

TEST REPORT

FCC ID: XT5PGI400 IC: 8670A- PGI400

Applicant	: Technologies Humanware Inc.
Address	: 1800, Rue Michaud, Drumondville, Quebec, J2C 7G7, Canada
Equipment unde	r Test (EUT):
Name	: Prodigi Connect 12
Model	: PGI-400
Standards	: KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02
Report No.	: T1870080 07
Date of Test	: January 13, 2017 – March 08, 2017
Date of Issue	: March 09, 2017

Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

lon

(Mark Zhu) General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Alpha Product Testing Co., Ltd. Or test done by Shenzhen Alpha Product Testing Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Alpha Product Testing Co., Ltd. Approvals in writing.

TABLE OF CONTENT

Description

Page

1	Gen	eral Information	4
	1.1	Description of Device (EUT)	4
	1.2	Description of Test Facility	5
2	EMC	Equipment List	5
3		mary of Measurement	
	3.1	Summary of test result	
	3.2	Test connection	7
	3.3	Assistant equipment used for test	8
	3.4	Test mode	8
	3.5	Equipment Type	8
	3.6	Channel list	9
	3.7	Test Conditions and channel	
	3.8	Measurement Uncertainty (95% confidence levels, k=2)	
4	DFS	PARAMETERS	
	4.1	DFS PARAMETERS	
	4.2	DFS TEST RESULTS	

TEST REPORT VERIFICATION

Applicant	: Tecl	Technologies Humanware Inc.			
Manufacturer	: She	enzhen Minghong Technology Limited.			
EUT Description	: Prod	ligi Connect 12			
(A) Model N	No.	: PGI-400			
(B) Tradema	ark	: N/A			
(C) Ratings	Supply	: DC 7.4V from battery or DC 12V from adapter for charging			
(D)Test Volt	tage	: DC 7.4V from battery or DC 12V from adapter for charging			

Measurement Standard Used:

FCC KDB 905462 D02

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC KDB 905462 D02 limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....:

Eric Huang Test Engineer

Approved by (name + signature).....:

Simple Guan Project Manager

Fric uneng

Date of issue.....:

March 09, 2017

1 General Information

1.1	Description	on of De	vice (EU	JT)

Trade Name	N/A
EUT	Prodigi Connect 12
Model No.	PGI-400
DIFF.	N/A
Antenna Type	Integrated antenna :2.81 dBi
Operation Frequency	IEEE 802.11n HT20: 5180MHz-5240MHz,5260MHz-5320MHz,5500 MHz-5700MHz IEEE 802.11a: 5180MHz-5240MHz,5260MHz-5320MHz,5500 MHz-5700MHz
Modulation type	IIEEE 802.11n :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11a :OFDM(64QAM, 16QAM, QPSK, BPSK)
Power Supply	DC 7.4V from battery or DC 12V from adapter for charging
Hardware Version	X1162_V1R2 20161125
Software Version	PGI-400_20170117_V2.0
Applicant	Technologies Humanware Inc.
Address	1800, Rue Michaud, Drumondville, Quebec, J2C 7G7, Canada
Manufacturer	Shenzhen Minghong Technology Limited.
Address	Unit 106B, Building 30, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, China.

1.2 Description of Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road, Bao'an, Shenzhen, China

March 25, 2015 File on Federal Communication Commission Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

Model No. Serial No. Manufacturer Equipment Last cal. Cal. Due day SCHWARZBE VULB 9168 2016.09.30 **Bilog** Antenna 9168-438 2017.09.29 CK **Test Receiver** ROHDE&SCH ESCI 101165 2016.09.29 2017.09.28 WARZ E4407B Spectrum analyzer Agilent MY49510055 2016.09.29 2017.09.28 SCHWARZBE BBHA 9120 BBHA 9120 2016.09.30 Horn Antenna 2017.09.29 CK D(1201) D ZLPF-LDC-1 Filter **KANGMAI** 1209002075 2016.09.29 2017.09.28 000-**WHKX2.80** WAINWRIG Filter SN1 2016.09.29 2017.09.28 /18G-HT RF Cable Resenberger Cable 4 N/A 2016.09.29 2017.09.28 ROHDE&SCH 116785 2016.09.29 CMU200 **CMU200** 2017.09.28 WARZ N9020A MY49910006 Signal Analyzer 2016.09.29 2017.09.28 Agilent 0 vector Signal Agilent N5182A MY49060042 2016.09.29 2017.09.28 Generator vector Signal E4438C US44271917 2016.09.29 2017.09.28 Agilent Generator HP 2834A00455 2016.09.29 2017.09.28 Amplifier HP8347A Amplifier Teseq LNA6901 72718 2016.09.29 2017.09.28 Amplifier Agilent 8449B 3008A02664 2016.09.29 2017.09.28 WHKX1.0G/ Filter WAINWRIG **SN40** 2016.09.29 2017.09.28 HT 15G-1316.3003K03 ROHDE&SCH ESR 2016.09.29 2017.09.28 Test Receiver WARZ SCHWARZBE Bilog Antenna **VULB 9168** 9168-438 2016.09.29 2017.09.28 CK

