503 **Product Series** : BT-501 **Report Number** : HA210029-RA **Issue Date** : 17-Feb-2021

is produced by

Mobility Sound Technology LTD.

5F, No.100, Jian 1st Road, ZhongHe Dist., New Taipei City #23585, Taiwan

NO.15-1, CWEISHUH KENG, CWEIPIN VILLAGE, LINKOU DIST, NEW TAIPEI CITY, TAIWAN, R. O. C.

TEL: +886-2-26030362 FAX: +886-2-26019259 E-mail: hatlab@ms19.hinet.net BSMI Registration No.: SL2-IN-E-0023, SL2-A1-E-0023, SL2-IS-E-0023, SL2-R1-E-0023, SL2-R2-E-0023, SL2-L1-E-0023 VCCI Registration No.: R-12156, C-12329, T-10219, G-10696

FCC Designation No. : TW1071, TW1163 TAF Accreditation No.: 1163 IC assigned Code : 11226A-2 ISED CAB identifier: TW1163

Caution :

This report sets forth our findings solely with respect to the test sample. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment. Please note that the measurement uncertainty are provided for informational purpose only and are not used in determining the Pass/Fail results.

This test report shall not be reproduced written approval of HongAn TECHNOLOGY EMC Laboratory.

The relevant information of the content of this test report is provided by the customer. For the correctness, appropriateness or completeness of the information provided by the customer, if there is any doubt or error, which will affect the validity of the results of this test report, the laboratory will not be liable Related responsibilities.

Report Version : V00

(mar

Contents

1	General Description	7
1.1	Description of EUT	7
1.2	Test Instruments	9
1.3	Auxiliary Equipments	10
1.4	EUT SETUP	10
1.5	Identifying the Final Test Mode	11
1.6	Final Test Mode	12
1.7	Condition of Power Supply	12
1.8	EUT Configuration	12
1.9	Test Methodology	12
1.10	General Test Procedures	12
1.11	Modification	13
1.12	FCC Part 15.205 restricted bands of operations	14
2	Power line Conducted Emission Measurement	15
2.1	Test Instruments	15
2.2	Test Arrangement and Procedure	15
2.3	Limit (§ 15.207)	15
2.4	Test Result	15
3	Radiated Emission Test	20
3.1	Test Instruments	20
3.2	Test Arrangement and Procedure	20
3.3	Limit of Field Strength of Fundamental (§ 15.249)	21
3.4	Limit of Spurious Emission (§ 15.209)	21
3.5	Test Result	21
4	Out of Band Emission Test	58
4.1	Test Instruments	58
4.2	Test Arrangement and Procedure	58
4.3	Limit of Field Strength of Fundamental (§ 15.249(d))	58
4.4	Test Result	58
5	20 dB Bandwidth	75
5.1	Test Instruments	75
5.2	Test Arrangement and Procedure	75
5.3	Limit	75
5.4	Test Result	75

6.1 6.2	Limit (§ 15.203) Test Result	88 88
7	Photographs of the Tests	89
7.1	Power line Conducted Emission Test (at Mains Terminals)	89
7.2	Radiated Disturbances Emission Test	90
8	Photographs of the EUT	91

Release control Record

Report Version	Description	Issued Date
V00	Original release.	17-Feb-2021

Test Result Certification

Applicant	: Mobility Sound Technology LTD.
Address of Applicant	5F, No.100, Jian 1 st Road, ZhongHe Dist., New Taipei City
Address of Applicant	#23585, Taiwan
Manufacturer	: Mobility Sound Technology LTD.
Address of Manufacturer	5F, No.100, Jian 1 st Road, ZhongHe Dist., New Taipei City
Address of Manufacturer	#23585, Taiwan
Trade Name	: MobilitySound
Equipment Under Test	: Bluetooth Dongle
Model Number	: BT-503
Product Series	: BT-501
FCC ID	: XTS-BT-503
Filing Type	: Certification
Sample Received Date	: 13-Jan-2020
Test Standard	:

FCC Part 15 Subpart C §15.249

Deviations from standard test methods & any other specifications : NONE

Remark:

- 1. This report details the results of the test carried out on one sample.
- 2. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in both ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.203, 15.207, 15.209, 15.249.
- 3. This report applies to the above sample only and shall not be reproduced in part without written approval of HongAn Technology Co., Ltd.
- Test Location: HongAn Technology Co., Ltd., No.15-1 Cweishuh Keng, Cweipin Village, Linkou Dist., New Taipei City, Taiwan, R.O.C. FCC Designation No.: TW1071, TW1163.

Andrew Lin Tested by:

2021-01-25

Andrew Lin / ENG. Dept. Staff

Basan Hsieh

Date: 2021-02-17

Approved by:

Eason Hsieh / Section Manager

Summary of Test Result

	Test Item	Applicable Standard	Test Result	
1	Antenna Requirement	FCC part 15 subpart C §203	Compliance	
2	Conducted Emission	FCC part 15 subpart C §207	Compliance	
3	Restricted Band of	FCC part 15 subpart C \$205	Compliance	
3	Operation	FCC part 15 subpart C §205		
4	Radiated Emission	FCC part 15 subpart C §209	Compliance	
5	Field Strength	FCC part 15 subpart C §249(a)	Compliance	
6	Out of Band Emission	FCC part 15 subpart C §249(d)	Compliance	
7	20dB Bandwidth	FCC part 15 subpart C §215(c)	Compliance	

1 General Description

1.1 Description of EUT

Equipment Under Test	:	Bluetoot	luetooth Dongle						
Model Number of EUT	:	BT-503	T-503						
Product Series	:	BT-501	T-501						
Power Supply	:	lithium b	thium battery: DC 3.7 V						
Frequency Range	:	2402~24	180 MHz						
Number of Channels	1 :	BR+EDF							
		BLE:40 (
		BR+EDF	R :		1				
		00	2402	20	2422	40	2442	60	2462
		01	2403	21	2423	41	2443	61	2463
		02	2404	22	2424	42	2444	62	2464
		03	2405	23	2425	43	2445	63	2465
		04	2406	24	2426	44	2446	64	2466
		05	2407	25	2427	45	2447	65	2467
		06	2408	26	2428	46	2448	66	2468
		07	2409	27	2429	47	2449	67	2469
		08	2410	28	2430	48	2450	68	2470
		09	2411	29	2431	49	2451	69	2471
		10	2412	30	2432	50	2452	70	2472
		11	2413	31	2433	51	2453	71	2473
Carrier Frequency of	:	12	2414	32	2434	52	2454	72	2474
Each Channel		13	2415	33	2435	53	2455	73	2475
		14	2416	34	2436	54	2456	74	2476
		15	2417	35	2437	55	2457	75	2477
		16	2418	36	2438	56	2458	76	2478
		17	2419	37	2439	57	2459	77	2479
		18	2420	38	2440	58	2460	78	2480
		19	2421	39	2441	59	2461	-	-
		BLE:			·		<u> </u>		·
		00	2402	10	2422	20	2442	30	2462
		01	2404	11	2424	21	2444	31	2464
		02	2406	12	2426	22	2446	32	2466
		03	2408	13	2428	23	2448	33	2468
		04	2410	14	2430	24	2450	34	2470

		05	2412	15	2432	25	2452	35	2472
		06	2414	16	2434	26	2454	36	2474
		07	2416	17	2436	27	2456	37	2476
		08	2418	18	2438	28	2458	38	2478
		09	2420	19	2440	29	2460	39	2480
Antenna Specification	:	Chip Ant	tenna/ Ga	ain: 1.5 c	dBi				
		FHSS BR : GF	-		014				
Modulation Technique	:	EDR : π/4-DQPSK, 8-DPSK DTS BLE : GFSK							
Transmit Data Rate	BR : 1Mbps								
Specification Dimensions : 2.2 cm (L) X 3.7 cm (W) X 3.9 cm (H) Weight : 15 g Intended Function : The EUT is a Bluetooth Dongle. Product Variance : N/A.									

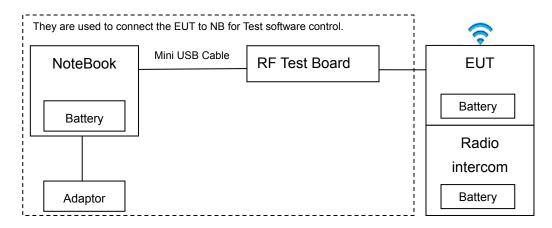
1.2 Test Instruments

Instrument Manufactu		Model				
Name	Mode	Number	Serial Number	Last Cal. Date	Next Cal. Date	
Spectrum Analyzer	R&S	FSV 40	101296	08-Apr-2020	07-Apr-2021	
ESCI 7 EMI Test Receiver	R&S	ESCI 7	100931	07-Aug-2020	06-Aug-2021	
Pre-Amplifier	Schaffner	CPA9231A	0405	17-Dec-2020	16-Dec-2021	
Pre-Amplifier	EMCI	EMC051845SE	980692	03-Dec-2020	02-Dec-2021	
Pre-Amplifier	EMCI	EMC184045SE	980699	22-Apr-2020	21-Apr-2021	
Bilog Antenna	TESEQ	CBL6111D	47016	24-Jul-2020	23-Jul-2021	
Horn Antenna	EMCO	3115	9912-5992	20-May-2020	19-May-2021	
Horn Antenna	Com-Power	AH-840	101042	22-May-2020	21-May-2021	
Cable	HongAn	8D-FB	HA2-10MSite	21-Aug-2020	20-Aug-2021	
Cable	EMCI	EMC104-SM-N M-1000	191104	03-Dec-2020	02-Dec-2021	
Cable	EMCI	EMC104-SM-N M-8000	191103	03-Dec-2020	02-Dec-2021	
Cable	EMCI	EMC102-KM-K M-1000	200301	22-Apr-2020	21-Apr-2021	
Cable	EMCI	EMC102-KM-K M-8000	200213	22-Apr-2020	21-Apr-2021	
LISN	EMCO	3810/2NM	9702-1819	17-Jul-2020	16-Jul-2021	
LISN	SCHWARZ BECK	NSLK 8127	01021	11-Sep-2020	10-Sep-2021	
Cable	HongAn	RG 223/U	HA2-CE	21-Aug-2020	20-Aug-2021	
Software	Audix	e3 (Ver:6.101006a)	N/A	N/A	N/A	

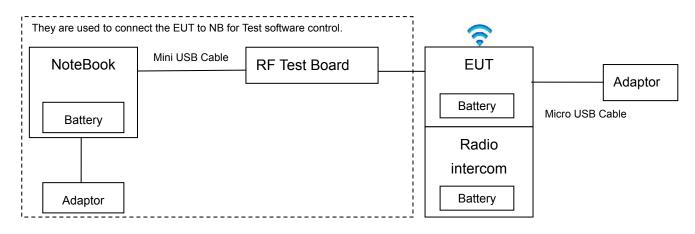
* The test equipments used are calibrated and can be traced to National ITRI and International Standards.

1.3 Auxiliary Equipments

1.3.1.	Provided by HongAn	Technology Co.,	Ltd. for Test.
--------	--------------------	-----------------	----------------


No.	Equipment	Model No.	Serial No.	EMC Approved	Brand	Power Cord
01	NoteBook	X542U	HBN0CV11S7834 65	"CE Mark,	X542U	Adapter to Notebook Inptut : AC 100-240V~50/60Hz 1.6A Output : 19V 3.42A Non-shielded, Un-detachable, 2.2m, W/O Core
02	Adapror	PSAA10A-050Q	N/A	R33084	НТС	Input:100-240Vac,0.5A,50-60Hz Output:5Vdc,2A

1.3.2. Provided by the Manufacturer


No.	Equipment	Model No.	Serial No.	EMC Approved	Brand	Specification
01	BT Test Board	USB-SPI	N/A	N/A	CSR	Non-shielded, Detachable0.2m, w/o core
02	Radio Intercom	CP200d	N/A	N/A	MOTOROLA	Battery: DC 7.4V
03	Mini USB Cable	N/A	N/A	N/A	N/A	Non-Shielded; Detachable, 1m w/o core
04	Micro USB Cable	N/A	N/A	N/A	N/A	Shielded; Detachable, 1.8m w/o core

1.4 EUT SETUP

1.4.1 SETUP for Radiated Test

1.4.2 SETUP for Conducted Test

Note: Main Test Sample: BT-503

1.5 Identifying the Final Test Mode

1.5.1 BR+EDR

Mode 1: BR(1Mbps) 2402 MHz TX

Mode 2: BR(1Mbps) 2441 MHz TX

Mode 3: BR(1Mbps) 2480 MHz TX

Mode 4: EDR(2Mbps) 2402 MHz TX

Mode 5: EDR(2Mbps) 2441 MHz TX

Mode 6: EDR(2Mbps) 2480 MHz TX

Mode 7: EDR(3Mbps) 2402 MHz TX

Mode 8: EDR(3Mbps) 2441 MHz TX

Mode 9: EDR(3Mbps) 2480 MHz TX

Note:

- 1. After pre-test, we identified that the Test Mode 2 was most likely to produce the maximum transmitting power and cause maximum disturbance. Therefore, the Final Assessment was performed for the worst case.
- 2. The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.
- 3. Channel Low (2402 MHz), Mid (2441 MHz) and High (2480 MHz) were chosen for full testing.
- 4. According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.
- 5. Test Software: Blue Test3 V-2-6-8-1467; RF parameter setting : BR EDR: Channel 00 , 39 , 78 / Data Rate : 1,2,3 Mbps / TX POWER : 50.

```
1.5.2 BLE
```

Mode 10: 2402 MHz TX Mode 11: 2442 MHz TX Mode 12: 2480 MHz TX Note:

- 1. After pre-test, we identified that the Test Mode 11 was most likely to produce the maximum transmitting power and cause maximum disturbance. Therefore, the Final Assessment was performed for the worst case.
- 2. The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.
- 3. Channel Low (2402 MHz), Mid (2442 MHz) and High (2480 MHz) were chosen for full testing.
- 4. According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.
- 5. Test Software: Blue Test3 V-2-6-8-1467; RF parameter setting : Channel 00 , 20 , 39 / Data Rate : 1 Mbps / TX POWER : 50.

