

FCC Measurement/Technical Report on

ION-U System EU L 17EP/17EP-Vac Cellular Repeater

FCC ID: XS5-UEUL17E17E IC: 2237E-UEUL17E17E

Test Report Reference: MDE_COMMS_1703_FCCa_REV1

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.5	Measurement Summary / Signatures	S
2	Administrative Data	11
2.1	Testing Laboratory	11
2.2	Project Data	11
2.3	Applicant Data	11
2.4	Manufacturer Data	11
3	Test object Data	12
3.1	General EUT Description	12
3.2	EUT Main components	12
3.3	Ancillary Equipment	13
3.4	Auxiliary Equipment	13
3.5	EUT Setups	13
3.6	Operating Modes	14
3.7	Product labelling	15
4	Test Results	16
4.1	Effective Radiated Power, mean output power and zone enhancer gain	16
4.2	Peak to Average Ratio	26
4.3	Occupied Bandwidth / Input-versus-output Spectrum	32
4.4	Conducted spurious emissions at antenna terminals	43
4.5	Out-of-band emission limits	57
4.6	Out-of-band rejection	77
4.7	Field strength of spurious radiation	80
5	Test Equipment	88
6	Antenna Factors, Cable Loss and Sample Calculations	91
6.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	91
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	92
6.3	Antenna R&S HL562 (30 MHz – 1 GHz)	93
6.4	Antenna R&S HF907 (1 GHz – 18 GHz)	94
6.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	95
6.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	96
7	Measurement Uncertainties	97
8	Photo Report	97

Applied Standards and Test Summary

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Industrial Signal Booster.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 20, 27, (10/1/16 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 20, Commercial Mobiles Services

§ 20.21 Signal Boosters

Part 27; Miscellaneous Wireless Communications Services Subpart C – Technical standards

- § 27.50 Power and duty cycle limits
- § 27.53 Emission limits
- § 27.54 Frequency stability

The tests were selected and performed with reference to:

- FCC Public Notice 935210 applying "Signal Boosters Basic Certification Requirements" 935210 D02 v04, 2017-10-27.
- FCC Public Notice 935210 applying "Measurement guidance for industrial and nonconsumer signal booster, repeater and amplifier devices" 935210 D05 v01r02, 2017-10-27.
- FCC Public Notice 971168 applying "Measurement guidance for certification of licensed digital transmitters" 971168 D01 v03,2017-10-27
- ANSI C63.26: 2015

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Industrial Signal Booster from FCC and ISED Canada

Measurement	FCC reference	ISED reference
Effective radiated power, mean output power and zone enhancer gain	§2.1046 §27.50 KDB 935210 D05 v01r02: 3.5	RSS-GEN Issue 4, 6.12 RSS-139 Issue 3, 6.5 SRSP-513, Issue 3, 5.1.1 RSS-130 Issue 1, 4.4 SRSP-518, Issue 1, 5.1.1 RSS-131 Issue 3: 5.2.3
Peak to Average Ratio	§27.50	RSS 139 Issue 3: 6.5 RSS-130 Issue 1, 4.4
Occupied bandwidth Input-versus-output spectrum	§2.1049 KDB 935210 D05 v01r02: 3.4	RSS-GEN Issue 4, 6.6 RSS-131 Issue 3: 5.2.2
Conducted spurious Emission at Antenna Terminal	§2.1051 §27.53	RSS-GEN Issue 4, 6.13 RSS-139 Issue 3, 6.6 RSS-130 Issue 1: 4.6
Out-of-band emissions limits	§2.1051 §27.53 KDB 935210 D05 v01r02: 3.6	RSS-GEN Issue 4, 6.13 RSS-139 Issue 3, 6.6 RSS-130 Issue 1: 4.6
Frequency stability	§2.1055 §27.54	RSS-GEN Issue 4, 6.11 RSS-139 Issue 3: 6.4 RSS-130 Issue 1: 4.3 RSS-131 Issue 3: 5.2.4
Field strength of spurious radiation	§2.1053 §27.53	RSS-GEN Issue 4, 6.13 RSS-139 Issue 3: 6.6 RSS-130 Issue 1: 4.6
Out-of-band rejection	KDB 935210 D05 v01r02: 3.3	RSS-131 Issue 3: 5.2.1

