FCC and ISED Test Report

Hirschmann Car Communication GmbH Broadcast Reception Amplifier, Model: 920691A

In accordance with FCC 47 CFR Part 15B and **ICES-003**

Prepared for: Hirschmann Car Communication GmbH Stuttgarter Straße 45 - 51 72654 Neckartenzlingen Germany

Add value. **Inspire trust.**

FCC ID: XTJ920691A IC: 8653A-920691A

COMMERCIAL-IN-CONFIDENCE

Document 75948575-07 Issue 01

SIGNATURE			
AZ lawsan.			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Andy Lawson	Senior Engineer	Authorised Signatory	29 April 2020

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B and ICES-003. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	William Mayo	29 April 2020	Æ
Supervision	Martin Perry	29 April 2020	Martyforda
FCC Accreditation 217472 Bearley Test Labo	ISED A ratory 12669/	Accreditation	

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2019 and ICES-003: 2016 for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2020 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164

TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Application Form	4
1.5	Product Information	8
1.6	Deviations from the Standard	
1.7	EUT Modification Record	
1.8	Test Location	12
2	Test Details	13
2.1	Radiated Disturbance	13
3	Test Equipment Information	47
3.1	General Test Equipment Used	47
4	Incident Reports	48
5	Measurement Uncertainty	

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	29 April 2020

Table 1

1.2 Introduction

Applicant	Hirschmann Car Communication GmbH
Manufacturer	Hirschmann Car Communication GmbH
Model Number(s)	All Samples - 920691A
Serial Number(s)	Sample 1 - 40347272-00020-14 – Variant A (AM FM1 DAB1) Sample 2 - 40347270-00017-14 – Variant B (AM FM1)
Hardware Version(s)	V1.0
Software Version(s)	Not applicable
Number of Samples Tested	1 of each variant
Test Specification/Issue/Date	FCC 47 CFR Part 15B: 2019 ICES-003: 2016
Order Number Date	1000433208 10-March-2020
Date of Receipt of EUT	20-March-2020
Start of Test	03-April-2020
Finish of Test	16-April-2020
Name of Engineer(s)	William Mayo (Supervised by Martin Perry)
Related Document(s)	ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B and ICES-003 is shown below.

Continn	Specifica	tion Clause		Deput	Commente/Rose Standard
Section	Part 15B	ICES-003	Test Description	Result	Comments/base Standard
Configuration	and Mode: Sam	ple 1 (Variant A, A	M, FM1 and DAB1) DC Powered - AM		
2.1	15.109	6.2	Radiated Disturbance	Pass	ANSI C63.4: 2014
Configuration and Mode: Sample 1 (Variant A, AM, FM1 and DAB1) DC Powered - FM					
2.1	15.109	6.2	Radiated Disturbance	Pass	ANSI C63.4: 2014
Configuration and Mode: Sample 1 (Variant A, AM, FM1 and DAB1) DC Powered - DAB					
2.1	15.109	6.2	Radiated Disturbance	Pass	ANSI C63.4: 2014
Configuration and Mode: Sample 2 (Variant B, AM and FM1) DC Powered - AM					
2.1	15.109	6.2	Radiated Disturbance	Pass	ANSI C63.4: 2014
Configuration and Mode: Sample 2 (Variant B, AM and FM1) DC Powered - FM					
2.1	15.109	6.2	Radiated Disturbance	Pass	ANSI C63.4: 2014

Table 2

1.4 Application Form

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment)	Broadcast reception rf-amplifier, to be used with in car commercial radio receiver
Manufacturer:	Hirschmann Car Communication GmbH
Model:	920691A
Part Number:	AM FM1 DAB1
Hardware Version:	V1.0
Software Version:	Not applicable
FCC ID (if applicable)	XTJ920691A
IC ID (if applicable)	8653A-920691A