1.6 Final Test Mode

1.6.1 BR+EDR

Conducted Emission: Mode2. Radiated Emission (30~1000 MHz): Mode2. Radiated Emission (1~26.5GHz): All Modes.

1.6.2 BLE

Conducted Emission: Mode11. Radiated Emission (30~1000 MHz): Mode11. Radiated Emission (1~26.5GHz): All Modes.

1.7 Condition of Power Supply

DC 5V through Radio intercom

1.8 EUT Configuration

- 1. Setup the EUT as shown in Sec.1.4 Block Diagram.
- 2. Turn on the power of all equipments.
- 3. Activate the selected Final Test Mode.

1.9 Test Methodology

The tests documented in this report were performed in accordance with ANSI C63.10 (2013) and FCC CFR 47 15.203, 15.207, 15.209 and 15.249.

1.10 General Test Procedures

Conducted Emissions

The EUT is set according to the requirements in Section 6.2 of ANSI C63.10 (2013).

Radiated Emissions

The EUT is set according to the requirements in Section 6.3 of ANSI C63.10 (2013).

1.11 Modification

N/A

the frequency bands listed below:

1.12 FCC Part 15.205 restricted bands of operations

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of

the nequency band.			
MHz	MHz	MHz	GHz
0.090-0.110 16.42-16.423		399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37635-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

2 Power line Conducted Emission Measurement

2.1 Test Instruments

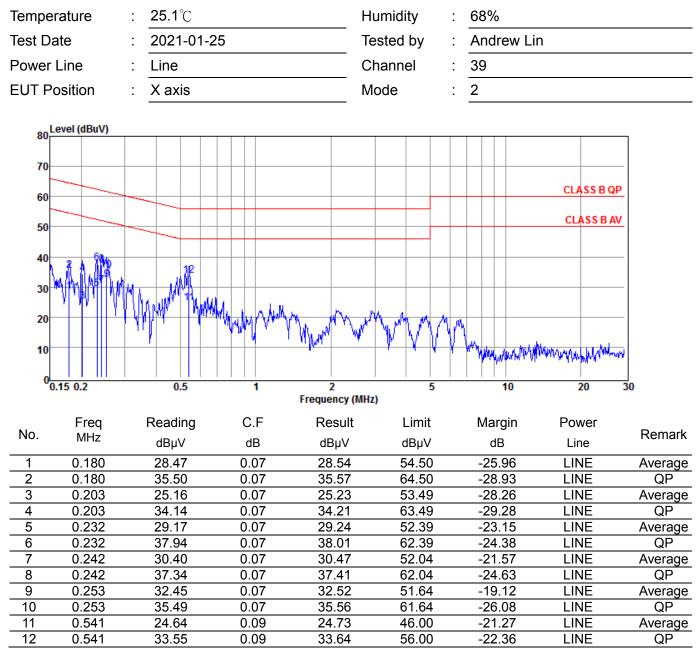
Refer to Sec. 1.2 Test Instruments.

2.2 Test Arrangement and Procedure

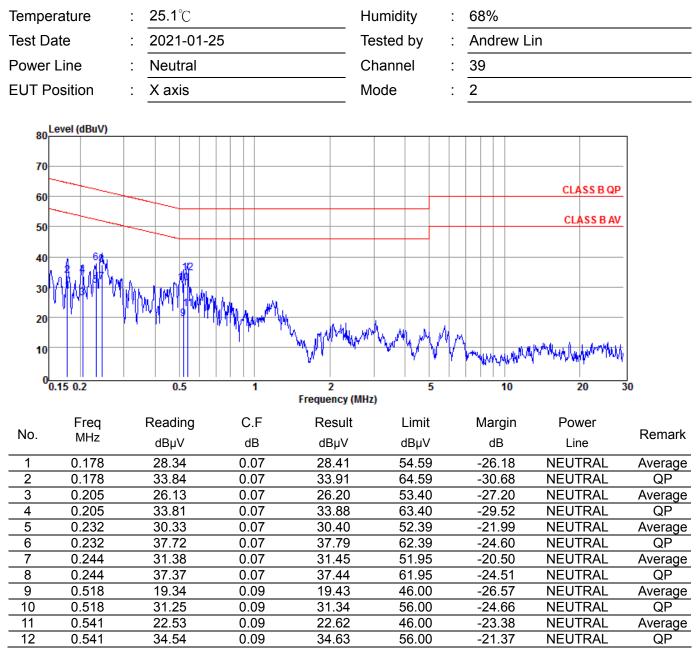
- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

2.3 Limit (§ 15.207)

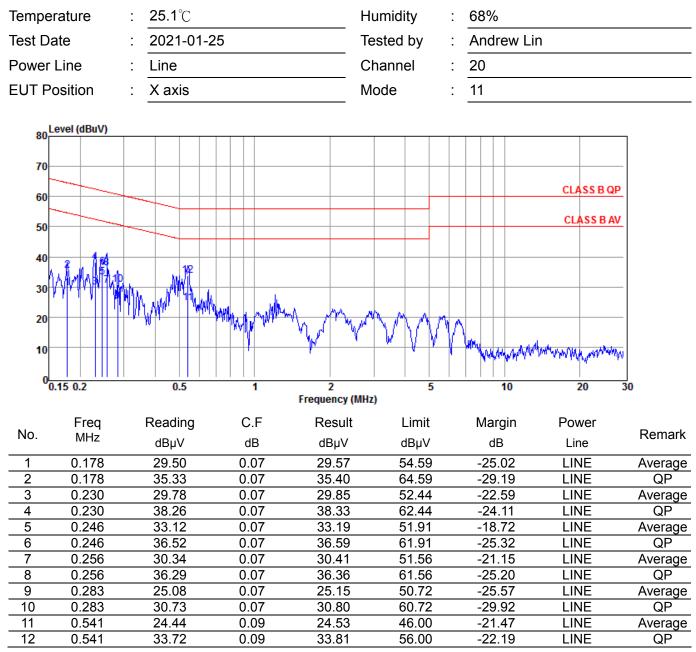
For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

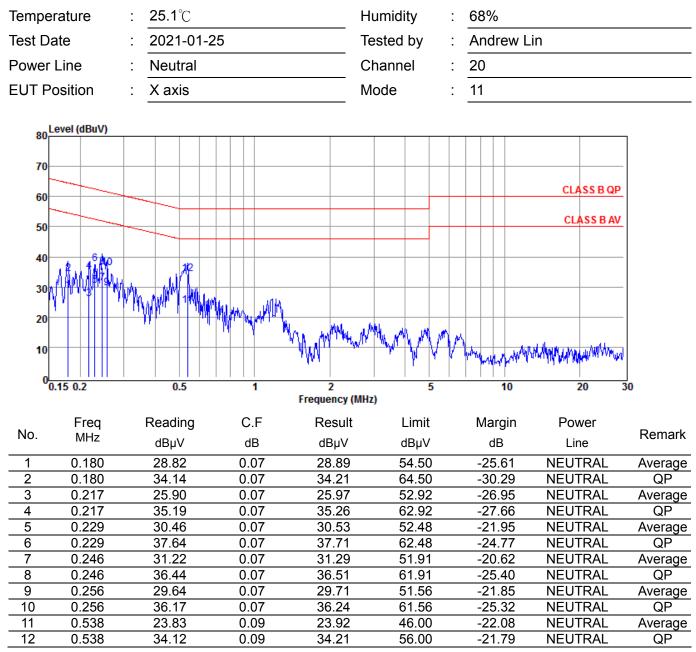

Frequency (MHz)	Limits (dBuV)	
	Q.P. (Quasi-Peak)	A.V. (Average)
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5.0	56	46
5.0 to 30	60	50

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.


2.4 Test Result

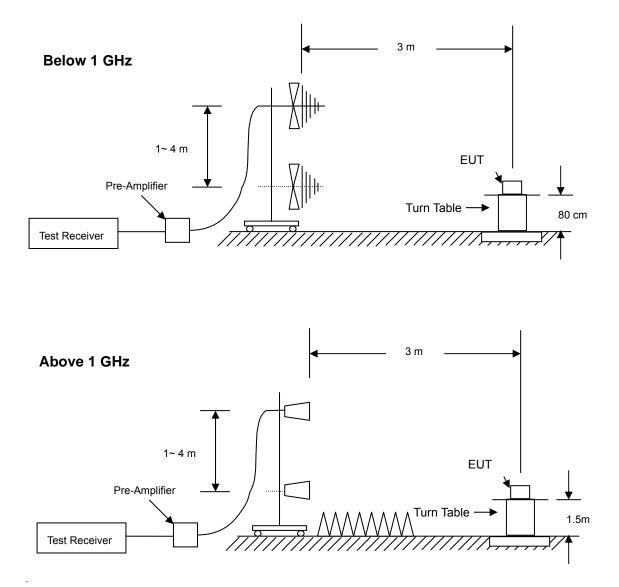
Compliance


The final test data are shown on the following page(s).


Note 1. C.F (Correction Factor) = LISN Factor + Cable loss ·

Note 1. C.F (Correction Factor) = LISN Factor + Cable loss .

Note 1. C.F (Correction Factor) = LISN Factor + Cable loss .


Note 1. C.F (Correction Factor) = LISN Factor + Cable loss .

3 Radiated Emission Test

3.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

3.2 Test Arrangement and Procedure

- 1. The EUT is placed on a turntable, which is 0.8 m (below 1GHz) and 1.5m (above 1GHz) above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maxium procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer. Refer to each test results for detail setting up.

7. Repeat above procedures until the meausreemnts for all frequencies are complete.

3.3 Limit of Field Strength of Fundamental (§ 15.249)

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency	Field strength of fundamental	Field strength of harmonics
(MHz)	(microvolts/ meter)	(meters)
902-928	50	500
2400-2483.5	50	500
5725-5875	50	500
24000-24250	250	2500

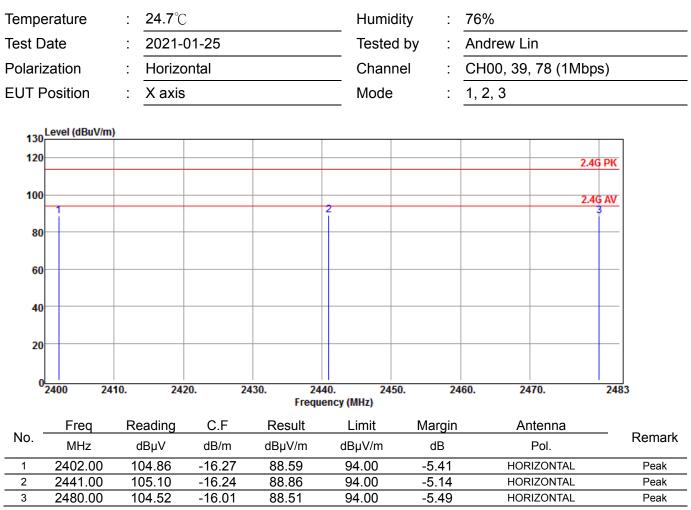
Note:

- 1. Field strength limits are specified at a distance of 3 meters.
- For frequencies above 1000 MHz, the field strength limits in above table are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

3.4 Limit of Spurious Emission (§ 15.209)

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is lesser attenuation.