1.3 MEASUREMENT SUMMARY / SIGNATURES

Module 1:

47 CFR CHAPTER I FCC PART 27 Subpart C [Base §2.1046, §27.50 Stations/Repeater]

Effective Radiated Power, mean output power and zone enhancer gain The measurement was performed according to ANSI C63.26, KDB **Final Result** 935210 D05 v01r02: 3.5

OP-Mode Frequency Band, Direction, Input Power, Signal Type	Setup	FCC	IC
Band 4/10/66, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed
Band 4/10/66, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed
Band 4/10/66, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed
Band 4/10/66, RF downlink, 3 dB > AGC, Wideband	S01_AA01	Passed	Passed

47 CFR CHAPTER I FCC PART 27 Subpart C [Base §27.50 Stations/Repeater]

Peak to Average Ratio					
The measurement was performed according to ANSI C63.26		Final Result			
OP-Mode	Setup	FCC	IC		
Frequency Band, Direction, Input Power, Signal Type					
Band 4/10/66, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed		
Band 4/10/66, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed		
Band 4/10/66, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed		
Band 4/10/66, RF downlink, 3 dB > AGC, Wideband	S01_AA01	Passed	Passed		
47 CFR CHAPTER I FCC PART 27 Subpart C [Base § Stations/Repeater]	2.1049				
Occupied Bandwidth / Input-versus-output Spectrum The measurement was performed according to ANSI C63.26, KDB Final Result 935210 D05 v01r02: 3.4					
OP-Mode	Setup	FCC	IC		
Frequency Band, Direction, Input Power, Signal Type					
Band 4/10/66, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed		
Band 4/10/66, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed		
Band 4/10/66, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed		
Band $4/10/66$ BE downlink 3 dB > AGC Wideband	S01 AA01	Passed	Passed		

47 CFR CHAPTER I FCC PART 27 Subpart C [Base §2.1051, §27.53 Stations/Repeater]

Conducted spurious emissions at antenna terminals The measurement was performed according to ANSI C63.26 Final Result			sult
OP-Mode	Setup	FCC	IC
Prequency Band, Test Frequency, Direction, Signal Type	CO1 4401	Deserved	Deserved
Band 4/10/66, high, RF downlink, Narrowband	SU1_AAU1	Passed	Passed
Band 4/10/66, high, RF downlink, Wideband	S01_AA01	Passed	Passed
Band 4/10/66, low, RF downlink, Narrowband	S01_AA01	Passed	Passed
Band 4/10/66, low, RF downlink, Wideband	S01_AA01	Passed	Passed
Band 4/10/66, mid, RF downlink, Narrowband	S01_AA01	Passed	Passed
Band 4/10/66, mid, RF downlink, Wideband	S01_AA01	Passed	Passed
47 CFR CHAPTER I FCC PART 27 Subpart C [Base §: Stations/Repeater] Out-of-band emission limits The measurement was performed according to ANSI C63.2 025210 D05 v01r02; 2.6	2.1051, § 2	7.53 Final Re	sult
935210 D05 V01r02: 3.6			
OP-Mode	Setup	FCC	IC
Band Edge, Frequency Band, Number of signals, Direction, Input Power, Signal Type	•		
Lower, Band 4/10/66, 1, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 1, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 1, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 1, RF downlink, 3 dB > AGC, Wideband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 2, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 2, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 2, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 2, RF downlink, 3 dB > AGC, Wideband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 1, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 1, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 1, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed
Upper, Band $4/10/66$, 1, RF downlink, 3 dB > AGC, Wideband	S01 AA01	Passed	Passed
Upper, Band 4/10/66, 2, RF downlink, 0.3 dB < AGC, Narrowband		Passed	Passed
Upper, Band $4/10/66$, 2, RF downlink, 0,3 dB < AGC. Wideband	S01 AA01	Passed	Passed
Upper, Band $4/10/66$, 2, RF downlink, 3 dB > AGC Narrowband	S01 AA01	Passed	Passed
Unper Band $4/10/66$ 2 RF downlink 3 dB > AGC Wideband	S01 AA01	Passed	Passed
	2010.01	1 43504	1 03300