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	240 MHz		
Lowest frequency generated or used in the device or on which the device operates or tunes 0.52 MHz			
Class A Digital Device (Use in commercial, industrial or business environment)			
Class B Digital Device (Use in residential environment only) \Box			

AC Power Source

AC supply frequency:	N/A	Hz
Voltage	N/A	V
Max current:	N/A	A
Single Phase Three Phase		

DC Power Source

Nominal voltage:	8	V
Extreme upper voltage:	8.4	V
Extreme lower voltage:	7.6	V
Max current:	95	mA

Battery Power Source

Voltage:	N/A		V
End-point voltage:	N/A		V (Point at which the battery will terminate)
Alkaline \Box Leclanche \Box Lithium \Box Nicke	el Cadmium 🗆 Lead A	$did^* \square * (Vehicle reg$	ulated)
Other	Please detail:		

Charging

Can the EUT transmit whilst being charged	Yes 🗆 No 🗆
---	------------

Temperature

Minimum temperature:	-40	٥°
Maximum temperature:	85	٦°

Antenna Characteristics

Antenna connector		State impedance	50	Ohm	
Temporary antenna connector		State impedance		Ohm	
Integral antenna 🗆	Type:		Gain		dBi
External antenna 🖂	Type:	monopole	Gain	3	dBi

For external antenna only:

Standard Antenna Jack \Box If yes, describe how user is prohibited from changing antenna (if not professional installed):

Equipment is only ever professionally installed \boxtimes

Non-standard Antenna Jack \Box

Ancillaries (if applicable)

Manufacturer:	Part Number:	
Model:	Country of Origin:	

I hereby declare that the information supplied is correct and complete.

Name: Christoph Seikel Position held: Manager Requirements & Homologations Date: 16.03.2020

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment)	Broadcast reception rf-amplifier, to be used with in car commercial radio receiver
Manufacturer:	Hirschmann Car Communication GmbH
Model:	920691A
Part Number:	AM FM1
Hardware Version:	V1.0
Software Version:	Not applicable
FCC ID (if applicable)	XTJ920691A
IC ID (if applicable)	8653A-920691A

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	108 MHz			
Lowest frequency generated or used in the device or on which the device operates or tunes	0.52 MHz			
Class A Digital Device (Use in commercial, industrial or business environment)				
Class B Digital Device (Use in residential environment only) \Box				

AC Power Source

AC supply frequency:	N/A	Hz
Voltage	N/A	V
Max current:	N/A	А
Single Phase Three Phase		

DC Power Source

Nominal voltage:	8	V
Extreme upper voltage:	8.4	V
Extreme lower voltage:	7.6	V
Max current:	95	mA

Battery Power Source

Voltage:	N/A		V	
End-point voltage:	N/A		V (Point at which the battery will terminate)	
Alkaline Leclanche Lithium Nickel Cadmium Lead Acid* *(Vehicle regulated)				
Other Please detail:				

Charging

Can the EUT transmit whilst being charged	Yes 🗆 No 🗆
---	------------

Temperature

Minimum temperature:	-40	°C
Maximum temperature:	85	°C

Antenna Characteristics

Antenna connector		State impedance	50	Ohm	
Temporary antenna connector		State impedance		Ohm	
Integral antenna \Box	Type:		Gain		dBi
External antenna 🖂	Type:	monopole	Gain	3	dBi

For external antenna only:

Standard Antenna Jack 🗆 If yes, describe how user is prohibited from changing antenna (if not professional installed):

Equipment is only ever professionally installed \boxtimes

Non-standard Antenna Jack \square

Ancillaries (if applicable)

Manufacturer:	Part Number:	
Model:	Country of Origin:	

I hereby declare that the information supplied is correct and complete.

Name: Christoph Seikel Position held: Manager Requirements & Homologations Date: 16.03.2020

1.5 **Product Information**

1.5.1 Technical Description

The primary function of the EUTs are as Broadcast Reception Amplifiers.