Frequency	Field strength	Measurement distance
(MHz)	(microvolts/ meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

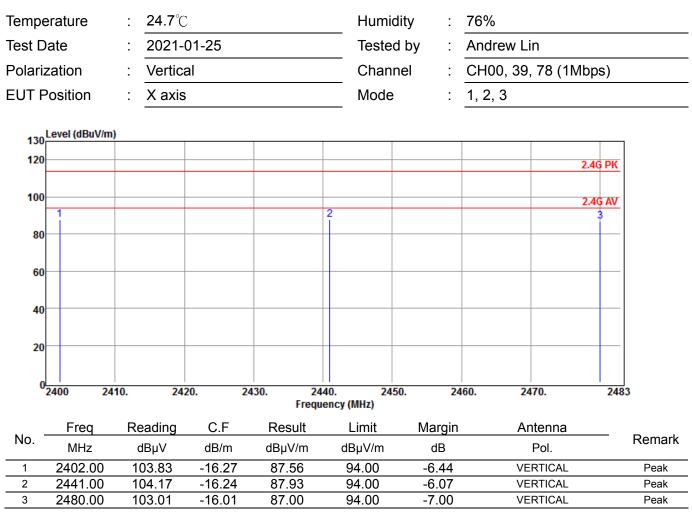

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g.§§ 15.231 and 15.241.

3.5 Test Result

Compliance

The final test data are shown on the following page(s).

The 9kHz-30MHz spurious emission is under limit 20dB more.

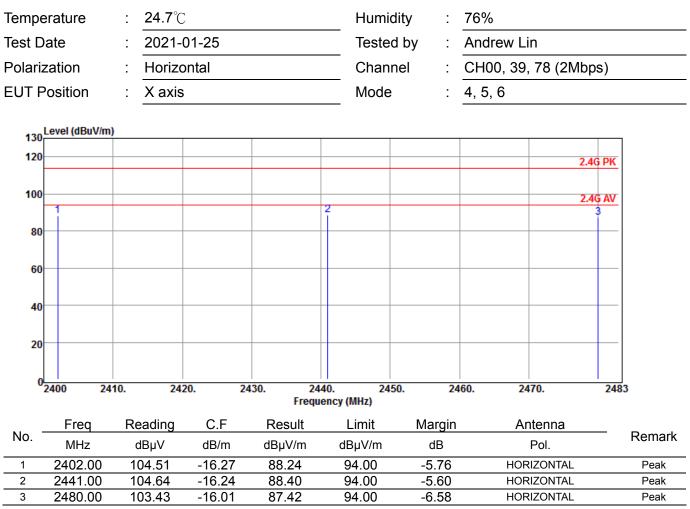


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

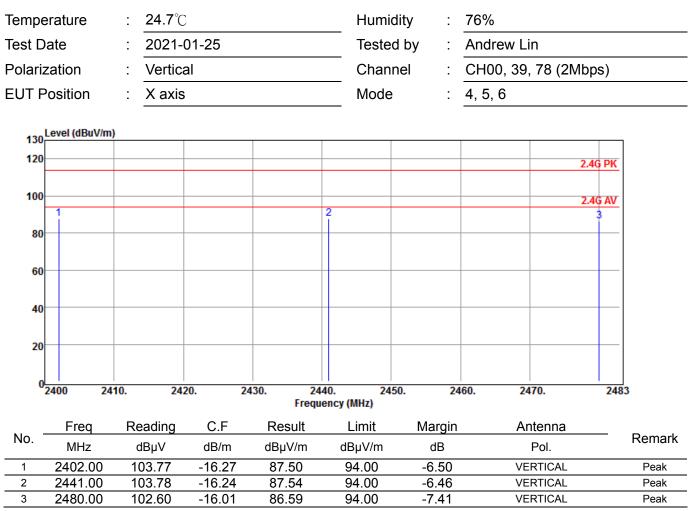


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

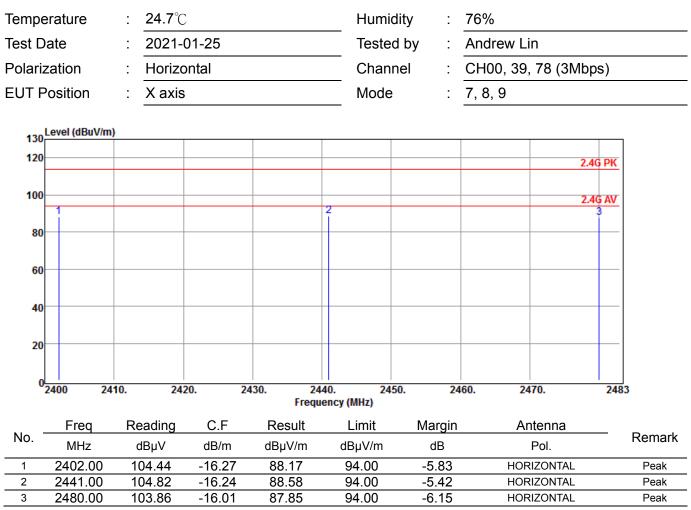


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

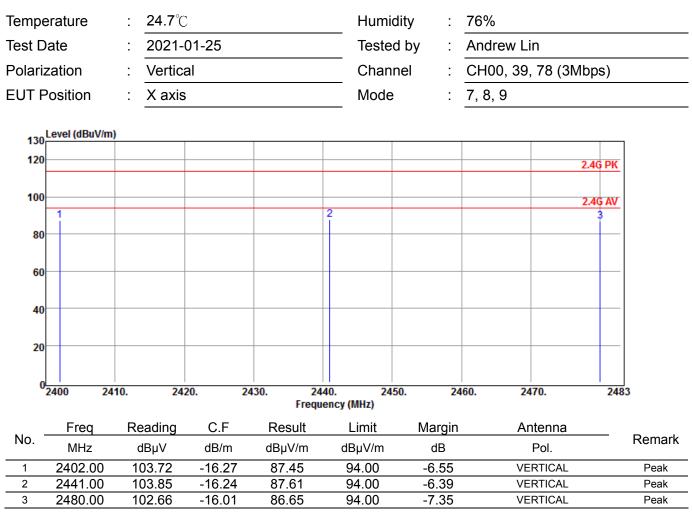


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

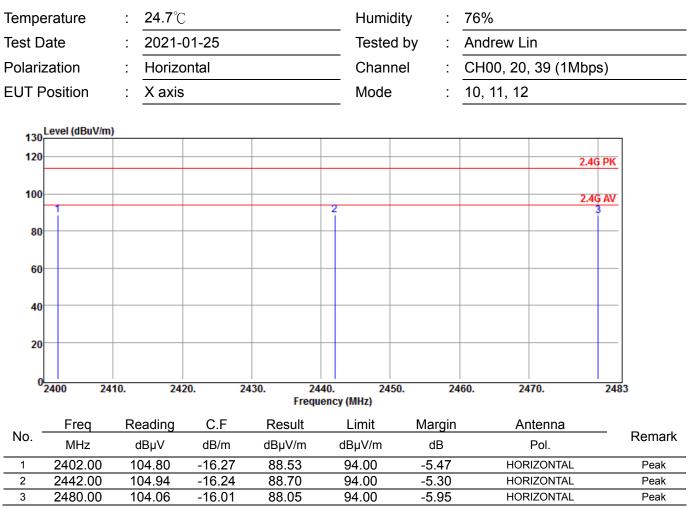


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

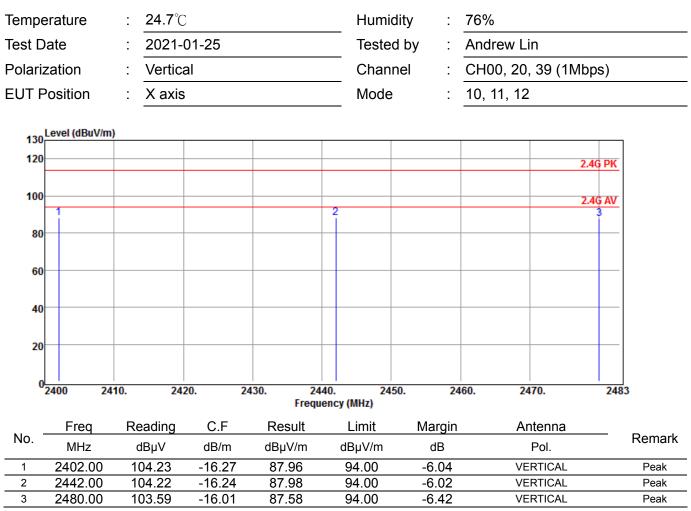


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

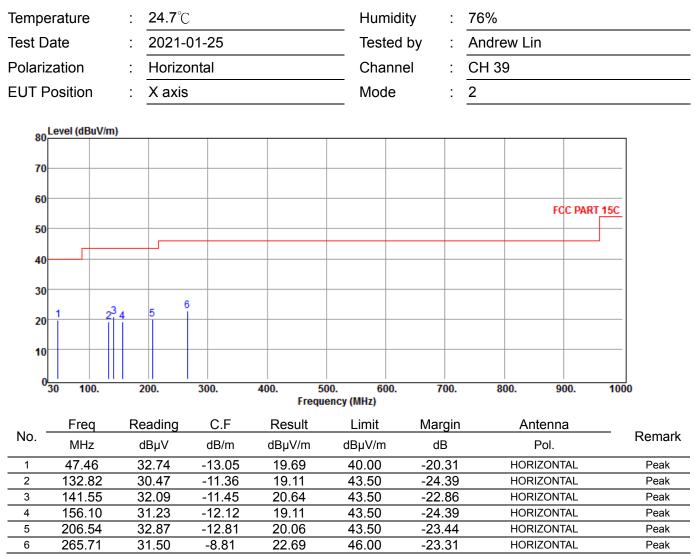


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :

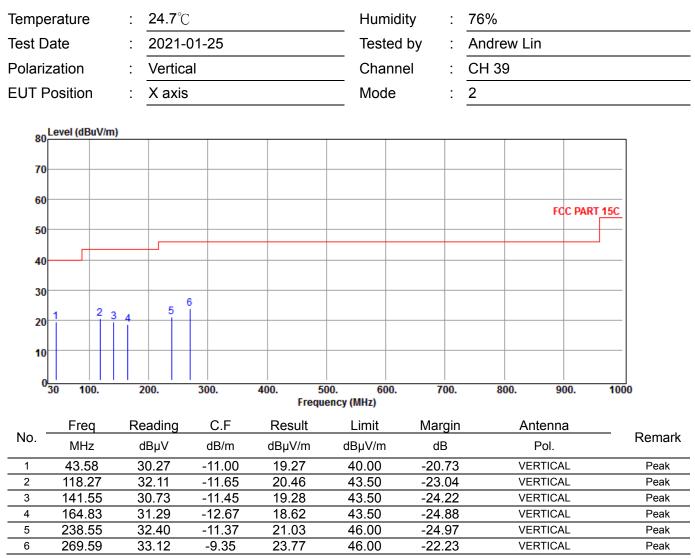
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

Remark :


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

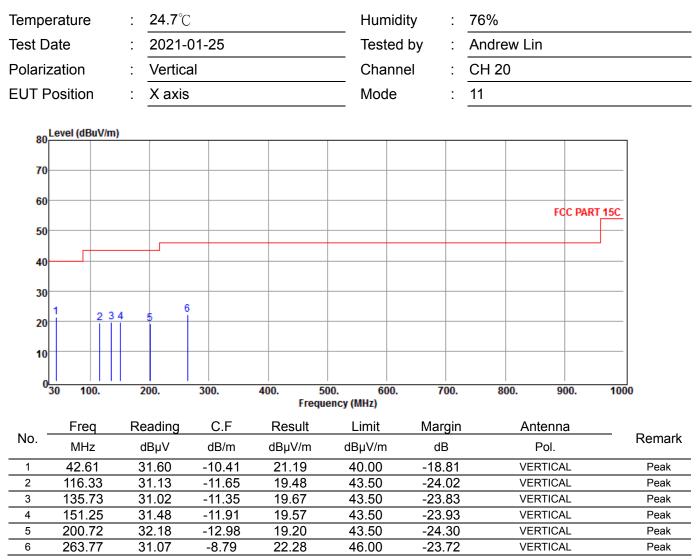
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 30 MHz to 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 4. All readings are Peak values. None of the peak value reading exceeds the Q.P. limit. Hence, Q.P. reading was not measured.
- 5. The IF bandwidth of SPA between 30 MHz to 1 GHz was 100 kHz.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

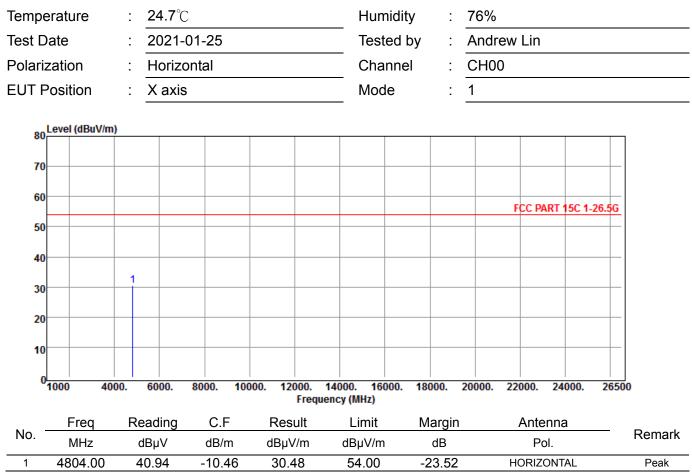
Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 30 MHz to 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 4. All readings are Peak values. None of the peak value reading exceeds the Q.P. limit. Hence, Q.P. reading was not measured.
- 5. The IF bandwidth of SPA between 30 MHz to 1 GHz was 100 kHz.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 30 MHz to 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 4. All readings are Peak values. None of the peak value reading exceeds the Q.P. limit. Hence, Q.P. reading was not measured.
- 5. The IF bandwidth of SPA between 30 MHz to 1 GHz was 100 kHz.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 30 MHz to 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 4. All readings are Peak values. None of the peak value reading exceeds the Q.P. limit. Hence, Q.P. reading was not measured.
- 5. The IF bandwidth of SPA between 30 MHz to 1 GHz was 100 kHz.