2 EMC Equipment List


9*6*6 anechoic chamber	CHENYU	9*6*6	N/A	2016.7.21	2017.7.20
RF Cable	Resenberger	Cable 1	N/A	2016.09.29	2017.09.28
RF Cable	Resenberger	Cable 2	N/A	2016.09.29	2017.09.28
RF Cable	Resenberger	Cable 3	N/A	2016.09.29	2017.09.28
Power Sensor	Power Radio	RPR3006W	15100041SNO	2016.09.29	2017.09.28
			91		
Power Sensor	Power Radio	RPR3006W	15100041SNO	2016.09.29	2017.09.28
			92		
L.I.S.N.	SCHWARZBE CK	NSLK8126	8126-466	2016.09.29	2017.09.28
L.I.S.N.	ROHDE&SCH WARZ	ENV216	101043	2016.09.29	2017.09.28

3 Summary of Measurement

3.1 Summary of test result

Toot Itom	Operation N	Result	
Test Item	Master	Client	Kesuit
Non-Occupancy Period	N/A	Yes	Compliance
DFS Detection Threshold	N/A	N/A	Compliance
Channel Availability Check Time	N/A	N/A	Compliance
Channel Closing Transmission Time	N/A	Yes	Compliance
Channel Move Time	N/A	Yes	Compliance
U-NII Detection Bandwidth	N/A	N/A	Compliance

3.2 Test connection

3.3 Assistant equipment used for test

Description	:	Adapter
Manufacturer	:	N/A
Model No.	:	IT15V090080X

3.4 Test mode

Tested mode, channel, and Mode	Data rate (Mpbs)	Channel	Frequency
1,1000	see Note	Chamber	(MHz)
IEEE 802.11a	6	36	5180
	6	40	5200
	6	48	5240
	6	52	5260
	6	60	5300
	6	64	5320
	6	100	5500
	6	116	5580
	6	140	5700
	6	149	5745
	6	157	5785
	6	165	5825
EEE 802.11n HT20	6.5	36	5180
	6.5	40	5200
	6.5	48	5240
	6.5	52	5260
	6.5	60	5300
	6.5	64	5320
	6.5	100	5500
	6.5	116	5580
	6.5	140	5700
	6.5	149	5745
	6.5	157	5785
	6.5	165	5825

3.5 Equipment Type

Master Device

Client Device(no Inservice Monitoring No Ad-Hoc mode)

Client Device with In-Service Monitoring

3.6 Channel list

	For IEEE 802.11 a						
Channel	Frequency (MHz)	Channel	Frequency (MHz)				
CH36	5180	CH40	5200				
CH44	5220	CH48	5240				
CH52	5260	CH56	5280				
CH60	5300	CH64	5320				
CH100	5500	CH104	5520				
CH108	5540	CH112	5560				
CH116	5580	CH120	5600				
CH124	5620	CH128	5640				
CH132	5660	CH136	5680				
CH140	5700	CH149	5745				
CH151	5755	CH153	5765				
CH157	5785	CH159	5795				
CH161	5805	Ch165	5825				

For IEEE 802.11 n/HT20							
Channel	Frequency (MHz)	Channel	Frequency (MHz)				
CH36	5180	CH40	5200				
CH44	5220	CH48	5240				
CH52	5260	CH56	5280				
CH60	5300	CH64	5320				
CH100	5500	CH104	5520				
CH108	5540	CH112	5560				
CH116	5580	CH120	5600				
CH124	5620	CH128	5640				
CH132	5660	CH136	5680				
CH140	5700	CH149	5745				
CH151	5755	CH153	5765				
CH157	5785	CH159	5795				
CH161	5805	Ch165	5825				

3.7 Test Conditions and channel

Temperature range	21-25°C
Humidity range	40-75%
Pressure range	86-106kPa

Channel List for 802.11a/n(HT20)				
Band Frequency EUT Channel Test Frequency (M				
Band II	CH64	5320		

Note: (1) The measurements are performed at the lowest available channels.