The EUTs have the functionality to amplify commercial AM and FM1 or AM, FM1 and DAB1 broadcast transmissions.

Figure 1 - Receiver Amplifier - Front Face – Sample 1 (Variant A – AM, FM1 and DAB1)

Figure 2 - Receiver Amplifier - Rear Face – Sample 1 (Variant A – AM, FM1 and DAB1)

Figure 3 - Receiver Amplifier - Front Face – Sample 2 (Variant B - AM and FM1)

Figure 4 - Receiver Amplifier - Rear Face – Sample 2 (Variant B - AM and FM1)

1.5.2 EUT Port/Cable Identification

Port	Max Cable Length specified	Usage	Туре	Screened					
Configuration and Mode: DC Powered - All Modes									
RF Input Port (Sample 1)	< 3 m	RF Signal Input	Coaxial	Yes					
Power and Signal Port (Sample 1)	< 3 m	RF Signal Output and DC Power Input	Coaxial	Yes					
RF Input Port (Sample 2)	< 3 m	RF Signal Input	Coaxial	Yes					
Power and Signal Port (Sample 2)	< 3 m	RF Signal Output and DC Power Input	Coaxial	Yes					

Table 3

1.5.3 Test Configuration

Configuration	Description
Sample 1 (Variant A, AM, FM1 and DAB1) DC Powered	The EUT was powered from an 8 V DC power supply. The EUTs RF input was connected to either a DAB signal generator or Marconi AM\FM signal generator. The EUTs RF output was connected to a mini-circuits combiner which supplied DC power to the EUT and routed the RF output signal from the EUT to a typical vehicle commercial broadcast receiver. The receiver used was a Sony DSX-A500BD, serial number 1507536.
Sample 2 (Variant B, AM and FM1) DC Powered	The EUT was powered from an 8 V DC power supply. The EUTs RF input was connected to a Marconi AM\FM signal generator. The EUTs RF output was connected to a mini-circuits combiner which supplied DC power to the EUT and routed the RF output signal from the EUT to a typical vehicle commercial broadcast receiver. The receiver used was a Sony DSX-A500BD, serial number 1507536.

Table 4

1.5.4 Modes of Operation

Mode	Description
АМ	An AM modulated 1 kHz signal was fed to the RF input of the EUT, and the RF output of the EUT was demodulated by the broadcast receiver.
FM	An FM modulated 1 kHz signal was fed to the RF input of the EUT, and the RF output of the EUT was demodulated by the broadcast receiver.
DAB	A DAB broadcast 1 kHz signal was fed to the RF input of the EUT, and the RF output of the EUT was demodulated by the broadcast receiver.

Table 5

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted							
Model: 920691A, Serial Number: 40347272-00020-14 – Variant A (AM FM1 DAB1)										
0	As supplied by the customer	Not Applicable	Not Applicable							
Model: 920691A, Se	Model: 920691A, Serial Number: 40347270-00017-14 – Variant B (AM FM1)									
0	As supplied by the customer	Not Applicable	Not Applicable							

Table 6

1.8 Test Location

TÜV SÜD conducted the following tests at our Bearley Test Laboratory.

Test Name	Accreditation									
Configuration and Mode: Sample 1 (Variant A, AM, FM1 and DAB1) DC Powered - AM										
Radiated Disturbance	UKAS									
Configuration and Mode: Sample 1 (Variant A, AM, FM1 and DAB1) DC Powered - FM										
Radiated Disturbance William Mayo (Supervised by Martin Perry) UKAS										
Configuration and Mode: Sample 1 (Variant A, AM, FM	11 and DAB1) DC Powered - DAB									
Radiated Disturbance	William Mayo (Supervised by Martin Perry)	UKAS								
Configuration and Mode: Sample 2 (Variant B, AM and	FM1) DC Powered - AM									
Radiated Disturbance	William Mayo (Supervised by Martin Perry)	UKAS								
Configuration and Mode: Sample 2 (Variant B, AM and	FM1) DC Powered - FM									
Radiated Disturbance William Mayo (Supervised by Martin Perry) UKAS										