47 CFR CHAPTER I FCC PART 27 Subpart C [Base KDB 935210 D05 v01r02: 3.3 Stations/Repeater] Out-of-band rejection

The measurement was performed according to ANSI C63.26		Final Result	
OP-Mode Frequency Band, Direction	Setup	FCC	IC
Band 4/10/66, RF downlink	S01_AA01	Passed	Passed

47 CFR CHAPTER I FCC PART 27 Subpart C [Base §2.1053, §27.53 Stations/Repeater]

Field strength of spurious radiation					
The measurement was performed according to ANSI C63.26		Final Result			
OP-Mode Frequency Band Test Frequency Direction	Setup	FCC	IC		
Band 4/10/66, high, RF downlink	S01_AA01	Passed	Passed		
Band 4/10/66, low, RF downlink	S01_AA01	Passed	Passed		
Band 4/10/66, mid, RF downlink	S01_AA01	Passed	Passed		

Module 2:

47 CFR CHAPTER I FCC PART 27 Subpart C [Base §2.1046, §27.50 Stations/Repeater]

Effective Radiated Power, mean output power and zone The measurement was performed according to ANSI C6 935210 D05 v01r02: 3.5	e enhancer gain 53.26, KDB	Final Re	esult
OP-Mode Frequency Band, Direction, Input Power, Signal Type	Setup	FCC	IC
Band 4/10/66, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed
Band $4/10/66$, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed
Band 4/10/66, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed
Band 4/10/66, RF downlink, 3 dB > AGC, Wideband	S01_AA01	Passed	Passed
47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]	§27.50		
Peak to Average Ratio The measurement was performed according to ANSI C6	53.26	Final Re	esult
OP-Mode	Setup	FCC	IC
Frequency Band, Direction, Input Power, Signal Type	CO1 4401		
Band 4/10/66, RF downlink, U.3 dB < AGC, Narrowband	SUI_AAUI	Passed	Passed
Band 4/10/66, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed
Band 4/10/66, RF downlink, 3 dB > AGC, Narrowband Band 4/10/66, RF downlink, 3 dB > AGC, Wideband	S01_AA01 S01 AA01	Passed Passed	Passed
47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]	§2.1049		
The measurement was performed according to ANSI C6 935210 D05 v01r02: 3.4	53.26, KDB	Final Re	esult
OP-Mode Frequency Band, Direction, Input Power, Signal Type	Setup	FCC	IC
Band 4/10/66, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed
	601 4401	Paccod	Passed
Band 4/10/66, RF downlink, 0.3 dB < AGC, Wideband	SUI_AAUI	rasseu	i usscu
Band 4/10/66, RF downlink, 0.3 dB < AGC, Wideband Band 4/10/66, RF downlink, 3 dB > AGC, Narrowband	S01_AA01 S01_AA01	Passed	Passed

47 CFR CHAPTER I FCC PART 27 Subpart C [Base §2.1051, §27.53 Stations/Repeater]

Conducted spurious emissions at antenna terminals				
The measurement was performed according to ANSI C63.26		Final Result		
OP-Mode	Setup	FCC	IC	
Frequency Band, Test Frequency, Direction, Signal Type	•			
Band 4/10/66, high, RF downlink, Narrowband	S01_AA01	Passed	Passed	
Band 4/10/66, high, RF downlink, Wideband	S01_AA01	Passed	Passed	
Band 4/10/66, low, RF downlink, Narrowband	S01_AA01	Passed	Passed	
Band 4/10/66, low, RF downlink, Wideband	S01_AA01	Passed	Passed	
Band 4/10/66, mid, RF downlink, Narrowband	S01_AA01	Passed	Passed	
Band 4/10/66, mid, RF downlink, Wideband	S01_AA01	Passed	Passed	