Radiated Emission Test Data (Above and Field Strength to 10th Harmonic)



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

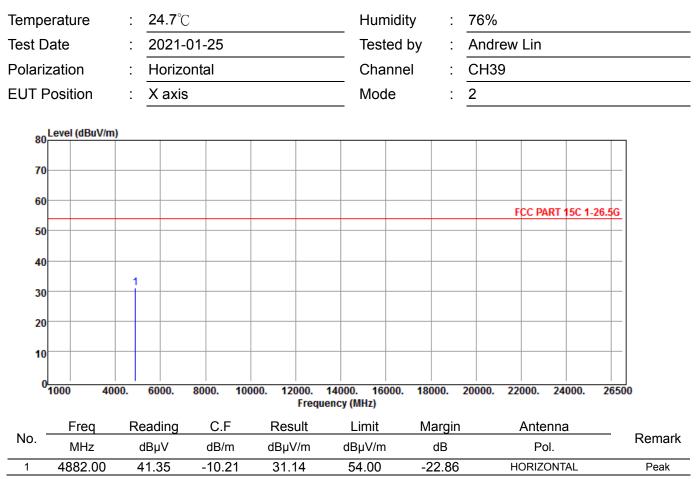
Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Radiated Emission Test Data (Above and Field Strength to 10th Harmonic)

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


Remark :

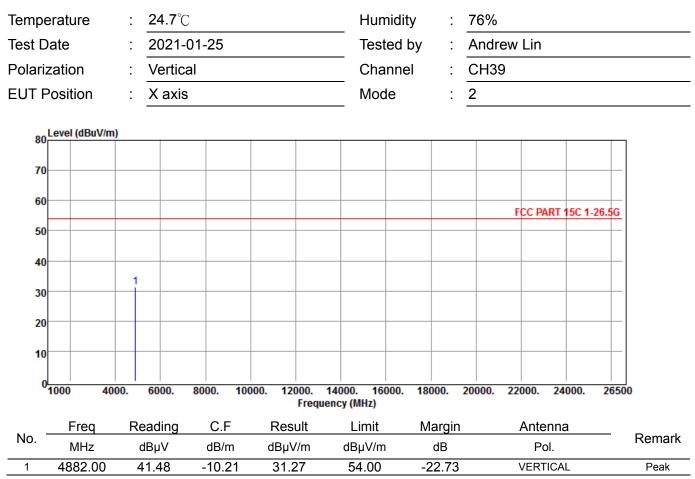
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

5. Spectrum setting:

(a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Radiated Emission Test Data (Above and Field Strength to 10th Harmonic)

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

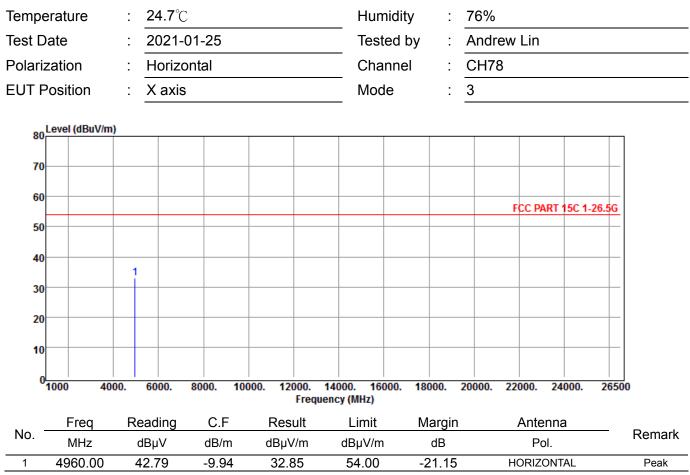

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

5. Spectrum setting:

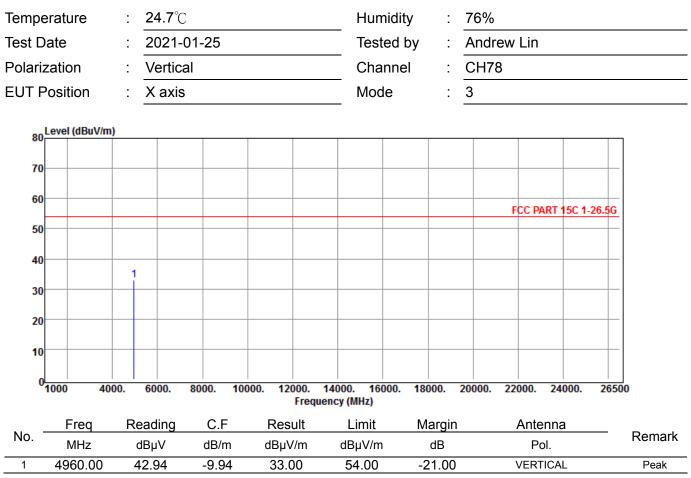
(a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

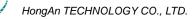
Remark :

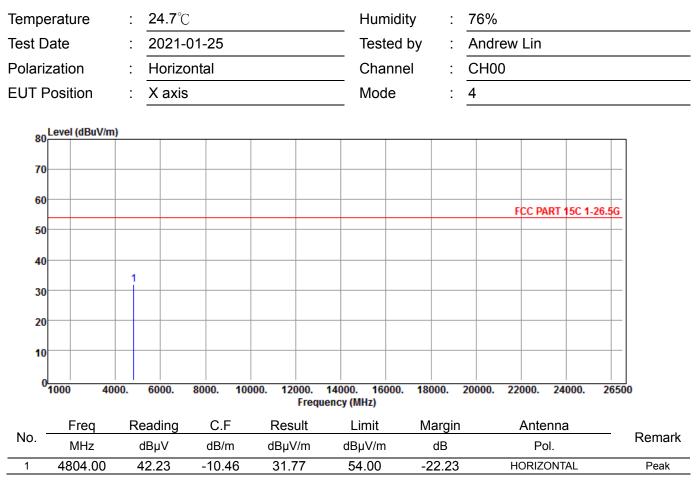
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.


5. Spectrum setting:

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

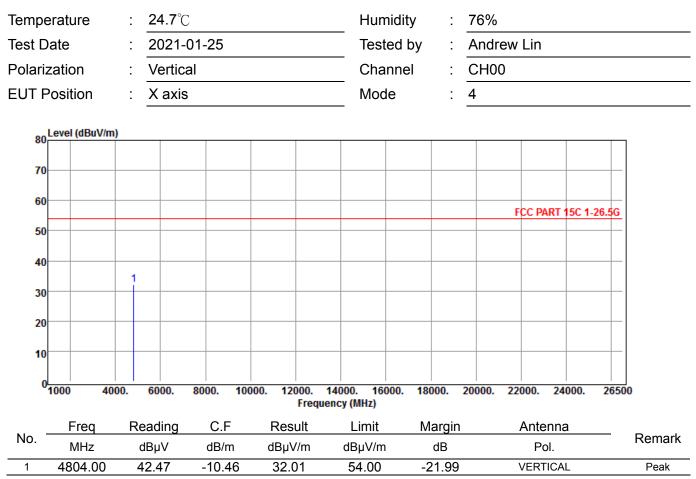

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

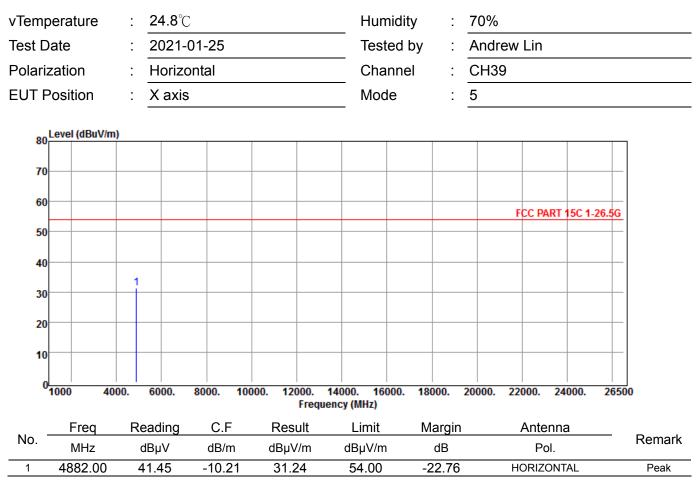
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

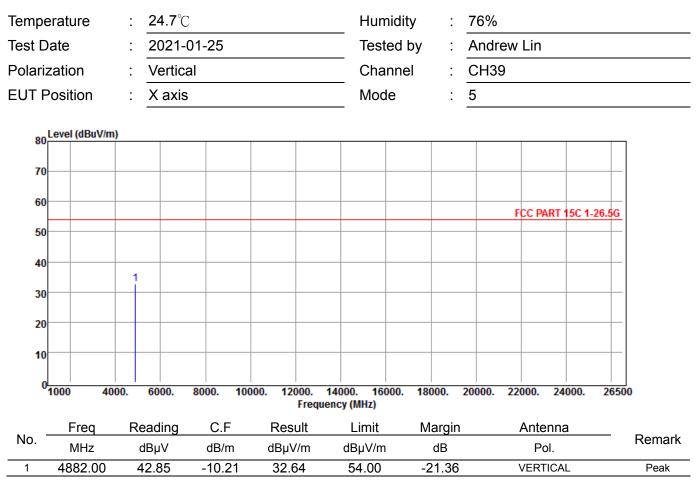

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

5. Spectrum setting:

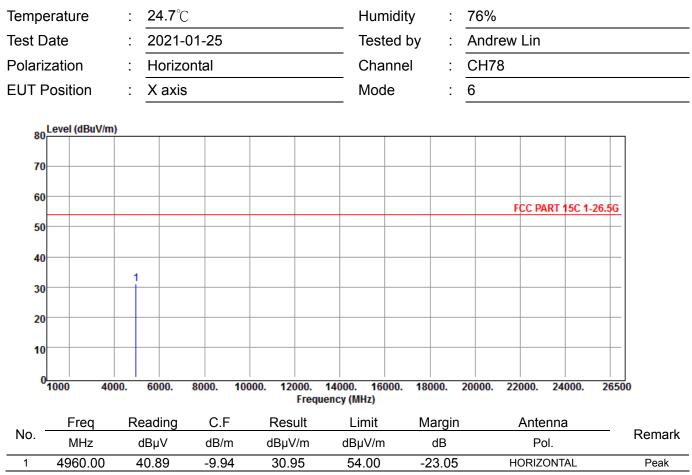

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

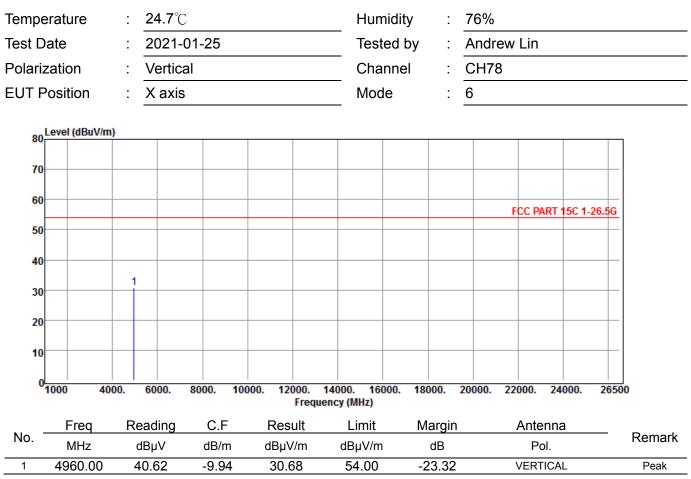
5. Spectrum setting:


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

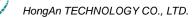
Remark :

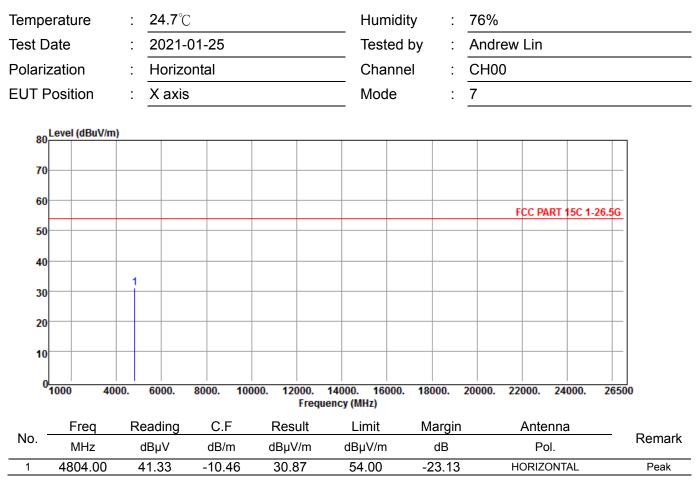
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.