Table 7

Office Address:

Snitterfield Road Bearley Warwickshire CV37 OEX United Kingdom

2 Test Details

2.1 Radiated Disturbance

2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109 ICES-003, Clause 6.2

2.1.2 Equipment Under Test and Modification State

Sample 1, 920691A, S/N: 40347272-00020-14 – Variant A (AM FM1 DAB1) - Modification State 0 Sample 2, 920691A, S/N: 40347270-00017-14 – Variant B (AM FM1) - Modification State 0

2.1.3 Date of Test

03-April-2020 to 16-April-2020

2.1.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semi-anechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

For an EUT which could reasonable be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.1.5 Example Calculation

Below 1 GHz:

Quasi-Peak level ($dB\mu V/m$) = Receiver level ($dB\mu V$) + Correction Factor (dB) Margin (dB) = Quasi-Peak level ($dB\mu V/m$) - Limit ($dB\mu V/m$)

Above 1 GHz:

CISPR Average level $(dB\mu V/m)$ = Receiver level $(dB\mu V)$ + Correction Factor (dB) Margin (dB) = CISPR Average level $(dB\mu V/m)$ - Limit $(dB\mu V/m)$

Peak level $(dB\mu V/m)$ = Receiver level $(dB\mu V)$ + Correction Factor (dB) Margin (dB) = Peak level $(dB\mu V/m)$ - Limit $(dB\mu V/m)$

2.1.6 Example Test Setup Diagram

Figure 5 - Radiated Disturbance Example Test Setup

2.1.7 **Environmental Conditions**

16.8 - 20.2 °C **Ambient Temperature** 35.0 - 38.0 % **Relative Humidity**

Specification Limits 2.1.8

Required Specification Limits, Field Strength (Class B @ 3 m)									
Frequency Range (MHz)	Test Limit (μV/m)	Test Limit (dBµV/m)							
30 to 88	100	40.0							
88 to 216	150	43.5							
216 to 960	200	46.0							
Above 960	Above 960 500 54.0								
Supplementary information:									

Note 1. Quasi-peak detector to be used for measurements below 1 GHz. Note 2. CISPR Average detector to be used for measurements above 1 GHz.

Note 3. Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

Table 8

2.1.9 Test Results

Results for Configuration and Mode: Sample 1 (Variant A, AM, FM1 and DAB1) DC Powered – AM.

The test was performed in accordance with the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

AM Broadcast Receiver Test AM Carrier Frequency: 954 MHz

Highest frequency generated or used within the EUT:240 MHzWhich necessitates an upper frequency test limit of:2 GHz

Figure 6 - 30 MHz to 1 GHz, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.075	29.2	40.0	-10.9	Q-Peak	158	100	Horizontal	-
851.076	28.9	46.0	-17.1	Q-Peak	0	336	Horizontal	-

Table 10

Figure 7 - 30 MHz to 1 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.424	29.4	40.0	-10.6	Q-Peak	1	301	Vertical	-
100.763	26.6	43.5	-16.9	Q-Peak	53	109	Vertical	-

Figure 8 - 1 GHz to 2 GHz, Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 9

Figure 9 - 1 GHz to 2 GHz, CISPR Average, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
1282.904	20.1	54.0	-33.9	CISPR Average	1	255	Horizontal	-
1878.612	21.0	54.0	-33.0	CISPR Average	22	276	Horizontal	-

Figure 10 - 1 GHz to 2 GHz, Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 11

Figure 11 - 1 GHz to 2 GHz, CISPR Average, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
1203.389	20.3	54.0	-33.7	CISPR Average	0	107	Vertical	-
1305.710	21.6	54.0	-32.4	CISPR Average	338	104	Vertical	-

Table 12

Results for Configuration and Mode: Sample 1 (Variant A, AM, FM1 and DAB1) DC Powered – FM.