3.8 Measurement Uncertainty (95% confidence levels, k=2)

	,	,
Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.71dB	
Uncertainty for Radiation Emission test in 3m chamber	3.90 dB	Polarize: V
(30MHz to 1GHz)	3.92dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	4.26 dB	Polarize: H
(1GHz to 25GHz)	4.28 dB	Polarize: V
Uncertainty for conducted RF Power	0.16dB	

4 DFS PARAMETERS

4.1 DFS PARAMETERS

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode				
	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational	Mode				
	Master Device or Client	Client Without				
	with Radar Detection	Radar Detection				
DFS Detection Threshold	Yes	Not required				
Channel Closing Transmission Time	Yes	Yes				
Channel Move Time	Yes	Yes				
U-NII Detection Bandwidth	Yes	Not required				
Additional requirements for devices	Master Device or Client	Client Without				
with multiple bandwidth modes	with Radar Detection	Radar Detection				
U-NII Detection Bandwidth and	All BW modes must be	Not required				
Statistical Performance Check	tested					
Channel Move Time and Channel	Test using widest BW mode	Test using the widest				
Closing Transmission Time	available	BW mode available				
		for the link				
All other tests	Any single BW mode	Not required				
Note: Frequencies selected for statistical p	Note: Frequencies selected for statistical performance check (Section 7.8.4) should include					
several frequencies within the radar detection bandwidth and frequencies near the edge of						
the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in						
each of the bonded 20 MHz channe	ls and the channel center freque	ency.				

Maximum Transmit Power	Value				
	(See Notes 1, 2, and 3)				
$EIRP \ge 200 milliwatt$	-64 dBm				
EIRP < 200 milliwatt and	-62 dBm				
power spectral density < 10 dBm/MHz					
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm				
density requirement					
Note 1: This is the level at the input of the receiver assuming a 0 dB					
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test size at or above the detection threshold level to trigger a DES response.					
test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.					

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

 Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
Туре	Width	(µsec)		Percentage of	Number
	(µsec)			Successful	of
				Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$ \operatorname{Roundup} \left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \right) \right\} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
A ooreoate ((Radar Types		l	80%	120

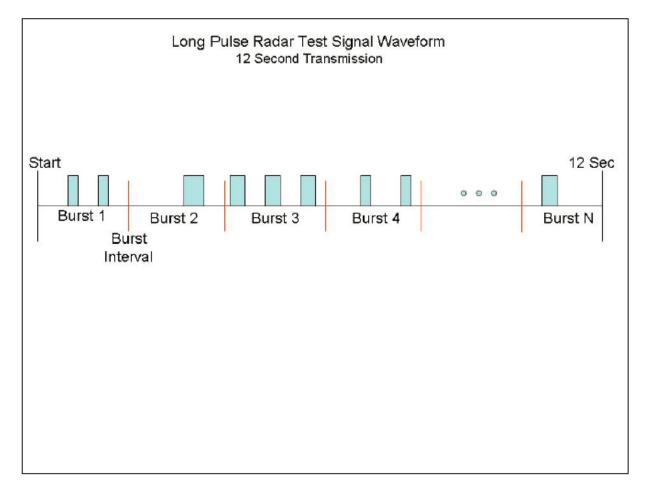
Table 5 – Short Pulse Radar Test Waveforms

time, and channel closing time tests.

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 5a - Pulse Repetition Intervals Values for Test A

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.


Radar Type	Number of Trials	Number of Successful	Minimum Percentage			
		Detections	of Successful			
			Detection			
1	35	29	82.9%			
2	30	18	60%			
3	30	27	90%			
4	50	44	88%			
Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%						

Long Pulse Radar Test Waveform

-								
	Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
	Туре	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
		(µsec)	(MHz)		per Burst		Successful	Trials
					_		Detection	
	5	50-100	5-20	1000-	1-3	8-20	80%	30
				2000				

Table 6 – Long Pulse Radar Test Waveform

Figure 1 provides a graphical representation of the Long Pulse Radar Test Waveform.

	-			
Table 7 –	Frequency	Honning	Radar Te	est Waveform
I uolo /	riequency	ropping	Itudui It	St marchonni

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length	Minimum Percentage of Successful	Minimum Number of Trials
					(msec)	Detection	
6	1	333	9	0.333	300	70%	30

4.2 DFS TEST RESULTS

FCC Part 15.407 Client Device Test Result Summary										
Description	Radar	Radar	Measured	Requirement	Test Data	Result				
	Туре	Frequency	Value							
Channel closing transmission time	1	5320	7ms	<60ms	4.2.4	Pass				
Channel move time	1	5320	0.905s	<10s	4.2.4	Pass				
Non-Occupancy Period	1	5320	0.964s	30 Minutes	4.2.4	Pass				