5. Spectrum setting:

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

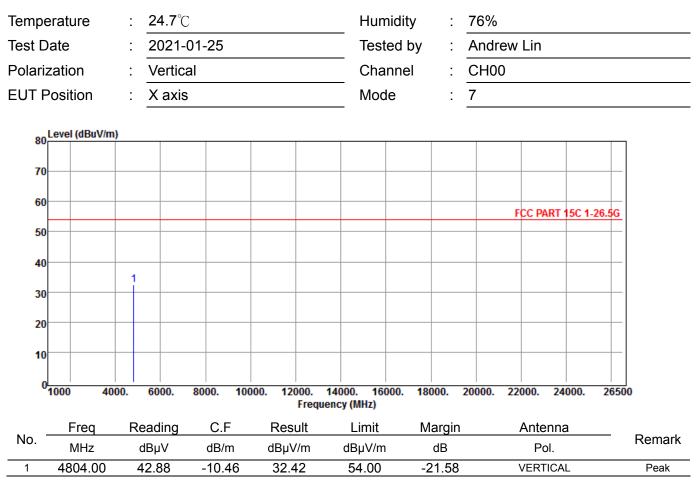

- 6. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 8. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 9. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 10. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

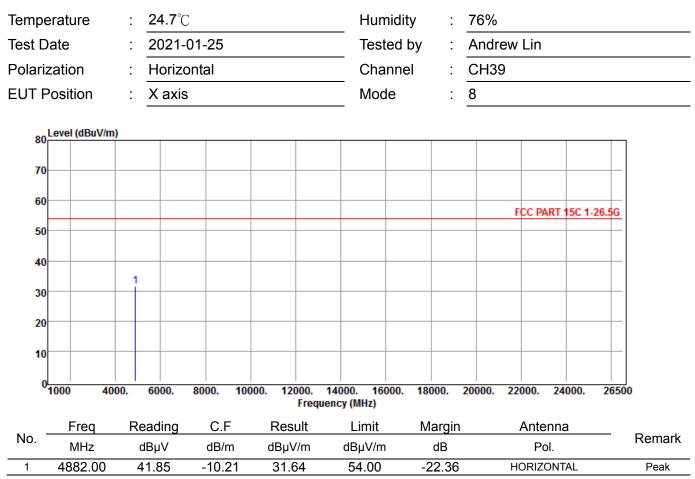
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

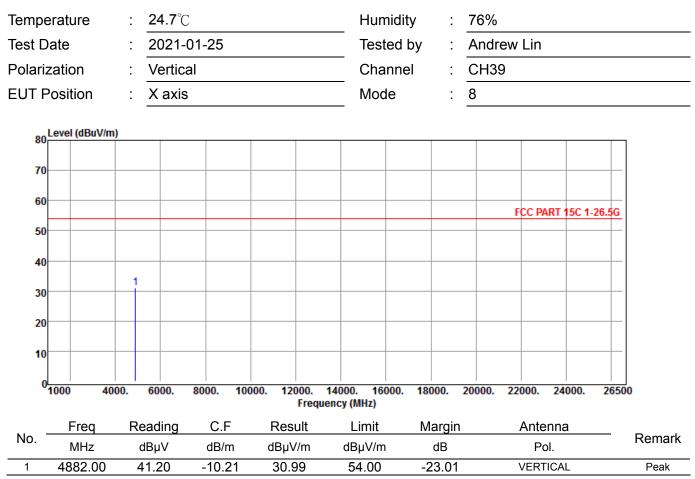

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

5. Spectrum setting:

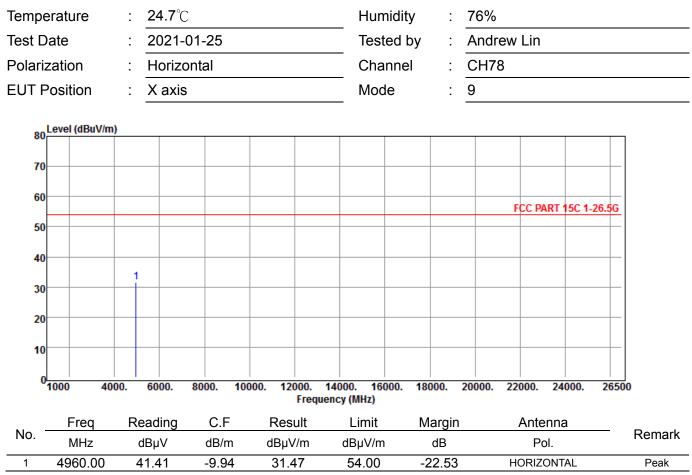

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

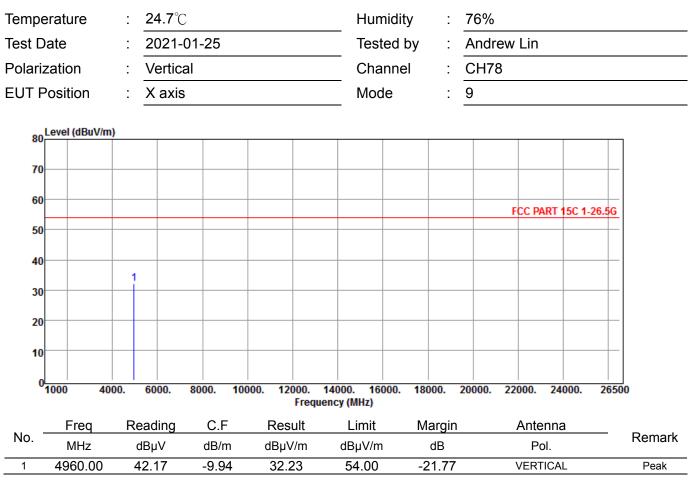
5. Spectrum setting:


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

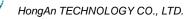
Remark :

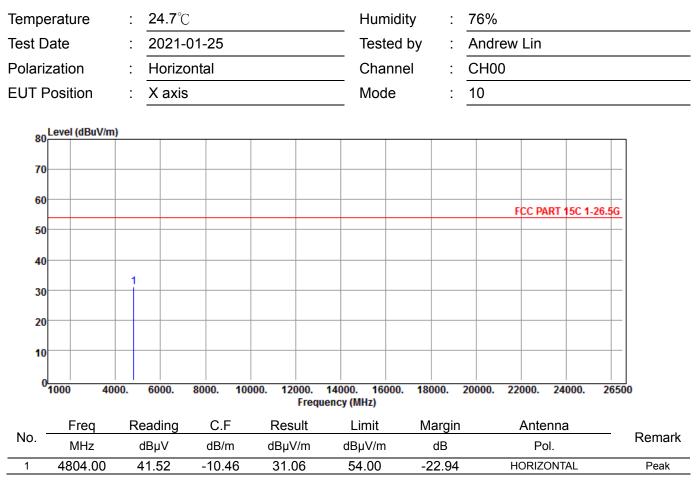
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.


5. Spectrum setting:

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

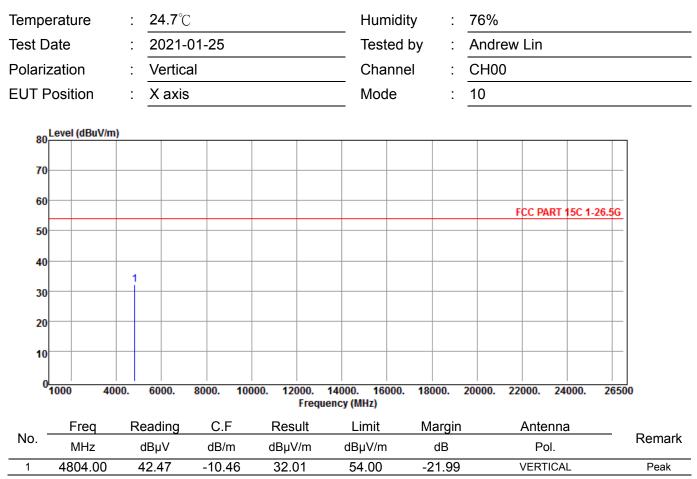

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

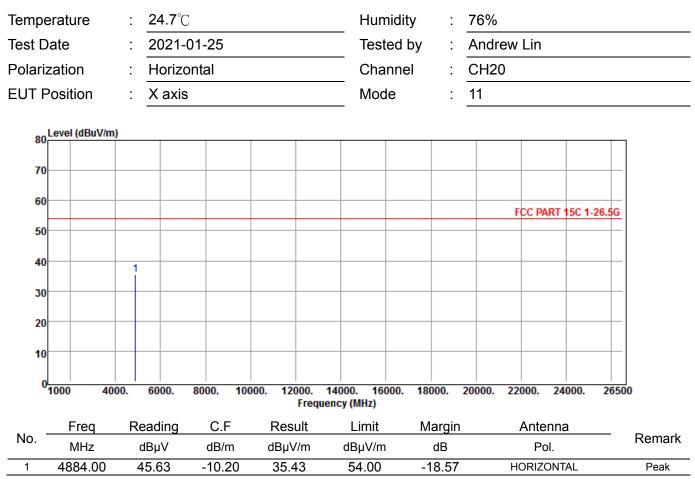
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

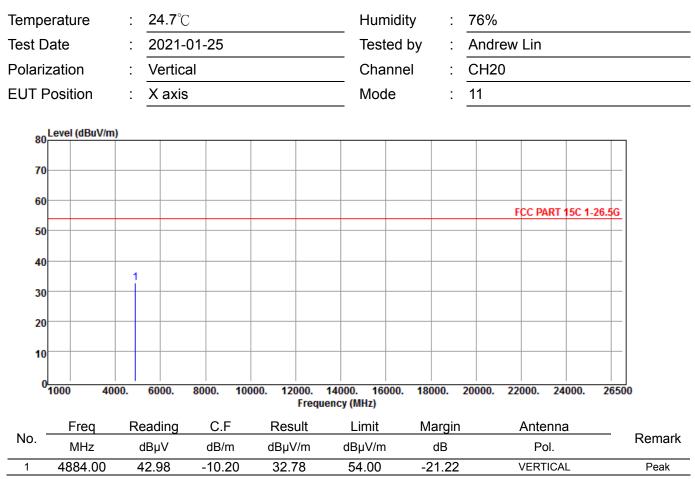

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

5. Spectrum setting:

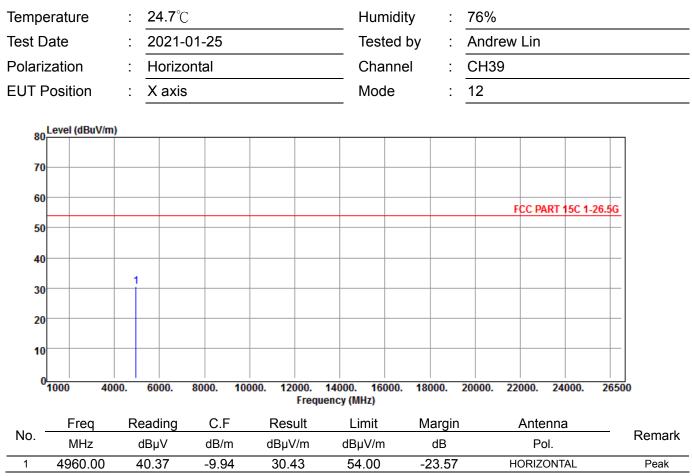

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.

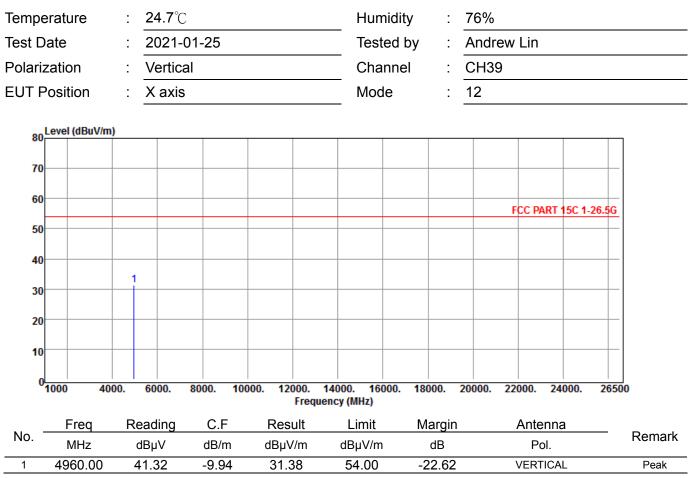
5. Spectrum setting:


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.