The test was performed in accordance with the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

FM Broadcast Receiver Test FM Carrier Frequency: 100 MHz

Highest frequency generated or used within the EUT: 240 MHz Which necessitates an upper frequency test limit of: 2 GHz

Figure 12 - 30 MHz to 1 GHz, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.450	28.6	40.0	-11.4	Q-Peak	4	396	Horizontal	-
608.920	28.4	46.0	-17.6	Q-Peak	75	100	Horizontal	-

Table 13

Figure 13 - 30 MHz to 1 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.109	29.0	40.0	-11.0	Q-Peak	65	324	Vertical	-
100.008	22.4	43.5	-21.1	Q-Peak	10	309	Vertical	-

Figure 14 - 1 GHz to 2 GHz, Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
1268.464	33.4	74.0	-40.6	Peak	225	133	Horizontal	-
1685.823	33.9	74.0	-40.1	Peak	60	390	Horizontal	-

Figure 15 - 1 GHz to 2 GHz, CISPR Average, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
1187.331	20.1	54.0	-33.9	CISPR Average	0	256	Horizontal	-
1974.550	23.0	54.0	-31.0	CISPR Average	186	132	Horizontal	-

Figure 16 - 1 GHz to 2 GHz, Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
1067.284	32.3	74.0	-41.7	Peak	208	100	Vertical	-
1667.744	34.4	74.0	-39.6	Peak	1	256	Vertical	-

Figure 17 - 1 GHz to 2 GHz, CISPR Average, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
1184.975	25.1	54.0	-28.9	CISPR Average	219	208	Vertical	-
1975.120	24.8	54.0	-29.2	CISPR Average	134	110	Vertical	-

Table 18

Results for Configuration and Mode: Sample 1 (Variant A, AM, FM1 and DAB1) DC Powered – DAB.

The test was performed in accordance with the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

DAB Broadcast Receiver Test DAB Carrier Frequency: 202.928 MHz

Highest frequency generated or used within the EUT: 240 MHz Which necessitates an upper frequency test limit of: 2 GHz

Figure 18 - 30 MHz to 1 GHz, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.377	29.3	40.0	-10.7	Q-Peak	102	196	Horizontal	-
100.092	34.8	43.5	-8.7	Q-Peak	7	339	Horizontal	-
100.123	34.3	43.5	-9.2	Q-Peak	305	347	Horizontal	-

Table 19

Figure 19 - 30 MHz to 1 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.403	29.3	40.0	-10.7	Q-Peak	100	112	Vertical	-
129.264	23.0	43.5	-20.5	Q-Peak	138	102	Vertical	-

Figure 20 - 1 GHz to 2 GHz, Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 21

Figure 21 - 1 GHz to 2 GHz, CISPR Average, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
1222.799	20.5	54.0	-33.6	CISPR Average	0	365	Horizontal	-
1974.680	22.4	54.0	-31.6	CISPR Average	212	400	Horizontal	-

Figure 22 - 1 GHz to 2 GHz, Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 23

Figure 23 - 1 GHz to 2 GHz, CISPR Average, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
1040.278	19.9	54.0	-34.1	CISPR Average	135	128	Vertical	-
1885.990	22.3	54.0	-31.8	CISPR Average	143	236	Vertical	-

Table 24

Results for Configuration and Mode: Sample 2 (Variant B, AM and FM1) DC Powered – AM.