4.2.1 TEST RESULTS- FCC Part 15.407 CLIENT DEVICE

4.2.2 DFS MEASUREMENT METHODS

a. DFS - CHANNEL CLOSING TRANSMISSION TIME AND CHANNEL MOVE TIME

Channel Move Time and the Channel Closing Transmission Time should be performed with RadarType 0. The measurement timing begins at the end of the Radar Type 0 burst. The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any \ dditional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

b. DFS – CHANNEL NON-OCCUPANCY AND VERIFICATION OF PASSIVE SCANNING Non-occupancy Period. A channel that has been flagged as containing a radar system, either by a channel availability check or in-service monitoring, is subject to a non-occupancy period of at least 30 minutes. The non-occupancy period starts at the time when the radar system is detected.

c. CHANNEL AVAILABILITY CHECK TIME

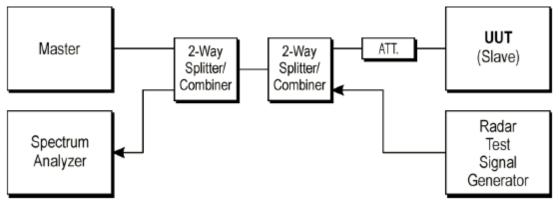
Channel Availability Check Time. A U-NII device shall check if there is a radar system already operating on the channel before it can initiate a transmission on a channel and when it has to move to a new channel. The U-NII device may start using the channel if no radar signal with a power level greater than the interference threshold values listed in paragraph (h)(2) of this section, is detected within 60 seconds.

d. CONTROL (TPC)

Compliance with the transmit power control requirements for devices is demonstrated through measurements showing multiple power levels and manufacturer statements explaining how the power control is implemented.

e. DETECTION PROBABILITY / SUCCESS RATE

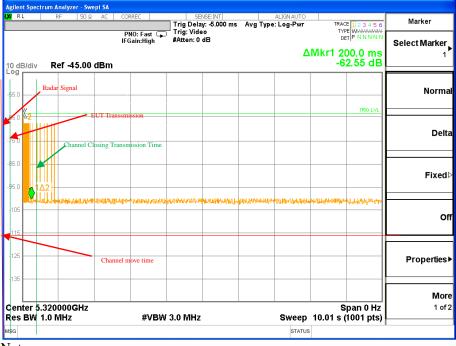
During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. Minimum 100% of the U-NII 99% transmission power bandwidth.


f. NON- OCCUPANCY PERIOD

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring

4.2.3 DFS CONDUCTION TEST METHOD

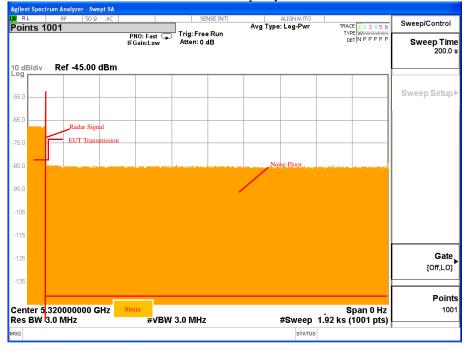
a. The signal level of the simulated waveform is set to a reference level equal to the threshold level (plus 1dB if testing against FCC requirements). Lower levels may also be applied on request of the manufacturer. The signal level is verified by measuring the CW signal level at the coupling point to the RDD antenna port. The radar signal level is calculated from the measured level, R (dBm) and the lowest gain antenna assembly intended for use with the RDD If both master and client devices have radar detection capability then the radar level at the non RDD is verified to be at least 20dB below the threshold level to ensure that any responses are due to the RDD detecting radar.


The antenna connected to the channel monitoring subsystem is positioned to allow both master and client transmissions to be observed, with the level of the EUT's transmissions between 6 and 10dB higher than those from the other device.

b.Set-upB is a set-up whereby the UUT is an RLAN device operating in slave mode, with or without Radar Interference Detection function. This set-up also contains an RLAN device operating in master mode. The radar test signals are injected into the master device. The UUT (slave device) is associated with the master device. Figure 5 shows an example for Set-up B. The set-up used shall be documented in the test report. Channel Availability Check Time. A U-NII device shall check if there is a radar system already operating on the channel before it can initiate a transmission on a channel and when it has to move to a new channel. The U-NII device may start using the channel if no radar signal with a power level greater than the interference threshold values listed in paragraph (h)(2) of this section, is detected within 60 seconds.

4.2.4 DFS Test Data

HT20 Channel move time & Channel Closing Transmission Time for Type 1 radar.



Note:

Dwell (1 ms)= Sweep Time (1001 ms) / Sweep Point Bins (1001)

Channel Closing Transmission Time (200 + 7 ms) = 200 + Number (7) X Dwell (1 ms) < 260ms

HT20 / Non- Occupancy Period

-----END OF THE REPORT------