5. Spectrum setting:

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

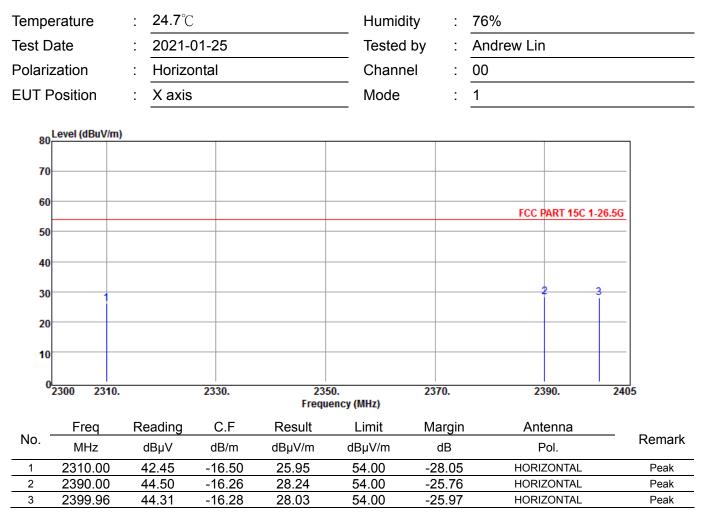
4 Out of Band Emission Test

4.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

4.2 Test Arrangement and Procedure

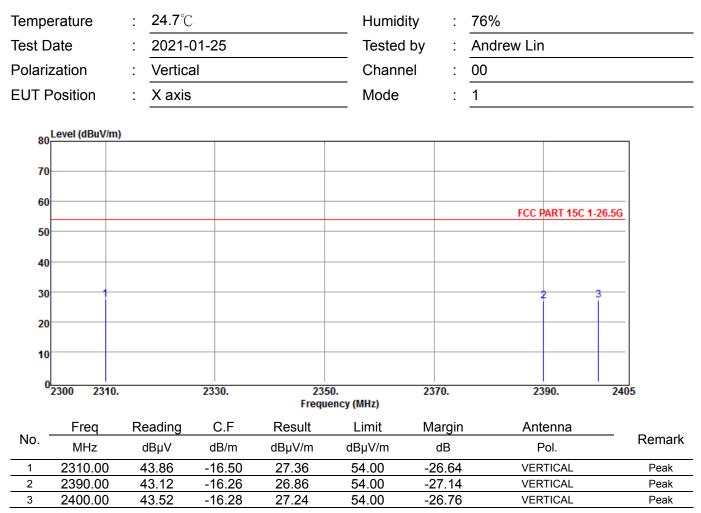
Refer to Sec. 3.2.


4.3 Limit of Field Strength of Fundamental (§ 15.249(d))

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

4.4 Test Result

Compliance


The final test data are shown on the following page(s).

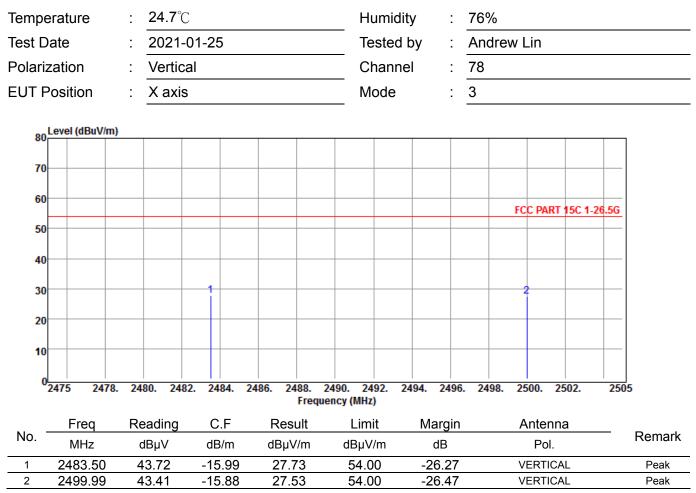
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

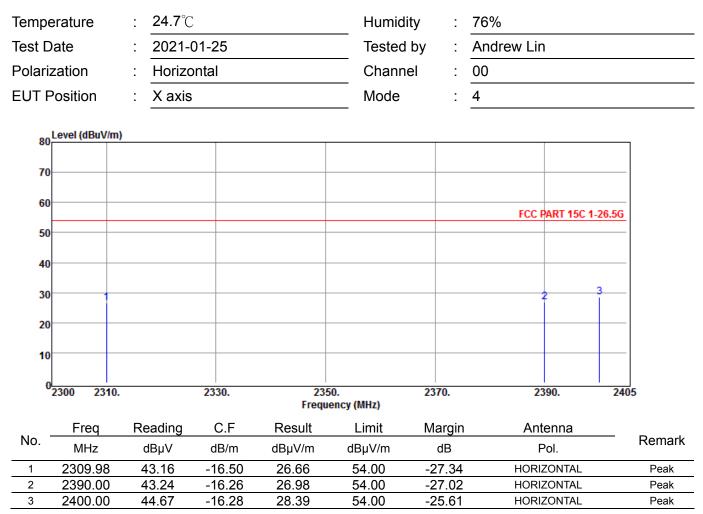
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

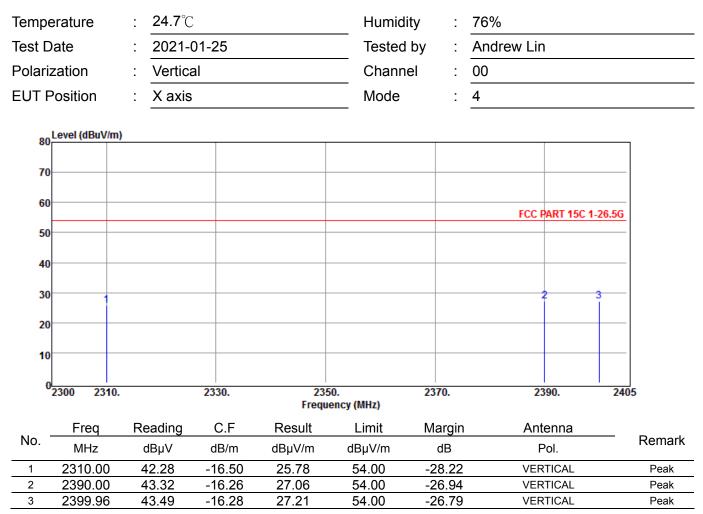
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

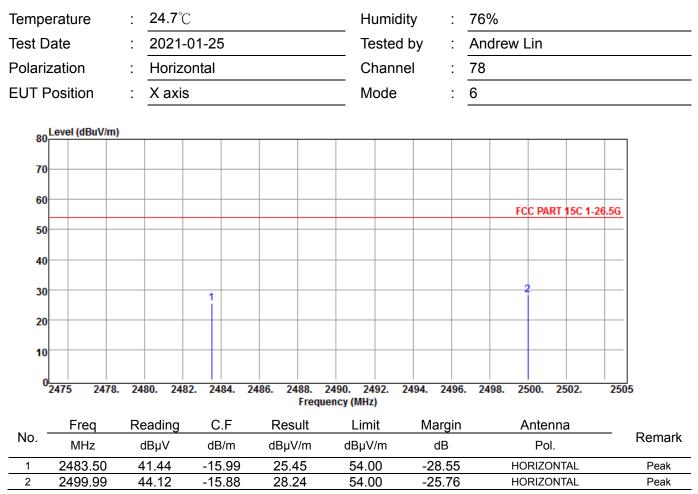
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10^{th} harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

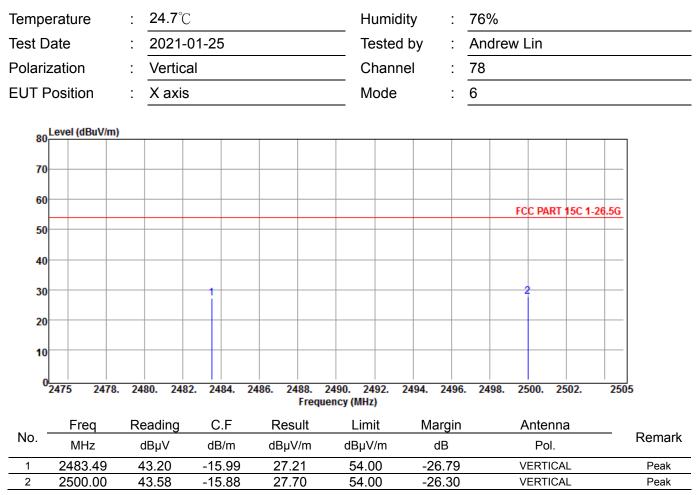
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

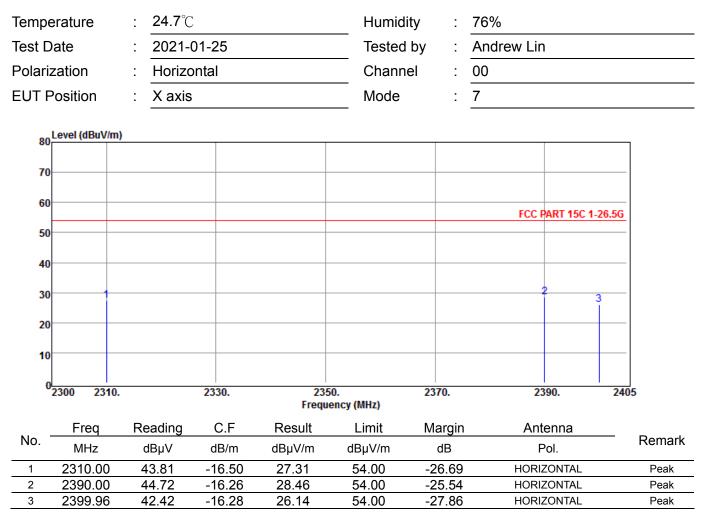
Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

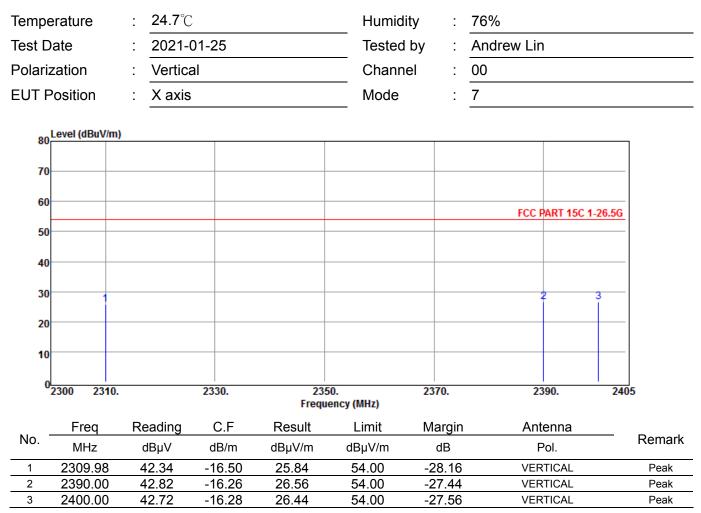
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

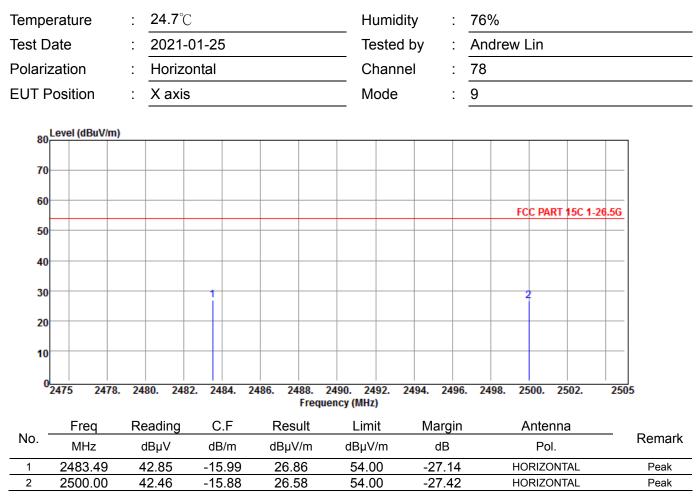
Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

