

Test Report acc. to FCC Title 47 CFR Part 15 relating to Hirschmann Car Communication GmbH 920287A

Title 47 - Telecommunication
Part 15 - Radio Frequency Devices
Subpart C – Intentional Radiators
Measurement Procedure:
ANSI C63.4-2009

Manufacturer's details			
Manufacturer	Hirschmann Car Communication GmbH		
Manufacturer's grantee code XTJ			
Manufacturer's address	Hirschmann Car Communication GmbH		
	Stuttgarter Straße 45 - 51		
	D-72654 Neckartenzlingen		
	Germany		
	Phone: +49(0) 7127 14 1027		
	Fax: +49(0) 7127 14 1232		
	Email: joachim.nebel@hirschmann-car.com		
Relevant standard used	47 CFR Part 15C - Intentional Radiators		
	ANSI C63.4-2009		

Test report prepared by	
Technical engineer	Ralf Trepper
	m.dudde hochfrequenz-technik (laboratory)
	Rottland 5a
	51429 Bergisch Gladbach
	Germany
	Phone: +49 2207 96890
	Fax: +49 2207 968920
	Email: m.duddelabor@dudde.com

Equipment Under Test (EUT)	
Equipment category	Transceiver
Trade name	Hirschmann
Type designation	920287A
Serial no.	/ Sample no. 920 287 036
Variants	

<u>State</u>: 2011-02-10 Vers. no.: 1. 11

1. Test result summary

CFR Section	Report Chapter	Requirements Headline		Test result	
15.203	11.1	Antenna requirement	Pass	Fail	N.t.
15.205	11.2	Restricted bands of operation	Pass	Fail	N.t.
15.209	11.3	Radiated emission limits, general requirements	Pass	Fail	N.t.
15.231(a)	11.4	Periodic operation characteristics	Pass	Fail	N.t.
15.231(b)	11.5	Fundamental frequencies / Field strength limits	Pass	Fail	N.t.
15.231(c)	11.6	Bandwidth (20 dB)	Pass	Fail	N.t.

The equipment meets the requirements	Yes	No

Signature: All Truppe

(Technician)

Signature: M. Muh

(Manager)

Date of issue: 2011-04-18

Table of contents

1. Test result summary	3
2. Test laboratory	5
3. Introduction	5
4. Product	6
5. Test schedule	6
6. Product and measurement documentation	7
7. Observations and comments	7
8. Summary	7
9. Conclusions	8
10. Operational description	9
11.1 Antenna requirement	10
11.1.1 Regulation	10
11.1.2 Result	10
11.2 Restricted bands of operation	11
11.2.1 Regulation	11
11.2.2 Result	13
11.3 Radiated emission limits, general requirements	14
11.3.1 Regulation	14
11.3.2 Test equipment	15
11.3.3 Test procedure	16
11.3.4 Calculation of the field strength	17
11.3.5 Test result	18
11.4 Periodic operation characteristics	20
11.4.1 Regulation	20
11.4.2 Test results	20
11.5 Fundamental frequencies / Field strength limits	22
11.5.1 Regulation	22
11.5.2 Test equipment	23
11.5.3 Test procedure	24
11.5.4 Calculation of field strength limits	25
11.5.5 Calculation of the average correction factor	25
11.5.6 Calculation of the field strengths	26
11.5.7 Test result	27
11.6 Bandwidth (20 dB)	30
11.6.1 Regulation	30
11.6.2 Calculation of the 20 dB bandwidth limit	30
11.6.3 Test equipment	30
11.6.4 Test procedure	30
11.6.5 Test result	31
12. Additional information to the test report	32

2. Test laboratory

Company name : m.dudde hochfrequenz-technik

Street : Rottland 5a

City : 51429 Bergisch Gladbach

Country : Germany

Laboratory : FCC Registration Number: **699717**

This site has been fully described in a report submitted to the FCC, and accepted with letter dated May 29, 2008, Registration Number 699717.

Phone : +49-2207-9689-0 Fax : +49-2207-9689-20

E-Mail : manfred.dudde@t-online.de Web : http://www.dudde.com

3. Introduction

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of m. dudde hochfrequenz - technik.