The test was performed in accordance with the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

AM Broadcast Receiver Test AM Carrier Frequency: 954 MHz

Highest frequency generated or used within the EUT:108 MHzWhich necessitates an upper frequency test limit of:2 GHz

Figure 24 - 30 MHz to 1 GHz, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
31.157	28.1	40.0	-11.9	Q-Peak	0	106	Horizontal	-
717.187	28.8	46.0	-17.2	Q-Peak	125	100	Horizontal	-

Table 25

Figure 25 - 30 MHz to 1 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.271	29.0	40.0	-11.0	Q-Peak	188	267	Vertical	-
37.320	31.8	40.0	-8.2	Q-Peak	0	100	Vertical	-
48.721	28.1	40.0	-11.9	Q-Peak	0	100	Vertical	-
714.552	28.7	46.0	-17.3	Q-Peak	282	398	Vertical	-

Figure 26 - 1 GHz to 2 GHz, Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 27

Figure 27 - 1 GHz to 2 GHz, CISPR Average, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 28

Figure 28 - 1 GHz to 2 GHz, Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 29

Figure 29 - 1 GHz to 2 GHz, CISPR Average, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 30

Results for Configuration and Mode: Sample 2 (Variant B, AM and FM1) DC Powered – FM.

The test was performed in accordance with the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

FM Broadcast Receiver Test FM Carrier Frequency: 100 MHz

Highest frequency generated or used within the EUT:108 MHzWhich necessitates an upper frequency test limit of:2 GHz

Figure 30 - 30 MHz to 1 GHz, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
31.000	28.6	40.0	-11.4	Q-Peak	81	321	Horizontal	-
806.230	29.0	47.0	-18.0	Q-Peak	70	267	Horizontal	-

Table 31

Figure 31 - 30 MHz to 1 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.357	29.2	40.0	-10.8	Q-Peak	105	321	Vertical	-
794.983	29.4	47.0	-17.6	Q-Peak	105	323	Vertical	-

Figure 32 - 1 GHz to 2 GHz, Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 33

Figure 33 - 1 GHz to 2 GHz, CISPR Average, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 34

Figure 34 - 1 GHz to 2 GHz, Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
1342.781	33.8	74.0	-40.2	Peak	247	142	Vertical	-
1774.572	33.5	74.0	-40.5	Peak	187	101	Vertical	-

Figure 35 - 1 GHz to 2 GHz, CISPR Average, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 36

Figure 36 - Test Setup - 30 MHz to 1 GHz

Figure 37 - Test Setup - 1 GHz to 2 GHz

2.1.10 Test Location and Test Equipment Used

This test was carried out in Bearley EMC Chamber 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
EMC 3m Semi Anechoic Chamber	Rainford	Hybrid	4160	36	16-Dec-2021
EmX Emissions Software	TUV SUD	V1.5.7	5125	-	Software
EMI Receiver	Keysight Technologies	N9038A MXE	4974	12	11-Feb-2021
Mast Controller	Maturo Gmbh	NCD	3917	-	TU
Turntable Controller	Maturo	Maturo NCD	5275	-	TU
Bilog Antenna	Schaffner	CBL6143	1858	24	11-Apr-2021
1-8 GHz Amplifier	Wright Technologies	APS04-0085	4674	12	12-Aug-2020
1 - 18GHz DRG Horn	ETS-Lindgren	3117	4737	24	28-Jul-2021
Cable (18GHz N Type 3m)	Rosenberger	LU7-036-3000	5163	12	06-Dec-2020
Emissions Cable 10m	Unknown	117882	5302	12	12-Jul-2020
Power Supply	Farnell	LT30-2	1673	-	TU

Table 37

TU – Traceability Unscheduled

3 Test Equipment Information

3.1 General Test Equipment Used

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
Absorbing Clamp 30MHz to 300MHz	Robert Luthi	MDS 9	20	12	16-Sep-2020
Signal Generator	Marconi	2024	1699	12	14-Feb-2021
DAB/DVB Test System	DekTec	DTA-2115B	4882	-	O/P Mon

Table 38

4 Incident Reports

No incidents reports were raised.

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Radiated Disturbance	30 MHz to 1 GHz, Bilog Antenna, ±5.2 dB 1 GHz to 40 GHz, Horn Antenna, ±6.3 dB

Table 39

Worst case error for both Time and Frequency measurement 12 parts in 10⁶.

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.