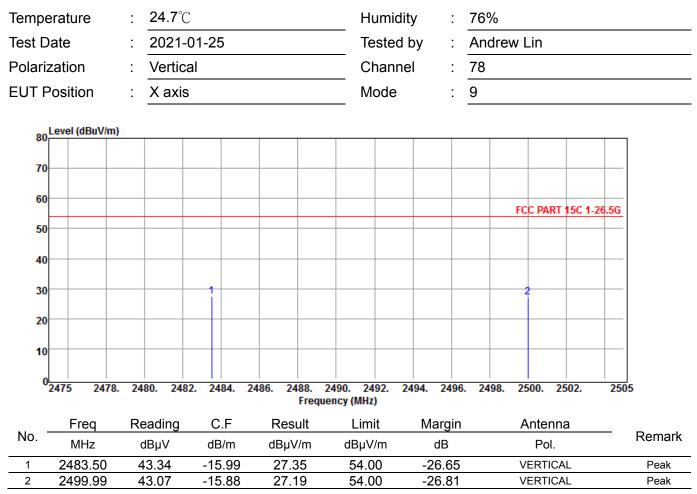
Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

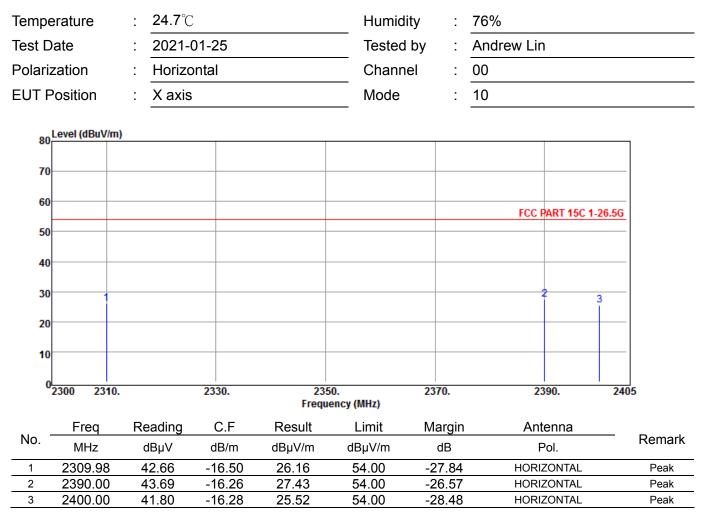
Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

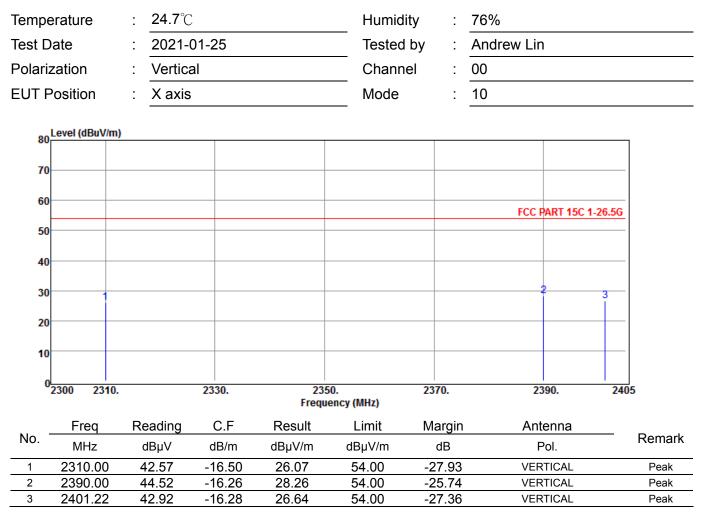
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.



Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

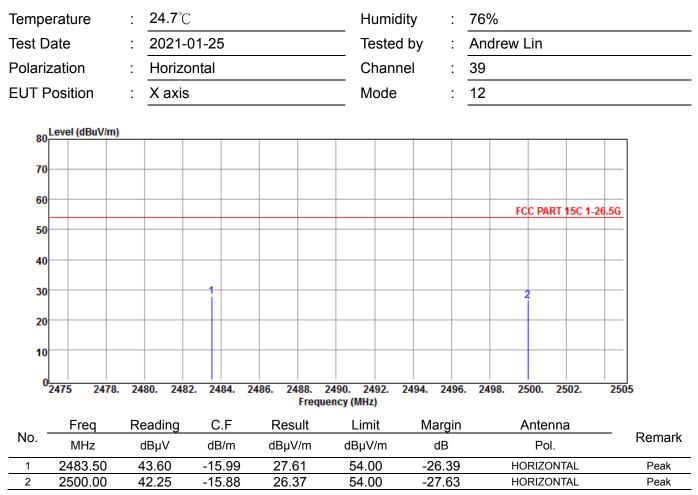
Remark :


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

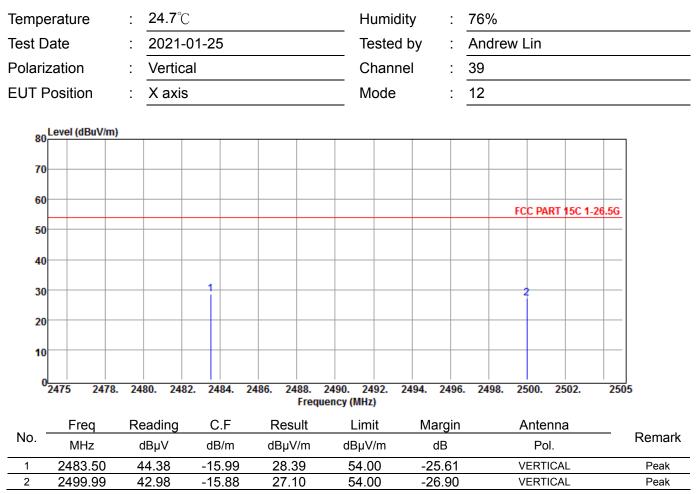


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F $_{\circ}$

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

Band-Edge Test Data (Upper Edge)


Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain ·

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:
 - (a) Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

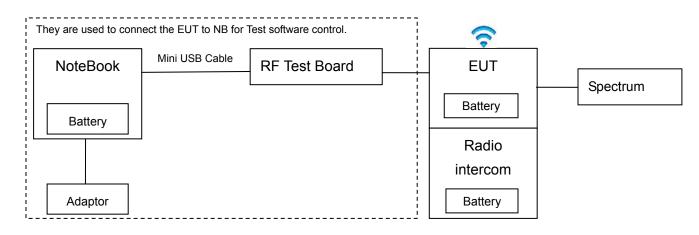
Band-Edge Test Data (Upper Edge)

Note 1. C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain .

Note 2. Margin = Result - Limit ; Result = Reading + C.F .

Remark :

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. All readings are Peak values. None of the peak value reading exceeds the A.V. limit. Hence, A.V. reading was not measured.
- 5. Spectrum setting:


Peak Setting 1GHz to 10th harmonics of fundamental, RBW = VBW = 1MHz, Sweep = AUTO.

5 20 dB Bandwidth

5.1 Test Instruments

Refer to Sec. 1.2 Test Instruments.

5.2 Test Arrangement and Procedure

- 1. The transmitter output was connected to a spectrum analyzer (through an attenuator, if it's necessary).
- 2. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100kHz RBW and 300kHz VBW. Measured the -20 dB bandwidth and plotted the graph.

5.3 Limit

None; For report purpose only.

5.4 Test Result

No non-compliance noted.

The final test data are shown on the following page(s).

HongAn TECHNOLOGY CO., LTD

Temperature							
Test Date							

Test Mode

: 24.7℃ : 2021-01-25 : 1 : <u>76%</u> : Andr

Humidity

Tested by

Channel

Andrew Lin

Spectru	ո]								
Ref Leve	10.00 c			W 100 kHz					
Att	30	dB SWT 18.	9 µs 👄 VB	W 300 kHz	Mode Au	to FFT			
⊖1Pk Max)
					IV	11[1]			16.17 dBm
0 dBm								2.402	11290 GHz
o ubiii						dB			20.00 dB
-10 dBm—						W		1.1114	00000 MHz
20 0000				1000	M1 C) factor	1	1	2161.3
-20 dBm—					-				
				1					
-30 dBm—				· · · ·		-	т2		
			1				Y		
-40 dBm—		/					~		
-50 dBm—	-	\sim	+			+			
-60 dBm—									
-70 dBm—									
oo dow									
-80 dBm—									
CF 2.402	GHz			691	pts			Spa	n 3.0 MHz
Marker									
Type R	ef Trc	Stimulu	IS	Response		ction	Fun	ction Result	
M1	1	2.40211		-16.17 dB		3 down		1	.1114 MHz
T1	1	2.40139		-36.33 dB		ndB			20.00 dB
T2	1	2.40250	J36 GHz	-36.36 dB	m∣ Q	factor			2161.3
	Π					Me	asuring 🔳		
									1111

HongAn TECHNOLOGY CO., LTD).
----------------------------	----

a

est Mo	de	:	2			Channel	:	39			
Spectr	rum										
Ref Lev	vel 1	0.00 dBm		😑 RBW	/ 100 kHz						
Att		30 dB	SWT 18.9 µ	us 👄 VBV	/ 300 kHz	Mode Aut	O FFT				
∋1Pk Ma	эх										
						M	1[1]				16.15 dBm
0 dBm—										2.440	78730 GHz
о ивпі—						200	dB				20.00 dE
-10 dBm						В				1.1114	00000 MHz
-10 0600					M1	Q	factor				2196.1
-20 dBm					Am						
-20 UBIII				/	6						
20 dBm											
-30 dBm			T				1	2			
40 40								2			
-40 dBm											
-50 dBm		\sim								~	
										~	
-60 dBm											
-70 dBm											
-80 dBm											
CF 2.44	41 GH	lz	II		691	pts	1		I	Spa	n 3.0 MHz
larker						-					
Type	Ref	Trc	Stimulus	1	Response	Func	tion		Functi	ion Result	
M1		1	2.4407873		-16.15 dB		down				.1114 MHz
Τ1		1	2.4403922		-35.99 dB	m	ndB				20.00 dB
Т2		1	2.4415036	GHz	-36.19 dB	m Q	factor				2196.1
)[) Mea	suring			1

HongAn TECHNOLOGY CO., LTD.

Test	Mode

a

Spectru	m					
Ref Leve	I 10.00 dB	m 👄 F	RBW 100 kHz			
Att	30 d			Mode Auto FFT		
●1Pk Max						
				M1[1]		-18.58 dBm
						2.48010850 GHz
0 dBm				ndB		20.00 dB
				Bw		1.107100000 MHz
-10 dBm—				M1 Q factor		2240.2
-20 dBm—				×		
-20 uBm—						
-30 dBm—			\checkmark			
-30 ubiii—		Т			2	
-40 dBm—					<u>v</u>	
-40 0011						
-50 dBm—						
oo abiii						
-60 dBm-						
-70 dBm—						
-80 dBm—						
05.0.40.0				•-		
CF 2.48 G	HZ		691 p	15		Span 3.0 MHz
Marker	e	ou! 1 1	-	1	_	
Type R M1	ef Trc	Stimulus	Response	Function ndB down	Fun	tion Result 1.1071 MHz
T1	1	2.4801085 GHz 2.4793922 GHz	-18.58 dBm -38.66 dBm			20.00 dB
T2	1	2.4804993 GHz	-38.73 dBm			2240.2
	1 -1		00.10 00			
				Mea	asuring 🔳	

Channel

Temperature	
Test Date	

Test Mode

:	24.7 ℃	
:	2021-01-25	
	4	

: 76%

:

:

Humidity

Tested by

Channel

Andrew Lin

00

Spectrur	n]										
Ref Leve	10.00 d	lBm	-	RBW	100 kHz						
Att	30	dB SWT	18.9 µs 👄	vbw	300 kHz	Mode	Auto FFT				
😑 1Pk Max											
							M1[1]				17.88 dBm
0 dBm										2.401	95220 GHz
o dom							ndB			1.0000	20.00 dB
-10 dBm-					1274272		BW			1.3632	00000 MHz
					M1		Q factor	1			1761.9
-20 dBm					$\sim \sim$						
				~	6 69	197					
-30 dBm—			<u> </u>								
		T1						VI2			
-40 dBm—				_							
50 dBm-									~		~~~~
-60 dBm—											
-70 dBm—											
-70 ubiii—											
-80 dBm											
oo abiii											
CF 2.402	GHz				691	pts				Spa	n 3.0 MHz
Marker											
	ef Trc		nulus	R	esponse		unction		Fund	tion Result	
M1	1		19522 GHz		-17.88 dB		ndB down			1	.3632 MHz
T1 T2	1)12619 GHz)26252 GHz		-37.73 dB -37.78 dB		ndB Q factor				20.00 dB 1761.9
		2.41	20252 GHZ		-37.78 UB				_	_	1701.9
							Me	asuring			

Test	Mode	

a

Spectr	um	ר													
Ref Lev	el 10.0	00 dBm				RBW	100 kHz								
Att		30 dB	SWT	18.9 u			300 kHz	Mod	le Aut	O FFT					
●1Pk Ma	X			F											
•									M	1[1]				8	-17.85 dBm
										-1-1					094790 GHz
0 dBm—									n	B					20.00 dB
									B					1.3719	000000 MHz
-10 dBm-				_					0	factor					1779.2
							M1								
-20 dBm-							\sim						_		-
				1	-										
-30 dBm-			74										_		
			T1	(*								2			
-40 dBm-								-				1			
												λ			
-50 dBm-	-												-	\sim	hand
-60 dBm-													_		
-70 dBm-															
-80 dBm-															
CF 2.44	1 CU-						601	pts						- Cro	an 3.0 MHz
-	-I GHZ						091	prs						эра	
Marker	n (n	- 1			- 1	_			-		1	-			
	Ref T	rc		ulus	0115	R	esponse	2000	Funct		Function Result				
M1 T1		1		09479 02576			-17.85 di -37.65 di		nuB	down ndB					1.3719 MHz 20.00 dB
T2		1		16295			-37.94 di		0	factor					1779.2
		-	2.77	10295			51.54 U	sin j.	2	\			_	-	· · · · · · · · · · · · · · · · · · ·
										Me	asurir	ng 📒			

Channel

HongAn TECHNOLOGY CO., LTD.