This report contains the result of tests performed by m. dudde hochfrequenz - technik for the purpose of a type approval. The order for carrying out these tests has been placed by:

Manufacturer

Company name : Hirschmann Car Communication GmbH

Address : Stuttgarter Str. 45 - 51

72654 Neckartenzlingen

Country : Germany

Telephone : + 49 (0) 7127 14 1027

Fax : +49 (0) 7127 14 1232

Email : joachim.nebel@hirschmann-car.com

Date of order : 2010-10-22

References : Mr. Joachim Nebel

4. Product

Samples of the following apparatus were submitted for testing:

Type of equipment : Transceiver

Trademark : Hirschmann

Type designation : 920287A

Hardware version : 920287A

Serial number : --- / Sample no. 920 287 036

Software release : ---

Power used : 3.00 VDC

Frequency used : 314.000 MHz / 314.450 MHz / 314.900 MHz

Generated or used frequencies : 24.2879 MHz (crystal),

314.000 MHz / 314.450 MHz / 314.900 MHz (carrier)

ITU emission class : 107KF1D

FCC ID : XTJ-920287A

5. Test schedule

The tests were carried out in accordance with the specifications detailed in chapter 7 "Summary" of this report at:

- m. dudde hochfrequenz - technik, D-51429 Bergisch Gladbach

The test sample was received on:

- 2010-12-10

The tests were carried out in the following period of time:

- 2011-02-22 - 2011-03-22

6. Product and measurement documentation

For issuing this report the following product documentation was used and the following annexes were created:

Description	Date	Identifications
External photographs of the Equipment Under Test (EUT)	2011-04-18	Annex no. 1
Internal photographs of the Equipment Under Test (EUT)	2011-04-18	Annex no. 2
Channel occupancy / bandwidth	2011-04-18	Annex no. 3
FCC ID label sample	2011-04-18	Annex no. 4
Functional description	2011-04-18	Annex no. 5
Test setup photos	2011-04-18	Annex no. 6
Block diagram	2011-04-18	Annex no. 7
Operational description	2011-04-18	Annex no. 8
Schematics	2011-04-18	Annex no. 9
Parts list	2011-04-18	Annex no. 10
Periodic operation characteristics / Transmission times	2011-04-18	Annex no. 11

The above mentioned documentation will be filed at m. dudde hochfrequenz - technik for a period of 10 years following the issue of this report.

7. Observations and comments

8. Summary

The product is intended for the use in the following areas of application:

Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the frequency range of 9 kHz to 40 GHz

The samples were tested according to the following specification:

47 CFR Part 15 - Intentional Radiators, ANSI C63.4-2009

9. Conclusions

Samples of the apparatus were found to **CONFORM WITH** the specifications stated in chapter 8 of this report.

In the opinion of m. dudde hochfrequenz - technik, the samples satisfied all applicable requirements relating to the network interface types specified in chapter 8.

The results of the type tests as stated in this report are exclusively applicable to the product item as identified in this report. m. dudde hochfrequenz - technik does not accept any responsibility for the results stated in this report, with respect to the properties of product items not involved in these tests.

This report consists of a main module, modules with test results and annexes listed in chapter 6. All pages have been numbered consecutively and bear the m. dudde hochfrequenz - technik logo, the report number and subnumbers.

The total number of pages in this report is 33.

Technical inspector:

Date : 2011-04-18

Name : Ralf Trepper

Signature · /// /r///

Technical responsibility for area of testing:

Date : 2011-04-18

Name : Manfried Dudde

Signature : M / M

10. Operational description

10.1 EUT details

Transceiver for vehicular use. (Car lock unlock device)

10.2 EUT configuration

The *Transceiver 920287A* operated in continuous transmitting mode after connecting the DC power line. (Prepared Sample only for Radiated emission tests, (Diagnose mode))

The *Transceiver 920287A* operated in normal mode for transmission time measurements.

10.3 EUT measurement description

The *Transceiver 920287A* was tested in a typical fashion. During preliminary emission tests the *Transceiver 920287A* was operated in continuous transmitting mode for worst case emission mode investigation. Therefore, the final qualification testing was completed with *Transceiver 920287A* operated in continuous modes.

All tests were performed with the applicant's typical voltage: 12.0 V DC

In order to establish the maximum radiation, firstly, there have been viewed all orthogonal adjustments of the test samples, secondly the test ample have been rotated at all adjustments around the own axis between 0° and 360°, and thirdly, the antenna polarization between horizontal and vertical had been varied.

11.1 Antenna requirement

11.1.1 Regulation

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

11.1.2 Result

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Annex n	o. 12

Dedicated antenna (Antenna is part of the windscreen window of a car).

11.2 Restricted bands of operation

11.2.1 Regulation

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

² Above 38.6

- (d) The following devices are exempt from the requirements of this Section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
 - (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
 - (3) Cable locating equipment operated pursuant to Section 15.213.
 - (4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.257 of this part.
 - (5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
 - (6) Transmitters operating under the provisions of Subpart D or F of this part.
 - (7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.
 - (8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).
 - (9) Devices operated in the 24.0-24.25 GHz band under § 15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).
- (e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).
- (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator. (d) The following devices are exempt from the requirements of this Section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

- (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
- (3) Cable locating equipment operated pursuant to Section 15.213.
- (4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.257 of this part.
- (5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
- (6) Transmitters operating under the provisions of Subpart D or F of this part.
- (7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.
- (8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).
- (9) Devices operated in the 24.0-24.25 GHz band under § 15.249 are exempt from 83 complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).
- (e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).

11.2.2 Result

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Page no.	27-29

11.3 Radiated emission limits, general requirements

11.3.1 Regulation

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	
30-88	100	3	
88-216	150	3	
216-960	200	3	
Above 960	500	3	

- (b) In the emission table above, the tighter limit applies at the band edges.
- (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- (e) The provisions in §§ 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.
- (f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

11.3.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
Receiver	Rohde & Schwarz Spectrum Analyzer	100.117	2010/10	2011/10	Rohde & Schwarz
(9 kHz –18.0 GHz)	FSL 18 (171a)	100022	2010/04	2011/02/204	D 1 1 0
Receiver (9 kHz -30.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSV 30 (502)	100932	2010/04	2011/03/29*	Rohde & Schwarz
Receiver (9 kHz –30.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSV 30 (502)	100932	2011/04	2012/04	Dudde
Pre-amplifier (100kHz - 1.3GHz)	Hewlett Packard 8447 E (166a)	1726A00705	2011/02	2012/02	Dudde
Pre-amplifier (1GHz - 18GHz)	Narda (345)		2011/02	2012/02	Dudde
Magnetic loop antenna (9 kHz - 30 MHz)	Schwarzbeck FMZB 1516 (23)		2010/09	2011/09	Dudde
Bilog antenna (30- 1000 MHz)	Schwarzbeck VULP 9168 (406)		2010/09	2011/09	Dudde
Bilog antenna (1- 18 GHz)	Schwarzbeck VULP 9168 (408)		2011/02	2012/02	Dudde
Horn antenna (0.86-8.5 GHz)	Schwarzbeck BBHA 9120 A (284)	236	2011/02	2012/02	Dudde
Horn antenna (2.0-14.0 GHz)	Schwarzbeck BBHA 9120 C (169)	305	2011/02	2012/02	Dudde
RF- cable	Kabelmetal 18m [N]	K1	2011/02	2012/02	Dudde
RF- cable	Aircell 0.5m [BNC]	K40	2011/02	2012/02	Dudde
RF- cable	Aircell 1m [BNC/N]	K56	2011/02	2012/02	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	2011/02	2012/02	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	2011/02	2012/02	Dudde

^{*} new calibration date, old calibration valid up to 2011/04

<u>State</u>: 2011-02-10 Vers. no.: 1. 11

11.3.3 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8 m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna is changed in horizontal and vertical polarization; the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 2003 Section 8 "Radiated Emissions Testing"

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The C63.4-2003 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of C63.4-2003 states that the measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." We consider the "cone of radiation" to be the 3 dB beamwidth of the measurement antenna.

While the "bore-sighting" technique is not explicitly mentioned in C63.4-2003, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beamwidth of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

C63.4-2003 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

Radiated emissions test characteristics					
Frequency range	30 MHz - 4,000 MHz				
Test distance	3 m*				
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1,000 MHz)				
	1 MHz (1000 MHz - 4,000 MHz)				
Receive antenna scan height	1 m - 4 m				
Receive antenna polarization	Vertical/horizontal				

^{*} According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

11.3.4 Calculation of the field strength

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of a pre-amplifier)

Receiver Level : Receiver reading without correction factors

Correction Factor : Antenna factor + cable loss

For example:

The receiver reading is $32.7 \text{ dB}\mu\text{V}$. The antenna factor for the measured frequency is +2.5 dB (1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of $35.91 \text{dB}\mu\text{V/m}$.

The $35.91dB\mu V/m$ value can be mathematically converted to its corresponding level in $\mu V/m$.