Test	Mode
------	------

a

Spect	rum														
Ref Le	vel 1	0.00 dBm			RBW	100 kHz									
Att		30 dB	SWT 18.9) µs 👄	vbw	300 kHz	Mode	e Auto	D FFT						
🔵 1Pk Ma	ах														
								M	[1]					-20	1.92 dBm
													2.4	17995	660 GHz
0 dBm—								nd	в						20.00 dB
								Bv					1.38	0600	000 MHz
-10 dBm								Q	factor						1796.3
						M1									
-20 dBm	ן ו					\sim	-		W 5.2						
ool door					-	- 10 Million			_						
-30 dBm			/												
10 10-			T1							N	[2				
-40 dBm	<u></u>		1								1				
FO JOH															
-50 dBm		~~~									1	~	~~	\sim	\sim
60 J.D													100		
-60 dBm															
-70 dBm	די														
an debe															
-80 dBm															
CF 2.48	B GHz					691	pts						5	Span :	3.0 MHz
Marker															
Туре	Ref	Trc	Stimulus	5	I	Response		Funct	ion			Fund	tion Res	sult	1
M1		1	2.479956	56 GHz		-20.92 dB	m	ndB	down					1.38	306 MHz
T1		1	2.479248			-40.93 dB			ndB					2	20.00 dB
T2		1	2.480629	95 GHz		-40.91 dB	m	Qf	actor						1796.3
)[Me	asurii	ng	-		LXI	//

Channel

HongAn TECHNOLOGY CO., LTD

Temperature	:	24.7°(
Test Date	:	2021-

Test Date: 20Test Mode: 7

7 ℃	
1-01-25	

: <u>76%</u> : Andr

Humidity

Tested by

Channel

Andrew Lin

Spect	rum											
Ref Le	vel 1	.0.00 dBn	ı		RBW	100 kHz						`
Att		30 di	SWT	18.9 µs (VBW	/ 300 kHz	Mode	Auto FFT				
😑 1Pk M	ax											
								M1[1]				17.84 dBm
0 dBm-											2.401	78290 GHz
								ndB Bw			1.0760	20.00 dB 00000 MHz
-10 dBn	n		_					Q factor			1.3703	1745.1
						M1		QIUCCOI				1740.1
-20 dBn	n-+-				~	\sim	1					
				~								
-30 dBn	n-		T1						12			
			T1						Y			
-40 dBn										x		
50 dBn												\sim
-DUL-HBN		\sim	23.2							\sim	\sim	
-60 dBn	<u> </u>											
	<u> </u>											
-70 dBn	n		_									
-80 dBn	n-+-											
CF 2.4	02 GF	łz				691	pts				Spa	n 3.0 MHz
Marker												
Туре	Ref	Trc	Stim	ulus		Response		Function		Fund	tion Result	:
M1		1	2.40	17829 GH		-17.84 di	Зm	ndB down			1	3763 MHz
T1		1		12576 GH		-37.94 di		ndB				20.00 dB
T2		1	2.40	26339 GH	Iz	-37.61 di	3m	Q factor				1745.1
		Υ						Me	asuring			
												111.

HongAn TECHNOLC	GY CO., LTD
-----------------	-------------

Test Mode	Test	Mode	
-----------	------	------	--

Gen

Spect	rum												
Ref Le	vel 1	0.00 dBm			RBW	100 kHz							
Att		30 dB	SWT 18.9				Mod	e Auto	D FFT				
😑 1Pk M	ах			-									
								M.	1[1]			1	17.78 dBm
												2.440	78290 GHz
0 dBm—								nc					20.00 dB
-10 dBm								By				1.3893	00000 MHz
-10 UBI	' —					M1		Q	factor	·			1756.9
-20 dBm						X a							
-20 UBII	' <u> </u>			~	1		8740 5 04 - 1.0	Į)				
-30 dBm													
-30 UBI	'		T1/							1	J2		
-40 dBm			7								Y		
-40 UBII	' <u> </u>										1		
-50 dBri													\frown
-30 ubn			-								\sim		
-60 dBm													
-00 001													
-70 dBm													
-70 ubn	'												
-80 dBm													
00 001	`												
CF 2.44	41 GH	Iz				691	pts					Spa	n 3.0 MHz
Marker							-						
Туре	Ref	Trc	Stimulus		R	lesponse		Funct			Fund	ction Result	
M1		1	2.440782			-17.78 dB		ndB	down			1	.3893 MHz
T1		1	2.440253			-37.93 dB			ndB				20.00 dB
T2		1	2.441642	25 GHz		-37.92 dB	m	Q 1	factor				1756.9
[][Me	asuri	ng 🚺	•••••	1 //

Channel

HongAn TECHNOLOGY CO., LTD.

Test Mode	
-----------	--

a

Spectr	um														
Ref Lev	vel 1	0.00 dBm			RBW	100 kHz									
Att		30 dB	SWT 18.	9 µs 👄	vbw	300 kHz	Mod	e Auto	D FFT						
😑 1Pk Ma	X														
								M	[1]					-2	0.53 dBm
													2.		1290 GHz
0 dBm—								nc	B						20.00 dB
10 10								By	v				1.38	30600	0000 MHz
-10 dBm								Q	factor						1796.4
							M1								
-20 dBm-							~								
				\sim	_			5	\sim	<u> </u>					
-30 dBm-			1												
			T1/								12				
-40 dBm·			1								X				
			1								1				
-50 dBm		-	/								2	-			~~
-60 dBm·															
-70 dBm															
-80 dBm															
CF 2.48	GHz					691	pts							Span	3.0 MHz
Marker															
	Ref	Trc	Stimulu	s	F	Response		Funct	ion			Fund	tion Re:	sult	
M1		1	2.48011			-20.53 dE	3m		down						806 MHz
Τ1		1	2.47925	76 GHz		-40.35 dE	3m		ndB						20.00 dB
T2		1	2.48063	82 GHz		-40.47 dE	3m	Qt	actor						1796.4
		Ì							Me	asuri	ng			LX0	

Channel

Temperature
Test Date

Test Mode

:	24.7 °C
:	2021-01-25
:	10

: 76%

:

:

Humidity

Tested by

Channel

Andrew Lin

00

Spect	rum											
Ref Le	vel 1	0.00 dBm			RBW	100 kHz						
Att		30 dB	SWT 18.9	9 µs 👄	VBW	300 kHz	Mode .	Auto FFT				
😑 1Pk M	ах											
								M1[1]			10	-16.08 dBm
0 dBm—											2.40	195220 GHz
o ubiii-								ndB				20.00 dB
-10 dBm	<u> </u>							Bw			1.1809	000000 MHz
10 000	·					M1		Q factor		1	1	2034.0
-20 dBm						\sim	~					
20 000	·			1	-							
-30 dBm	1 <u> </u>							~				
			7						12			
-40 dBm	r——		1						1			
	÷	~								N		
-50 dBm	η <u> </u>	A									<u> </u>	
	V											
-60 dBm											<u> </u>	
-70 dBm	n-											
-80 dBm	1——											
CF 2.4	02 CH	17				691	nts				Sna	an 3.0 MHz
Marker		12				091	Pro				эрс	
	Ref	Trc	Stimulus	-	1 .	Docnonco	1 5	inction	1	Eus	ction Resul	• 1
Type M1	Ker	1	2,401952			-16.08 dB		ndB down		Fun		L.1809 MHz
T1		1	2.401370			-36.23 dB		ndB				20.00 dB
T2		1	2.40255:			-35.98 dB		Q factor				2034.0
) (-	asuri		•	
								Me	asur	ing	• •	• ///

HongAn TECHNOLOGY CO., LTD).
----------------------------	----

Test	Mode
------	------

Spectrum										
Ref Level 10).00 dBm		🖷 RBW	100 kHz						
Att	30 dB	SWT 18.9 µ			Mode Aut	to FFT				
●1Pk Max										
					M	1[1]		1	15.91 dBm	
0.40-0					20			2.441	94790 GHz	
0 dBm						dB			20.00 dB	
-10 dBm				0.01		w		1.1852	00000 MHz	
-10 0800				M1	Q	factor	1	1	2060.3	
-20 dBm				~	\sim					
20 0.0										
-30 dBm		TI	~			h	T0			
		J J					T2 V			
-40 dBm							<u> </u>			
	~~							\sim		
-50 dBm					-					
-60 dBm		<u> </u>								
-70 dBm										
-80 dBm										
-80 0811										
CF 2.442 GH	z			691	pts			Spa	n 3.0 MHz	
Marker										
Type Ref				Response	Func		Function Result			
M1 1		2.4419479		-15.91 dB		down ndB		1	.1852 MHz	
T1 T2	1	2.4413661		-35.94 dB -36.02 dB		factor			20.00 dB 2060.3	
	<u>۱</u>	2.1120011		50.02 UD		<u>`</u>			7	
						Meas	suring 🔳	• • • • • • • • • • • • • • • • • • •	- //	

Channel

Test I	Mode
--------	------

ode	12
JUE	 14

ode	:	12			Channel	:	39				
rum											
vel 1											
	30 0	38 SWT 18.	9 µs 🖷 V	' BW 300 kHz	Mode Aut	o FFT					
ax											
					M	1[1]				18.50 dBm	
									2.479	94790 GHz	
					ndB				20.00 dB		
									1.185200000 MHz		
				M1	Q	factor				2092.4	
				×.							
					7						
						~					
		т1				5	XT2				
		A					Y				
		1					Y				
	\sim	$\rightarrow 1$						1 15	\sim		
								~			
~/											
8 GHz	:			691 r	ots				Spa	n 3.0 MHz	
Ref	Trc	Stimulu	s l	Response	Eunc	tion	Eunction Result				
	1						1.1852 MHz				
	1									20.00 dB	
	1	2.4805	2.480547 GHz				2092.4				
)[Mea	asurin	g 🚺		1 //	
		rum vel 10.00 dB 30 c ax ax B GHz Ref Trc 1 1	rum vel 10.00 dBm 30 dB SWT 18.9 ax	rum vel 10.00 dBm 30 dB SWT 18.9 µs • V ax	rum RBW 100 kHz 30 dB SWT 18.9 μs VBW 300 kHz ax Image: state	rum vel 10.00 dBm 30 dB SWT 18.9 µs • VBW 300 kHz Mode Aut ax M1 0 0 0 0 0 0 0 0 0 0 0 0 0	rum • RBW 100 kHz 30 dB SWT 18.9 μs • VBW 300 kHz Mode Auto FFT ax M1[1] ndB Bw Q factor 1 71 0 0 691 pts 8 GHz 691 pts 691 pts 12.4799479 GHz -18.50 dBm ndB down 1 2.4799479 GHz -38.55 dBm Q factor 0 0	vel 10.00 dBm • RBW 100 kHz Mode Auto FFT ax M1[1] ndB Bw Q factor M1 Q factor 1 T1 M1 Q factor T2 T2 T2 4 FT FT FT FT FT FT FT 4 FT FT FT FT FT FT FT 5 FT FT FT FT FT FT FT 6 FT FT FT FT FT FT FT 7 FT FT FT FT FT FT FT 7 FT FT	rum RBW 100 kHz 30 dB SWT 18.9 μs YBW 300 kHz Mode Auto FFT ax M1[1] ndB BW 0 Gactor M1 T T T2 T2 T T2 T2 T2	rum RBW 100 kHz 30 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT ax M1[1] 2.479 mdB BW 1.1852 M1 Q factor M1 T2 T2 T2 BGHz 691 pts Spa Ref T1 2.4799479 GHz -18.50 dBm ndB 1 2.4799479 GHz -38.47 dBm ndB 1 1 2.4799479 GHz -38.55 dBm Q factor 1	

6 Antenna requirement

6.1 Limit (§ 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a uniue coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

6.2 Test Result

Compliance.

The EUT applies a Chip Ceramic antenna.

-----End Of Test Report------