Level in $\mu V/m = Common Antilogarithm (35.91/20) = 39.8$

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

11.3.5 Test result

	TRANSM	AITTER SP	URIOUS	RADIATIO	ON BELO	W 30 MH	z (Section 15.20	5, 15.209)	
f (MHz)	Bandwidth (kHz)	Noted receiver level	Test distance	Correction factor	Distance extrapol.	Level corrected	Limit	Margin	Polarisation EUT
	Type			ID.	factor		ID X7/		antenna
	of detector	dΒμV	m	dB	dB	dBμV/m	dBμV/m	dBμV/m	orientation
0.1200	PK/0.2kHz	< 4.0	10	20.2	-59.1	-34.90	Pk46.0- @ 300	80.90	V, H/0-360°
	AV/0.2kHz	< 4.0	10	20.2	-59.1	-34.90	AV26.0 @ 300	80.90	V, H/0-360°
0.5000	AV/0.2kHz	< 4.0	10	20.2	-19.1	5.10	AV33.6 @ 30	28.5	V, H/0-360°
1.5000	AV/0.2kHz	< 4.0	10	20.2	-19.1	5.10	AV24.1 @ 30	19.00	V, H/0-360°
3.0000	AV/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
5.0000	AV/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
8.0000	AV/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
10.0000	AV/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
20.0000	AV/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
30.0000	AV/9.0kHz	< 4.0	10	20.2	-19.1	5.10	AV29.5 @ 30	24.4	V, H/0-360°
	No emissions detected								
Measur	ement unce	ertainty				4 (dB		

Remark: *1 Noise level of the measuring instrument \leq 4.0dB μ V @ 10m distance (0.009 MHz –30 MHz) Remark: *Peak Limit according to Section 15.35 (b).

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No		

	TRAN	SMITTE	R SPURI	OUS RAD	IATION .	ABOVE 30	MHz (Se	ection 15.2	205, 15.20	19)	
f (MHz)	Bandwidth (kHz)	Noted receiver level	Test distance	Correction factor	Distance extrapol.	AV Correction factor	Level corrected	Limit	Margin	Polaris. EUT /	Antenna height
	Type of detector	dBμV	m	dB	dB	dB	dBμV/m	dBμV/m	dBμV/m	antenna	cm
30.0000	100, AV	≤ 3.5	3	-2.60	0	0	0.90	40.00	39.10	H,V/H,V	100-400
88.0000	100, AV	≤ 3.5	3	-10.80	0	0	-7.30	40.00	47.30	H,V/H,V	100-400
216.0000	100, AV	≤ 3.5	3	-10.30	0	0	-6.80	43.50	50.30	H,V/H,V	100-400
960.0000	100, AV	≤ 3.5	3	8.50	0	0	12.00	43.50	31.50	H,V/H,V	100-400
1700.0000	1000, AV	≤ 4.5	3	3.80	0	0	8.30	54.00	45.70	H,V/H,V	100-400
2250.0000	1000, AV	≤ 10	3	8.00	0	0	18.00	54.00	36.00	H,V/H,V	100-400
4000.0000	1000, AV	≤ 10	3	8.40* ⁶	0	0	18.40	54.00	35.60	H,V/H,V	100-400
5000.0000	1000, AV	≤ 10	3	9.10* ⁶	0	0	19.40	54.00	34.60	H,V/H,V	100-400
7500.0000	1000, AV	≤ 14	3	12.9* ⁶ 0	0	0	26.90	54.00	27.10	H,V/H,V	100-400
8300.0000	1000, AV	≤ 14	3	14.80* ⁶	0	0	28.80	54.00	25.20	H,V/H,V	100-400
9400.0000	1000, AV	≤ 14	3	16.00* ⁶	0	0	30.00	54.00	24.00	H,V/H,V	100-400
11000.0000	1000, AV	≤ 14	3	18.25* ⁶	0	0	32.25	54.00	21.75	H,V/H,V	100-400
Measure	ment uncer	tainty					4 dB				

Bandwidth = the measuring receiver bandwidth

Remark: *\frac{1}{2} noise floor noise level of the measuring instrument \leq 3.5dB\text{BuV} @ 3m distance (30 - 1,000 MHz)

Remark: *2 noise floor noise level of the measuring instrument $\leq 4.5 dB\mu V$ @ 3m distance (1,000 – 2,000 MHz) Remark: *3 noise floor noise level of the measuring instrument $\leq 10 dB\mu V$ @ 3m distance (2,000 – 5,500 MHz)

Remark: *4 noise floor noise level of the measuring instrument $\leq 14 dB \mu V$ @ 3m distance (5,500 – 14,500 MHz)

Remark: *5 for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

Remark: *6 for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

The equipment meets the requirements		Yes	No	N.t.
				_
Further test results are attached	Yes	No		

11.4 Periodic operation characteristics

11.4.1 Regulation

(a) The provisions of this Section are restricted to periodic operation within the band 40.66 - 40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this Section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:

11.4.2 Test results

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Annex n	o. 11

(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No	Annex n	o. 11

(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

The equipment meets the requirements		Yes	No	N.t. ³
Further test results are attached	Yes	No		

(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

The equipment meets the requirements		Yes	No	N.t. ³
Further test results are attached	Yes	No		

(4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

The equipment meets the requirements		Yes	No	N.t. ³
Further test results are attached	Yes	No		

(5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmission are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

The equipment meets the requirements		Yes	Ne	N.t. ³
Further test results are attached	Yes	No		

(6) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) and may be employed for any type of operation, including operation prohibited in paragraph (a), provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this Section, except the field strength table in paragraph (b) is replaced.

The equipment meets the requirements		Yes	No	N.t. ³
Further test results are attached	Yes	No		

11.5 Fundamental frequencies / Field strength limits

11.5.1 Regulation

(b) In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 **	125 to 375 **
174 - 260	3,750	375
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

^{**} linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in Section 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of Section 15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

11.5.2 Test equipment

Туре	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Calibration executed by
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	2010/10	2011/10	Rohde & Schwarz
Receiver (9 kHz -30.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSV 30 (502)	100932	2010/04	2011/03/29*	Rohde & Schwarz
Receiver (9 kHz -30.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSV 30 (502)	100932	2011/04	2012/04	Dudde
Pre-amplifier (100kHz - 1.3GHz)	Hewlett Packard 8447 E (166a)	1726A00705	2011/02	2012/02	Dudde
Pre-amplifier (1GHz - 18GHz)	Narda (345)		2011/02	2012/02	Dudde
Magnetic loop antenna (9 kHz - 30 MHz)	Schwarzbeck FMZB 1516 (23)		2010/09	2011/09	Dudde
Bilog antenna (30- 1000 MHz)	Schwarzbeck VULP 9168 (406)		2010/09	2011/09	Dudde
Bilog antenna (1- 18 GHz)	Schwarzbeck VULP 9168 (408)		2011/02	2012/02	Dudde
Horn antenna (0.86-8.5 GHz)	Schwarzbeck BBHA 9120 A (284)	236	2011/02	2012/02	Dudde
Horn antenna (2.0-14.0 GHz)	Schwarzbeck BBHA 9120 C (169)	305	2011/02	2012/02	Dudde
RF- cable	Kabelmetal 18m [N]	K1	2011/02	2012/02	Dudde
RF- cable	Aircell 0.5m [BNC]	K40	2011/02	2012/02	Dudde
RF- cable	Aircell 1m [BNC/N]	K56	2011/02	2012/02	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	2011/02	2012/02	Dudde
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	2011/02	2012/02	Dudde

^{*} new calibration date, old calibration valid up to 2011/04

<u>State</u>: 2011-02-10 Vers. no.: 1. 11

11.5.3 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna are changed in horizontal and vertical polarization, the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4: 2003 Section 8 "Radiated emission measurements"

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The C63.4-2003 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of C63.4-2003 states that the measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." We consider the "cone of radiation" to be the 3 dB beamwidth of the measurement antenna.

While the "bore-sighting" technique is not explicitly mentioned in C63.4-2003, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beamwidth of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

C63.4-2003 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

Radiated emissions test characteristics	
Frequency range	30 MHz - 12,000 MHz
Test distance	10m, 3 m*
Test instrumentation resolution bandwidth	9 kHz (20 kHz – 30 MHz)
	120 kHz (30 MHz - 1,000 MHz)
	1 MHz (1000 MHz - 12,000 MHz)
Receive antenna height	1 m (20 kHz – 30 MHz)
Receive antenna polarization	0° - 90° (20 kHz – 30 MHz)
Receive antenna scan height	1 m - 4 m (30 MHz - 12,000 MHz)
Receive antenna polarization	vertical/horizontal (30 MHz - 12,000 MHz)

*According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

11.5.4 Calculation of field strength limits

For example: Transmitter working on 315 MHz

Limit for average measurements \rightarrow 41.6667*(315 MHz) - 7083.3333 = 6041.677 μ V/m = 75.6dB μ V/m @3m Limit for peak measurements \rightarrow Limit for average measurements + 20dB = 95.6dB μ V/m @3m

11.5.5 Calculation of the average correction factor

The average correction factor is computed by analyzing the "worst case" on time in any 100msec time period and using the formula: Corrections Factor $+ 20*\log$ (worst case on time/100msec). Analysis of the remote transmitter worst case on time in any 100msec time period is an on time of 50msec, therefore the correction factor is $20*\log(50/100) = -6 \text{ dB}$. The maximum correction factor to be applied is 20 dB per section 15.35 of the FCC rules.

11.5.6 Calculation of the field strengths

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-Amplifier (with the use of a pre-amplifier)

Receiver Level : Receiver reading without correction factors

Correction Factor : Antenna factor + cable loss

For example:

The receiver reading is 32.7 dB μ V. The antenna factor for the measured frequency is +2.5 dB (1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of 35.91dB μ V/m.

The $35.91 dB \mu V/m$ value can be mathematically converted to its corresponding level in $\mu V/m$.

Level in $\mu V/m = Common Antilogarithm (35.91/20) = 39.8$

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

11.5.7 Test result

(Channel 1 314.000 MHz)

		TRANSM	ITTER S	PURIOUS	RADIATI	ON (Sect	ion 15.23	1 (b))		
f (MHz)	Bandwidth (kHz) / Type	Noted receiver level	Test distance	Correction factor	Averaging correction Factor *7	Level corrected	Limit Average	Margin	Polarisation EUT / antenna	Antenna height
	of detector	dBμV	m	dB	dB	dBμV/m	dBμV/m	dBμV/m		cm
314.000	100, PK	94.6	3	-6.3* ⁵	-13.7	74.6	75.6	1.0	H, 300°/H	100
628.000	100, PK	50.4	3	-0.8* ⁵	-13.7	35.9	55.6	19.7	H, 300°/H	114
942.000	100, PK	50.5	3	+4.7*5	-13.7	41.5	55.6	14.1	H, 300°/H	118
1256.000	1000, PK	52.9	3	+2.3*6	-13.7	17.5	55.6	38.1	H, 300°/H	100
1570.000	1000, PK	30.6	3	+4.0*6	-13.7	20.9	54.0	33.1	H, 300°/H	114
1884.000	1000, PK	23.5	3	+6.0*6	-13.7	15.8	55.6	39.8	Н, 300° / Н	115
2198.000	1000, PK	31.3	3	+8.1*6	-13.7	25.7	54.0	28.3	H, 300°/H	123
2512.000	1000, PK	≤ 10.0	3	+9.0*6	-13.7	5.3	55.6	50.3	H,0-360°/H,V	100-400
2826.000	1000, PK	≤ 10.0	3	+9.8*6	-13.7	6.1	54.0	47.9	H,0-360°/H,V	100-400
3140.000	1000, PK	≤ 10.0	3	+11.2*6	-13.7	7.5	55.6	48.1	H,0-360°/H,V	100-400
3454.000	1000, PK	≤ 10.0	3	+13.0*6	-13.7	9.3	55.6	46.3	H,0-360°/H,V	100-400
		Т	he blue mai	ked frequenc	ies fall into th	ne restricted	bands			
Measur	ement uncer	rtainty				4	dB			

Bandwidth = the measuring receiver bandwidth

Remark: *\frac{1}{2} noise floor noise level of the measuring instrument \$\leq 3.5dB\muV (a) 3m distance (30 - 1,000 MHz) noise level of the measuring instrument \$\leq 4.5dB\muV (a) 3m distance (1,000 - 2,000 MHz) noise level of the measuring instrument \$\leq 4.5dB\muV (a) 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,000 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,000 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,000 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,000 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,500 MHz) noise level of the measuring instrument \$\leq 10dB\muV (a) 3m distance (5,500 - 14,50

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No		

Remark: *7 AVERAGE FACTOR CALCULATION (Standard 47 CFR Part 15C (periodic intentional transmitter)

Maximum transmitting duration in every 100 ms period: 20.5 ms Averaging factor = $20 \times \log (20.5/100) = -13.7 \text{ dB}$ (see Annex no. 11)

(Channel 2 314.900 MHz)

	TRANSMITTER SPURIOUS RADIATION (Section 15.231(b))									
f (MHz)	Bandwidth (kHz) / Type	Noted receiver level	Test distance	Correction factor	Averaging correction Factor *7	Level corrected	Limit Average	Margin	Polarisation EUT / antenna	Antenna height
	of detector	dΒμV	m	dB	dB	dBμV/m	dBμV/m	dBμV/m	antenna	cm
314.900	100, PK	91.4	3	-6.3* ⁵	-13.7	71.4	75.6	4.2	H, 300°/H	100
629.800	100, PK	51.9	3	-0.8*5	-13.7	37.4	55.6	18.2	H, 300°/H	120
944.700	100, PK	50.0	3	+4.7*5	-13.7	41.0	55.6	14.6	H, 300°/H	117
1259.600	1000, PK	28.3	3	+2.3*6	-13.7	16.9	55.6	38.7	H, 300°/H	140
1574.500	1000, PK	29.2	3	+4.0*6	-13.7	19.5	54.0	34.5	$\mathrm{H,300^{\circ}/H}$	110
1889.400	1000, PK	≤ 10.0	3	+6.0*6	-13.7	2.3	55.6	53.3	H,0-360°/H,V	100-400
2204.300	1000, PK	26.5	3	+8.1*6	-13.7	20.9	54.0	33.1	$\mathrm{H,300^{\circ}/H}$	124
2519.200	1000, PK	≤ 10.0	3	+9.0*6	-13.7	5.3	55.6	50.3	H,0-360°/H,V	100-400
2834.100	1000, PK	≤ 10.0	3	+9.8*6	-13.7	6.1	54.0	47.9	H,0-360°/H,V	100-400
3149.000	1000, PK	≤ 10.0	3	+11.2*6	-13.7	7.5	55.6	48.1	H,0-360°/H,V	100-400
3463.900	1000, PK	≤ 10.0	3	+13.0*6	-13.7	9.3	55.6	46.3	H,0-360°/H,V	100-400
	The blue marked frequencies fall into the restricted bands									
Measur	Measurement uncertainty					4	dB			

Bandwidth = the measuring receiver bandwidth

Remark: *\frac{1}{2} noise floor Remark: *\frac{2}{2} noise floor Remark: *\frac{4}{2} noise floor Noise level of the measuring instrument \leq 1.5dB\puV @ 3m distance (30 - 1,000 MHz) noise level of the measuring instrument \leq 1.0dB\puV @ 3m distance (2,000 - 5,500 MHz) noise level of the measuring instrument \leq 1.4dB\puV @ 3m distance (5,500 - 14,500 MHz)

Remark: *⁵ for using a pre-amplifier in the range between 100 kHz and 1,000 MHz Remark: *⁶ for using a pre-amplifier in the range between 4.0 GHz and 18.0 GHz

Remark: *7 for periodic operated transmitter

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No		

Remark: *7 AVERAGE FACTOR CALCULATION (Standard 47 CFR Part 15C (periodic intentional transmitter)

Maximum transmitting duration in every 100 ms period: 20.5 ms Averaging factor = $20 \times \log (20.5/100) = -13.7 \text{ dB}$ (see Annex no. 11)

(Channel 3 314.450 MHz)

		TRANSM	IITTER S	SPURIOUS	RADIATI	ON (Sect	ion 15.23	1 (b))		
f (MHz)	Bandwidth (kHz) / Type	Noted receiver level	Test distance	Correction factor	Averaging correction Factor *7	Level corrected	Limit Average	Margin	Polarisation EUT / antenna	Antenna height
	of detector	dΒμV	m	dB	dB	dBμV/m	dBμV/m	dBμV/m	ancina	cm
314.450	100, PK	93.6	3	-6.3* ⁵	-13.7	73.6	75.6	2.0	Н, 300°/Н	100
628.900	100, PK	53.7	3	-0.8*5	-13.7	39.2	55.6	16.4	H, 300°/H	114
943.350	100, PK	46.0	3	+ 4.7 * ⁵	-13.7	37.0	55.6	18.6	H, 300°/H	140
1257.800	1000, PK	30.0	3	+2.3*6	-13.7	18.6	55.6	37.0	H, 300°/H	100
1572.250	1000, PK	33.0	3	+4.0*6	-13.7	23.3	54.0	30.7	$\mathrm{H,300^{\circ}/H}$	110
1886.700	1000, PK	≤ 10.0	3	+6.0*6	-13.7	2.3	55.6	53.3	H,0-360°/H,V	100-400
2201.150	1000, PK	30.6	3	+8.1*6	-13.7	25.0	54.0	29.0	$\mathrm{H,300^{\circ}/H}$	122
2515.600	1000, PK	≤ 10.0	3	+9.0*6	-13.7	0.4	55.6	55.2	H,0-360°/H,V	100-400
2830.050	1000, PK	≤ 10.0	3	+9.8*6	-13.7	1.2	54.0	52.8	H,0-360°/H,V	100-400
3144.500	1000, PK	≤ 10.0	3	+11.2*6	-13.7	2.6	55.6	53.0	H,0-360°/H,V	100-400
3458.950	1000, PK	≤ 10.0	3	+13.0*6	-13.7	4.4	55.6	51.2	H,0-360°/H,V	100-400
		Т	he blue mai	rked frequenc	ies fall into th	ne restricted	bands			
Measur	Measurement uncertainty					4	dB			

Bandwidth = the measuring receiver bandwidth

Remark: *\frac{1}{2} noise floor Remark: *\frac{2}{2} noise floor Remark: *\frac{4}{2} noise floor Noise level of the measuring instrument \leq 1.5dB\puV @ 3m distance (30 - 1,000 MHz) noise level of the measuring instrument \leq 1.0dB\puV @ 3m distance (2,000 - 2,000 MHz) noise level of the measuring instrument \leq 1.4dB\puV @ 3m distance (5,500 - 14,500 MHz)

Remark: *⁵ for using a pre-amplifier in the range between 100 kHz and 1,000 MHz Remark: *⁶ for using a pre-amplifier in the range between 4.0 GHz and 18.0 GHz

Remark: *7 for periodic operated transmitter

The equipment meets the requirements		Yes	No	N.t.
Further test results are attached	Yes	No		

Remark: *7 AVERAGE FACTOR CALCULATION (Standard 47 CFR Part 15C (periodic intentional transmitter)

Maximum transmitting duration in every 100 ms period: 20.5 ms Averaging factor = $20 \times \log (20.5/100) = -13.7 \text{ dB}$ (see Annex no. 11)

11.6 Bandwidth (20 dB)

11.6.1 Regulation

(c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

11.6.2 Calculation of the 20 dB bandwidth limit

The 20 dB bandwidth limit = 0.0025 * 314.88 MHz = 0.7842 MHz

11.6.3 Test equipment

Type	Manufacturer/	Serial no.	Last calibration	Next calibration	Calibration executed by
	Model no.	100 11=	004040	0011/10	D 1 1 0
Receiver	Rohde & Schwarz	100.117	2010/10	2011/10	Rohde &
	Spectrum Analyzer				Schwarz
(9 kHz –18.0 GHz)	FSL 18 (171a)				
signal generator	Marconi Instruments	119347/003	2011/01	2012/01	Rohde &
(10 kHz -5.4 GHz)	Low noise signal				Schwarz
	generator 2042 (6)				
Frequency counter	Hewlett & Packard	2432A00054	2010/09	2011/09	Rohde &
	5351A Microwave				Schwarz
(10MHz -26.5GHz)	frequency counter				
`	(130)				
Frequency	Schomandl	F-Nr. 10-025	2011/03	2012/03	Dudde
reference	Frequency normal				
	FN77-OCXO				
RF- cable	Sucoflex 104 P Suhner	K17a	2011/03	2012/03	Dudde
	2,13m [APC 3.5]				
RF- cable	Sucoflex 104 P Suhner	K18a	2011/03	2012/03	Dudde
	2,13m [APC 3.5]				
Test fixture	Dudde		2011/04	2012/04	Dudde

11.6.4 Test procedure

ANSI C63.4-2009 Section 13.1.7 Occupied bandwidth measurements. The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce worst-case (i.e., the widest) bandwidth. In order to measure the modulated signal properly, a resolution bandwidth that is small compared to the bandwidth required by the procuring or regulatory agency shall be used on the measuring instrument. However, the 6 dB resolution bandwidth of the measuring instrument shall be set to a value greater than 5% of the bandwidth requirements.

11.6.5 Test result

The measured 20 dB bandwidth for the first channel is:

65.1 kHz
The measured 20 dB bandwidth for the second channel is:
65.1 kHz
The measured 20 dB bandwidth for the third channel is:
66.6 kHz

The equipment meets the requirements		Yes	No No	N.t.
Further test results are attached	Yes	No	Annex n	0.3

12. Additional information to the test report

Remarks

N.t. ¹	Not tested, because the antenna is part of the PCB
N.t. ²	Not tested, because the EUT is directly battery powered
N.t. ³	Not tested, because not applicable for this type of equipment

<u>State</u>: 2011-02-10 Vers. no.: 1. 11

End of test report

<u>State</u>: 2011-02-10 Vers. no.: 1. 11