47 CFR CHAPTER I FCC PART 27 Subpart C [Base §2.1051, § 27.53 Stations/Repeater]

Out-of-band emission limits			
The measurement was performed according to ANSI C63.26,	Final Result		
935210 D05 v01r02: 3.6			
OP-Mode	Setup	FCC	IC
Power, Signal Type			
Lower, Band 4/10/66, 1, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 1, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 1, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 1, RF downlink, 3 dB > AGC, Wideband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 2, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 2, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 2, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed
Lower, Band 4/10/66, 2, RF downlink, 3 dB > AGC, Wideband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 1, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 1, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 1, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 1, RF downlink, 3 dB > AGC, Wideband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 2, RF downlink, 0.3 dB < AGC, Narrowband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 2, RF downlink, 0.3 dB < AGC, Wideband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 2, RF downlink, 3 dB > AGC, Narrowband	S01_AA01	Passed	Passed
Upper, Band 4/10/66, 2, RF downlink, 3 dB > AGC, Wideband	S01_AA01	Passed	Passed

47 CFR CHAPTER I FCC PART 27 Subpart C [Base KDB 935210 D05 v01r02: 3.3 Stations/Repeater]

Out-of-band rejection The measurement was performed according to ANSI C63.26		Final Result	
OP-Mode Frequency Band, Direction	Setup	FCC	IC
Band 4/10/66, RF downlink	S01_AA01	Passed	Passed

Stations/Repeater]	с [вазе 92.1053, 92	7.53	
Field strength of spurious radiation The measurement was performed according t	O ANSI C63 26	Final R	eult
The measurement was performed decording t	0 ANSI 603.20	T Inter its	count
OP-Mode	Setup	FCC	IC
Frequency Band, Test Frequency, Direction			
Band 4/10/66, high, RF downlink	S01_AA01	Passed	Passed
Band 4/10/66, low, RF downlink	S01_AA01	Passed	Passed
Band 4/10/66, mid, RF downlink	S01_AA01	Passed	Passed

N/A: Not applicable N/P: Not performed

The test case frequency stability was not performed, since the EUT is not equipped with signal processing capabilities.

Report version control					
Version	Release date	Change Description	Version validity		
initial	2018-03-19		invalid		
REV1	2018-05-04	 Chapter 4.1.3; Table for Composite [MIMO] Power added Chapter 4.7.3; Clarification added, that during the tests both modules were active simultaneously [each module was feed with three input signals. Chapter 4.7.3; Input separated for module 1 & module 2 	invalid		
REV2	2018-05-14	 Corrected values for gain and maximum output power in the EUT description. 	valid		

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

(responsible for testing and report) B.Sc. Jens Dörwald

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name:

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-00
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
Responsible for accreditation scope:	DiplIng. Marco Kullik
Report Template Version:	2018-01-03

2.2 PROJECT DATA

Responsible for testing and report:	B.Sc. Jens Dörwald
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2018-05-14
Testing Period:	2017-11-30 to 2018-01-17

2.3 APPLICANT DATA

Comp	any Name:	Commscope Andrew Wireless Systems GmbH
Addre	SS:	Industriering 10 86675 Buchdorf Germany
Conta	ct Person:	Mr. Frank Futter
2.4	MANUFACTURER DATA	

Company Name:	please see applicant data

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Cellular Repeater
Product name	ION®-U Low Power Extension Unit for AWS 1700 Band Applications
Туре	ION-U System EU L 17EP/17EP-Vac
Declared EUT data by	the supplier
General Product Description	The EUT is an industrial signal booster supporting the following bands:
	Band 4 / AWS-1
	Band 10 / AWS-1+
	Band 66 / AWS-3 (partly
	A RF operation is only supported for the downlink.
Booster Type	Industrial Signal Booster
Voltage Type	AC
Voltage Level	100 V – 240, 50 – 60 Hz
Maximum Output Donor Port [Uplink]	-
Maximum Output Server Port [Downlink]	Band 4/10/66 [Module 1]: 60.7 dBm Band 4/10/66 [Module 2]: 61.0 dBm
Maximum Gain [Uplink]	-
Maximum Gain [Downlink]	Band 4/10/66 [Module 1]: 32.9 dB Band 4/10/66 [Module 2]: 32.9 dB

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
aa01	DE1277002aa01	FCC sample	
Sample Parameter		Value	
Serial Number	10		
HW Version	7769134-0001		
SW Version	V1.0.0.1		
Comment			

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device Details (Manufacturer, Type Model, OUT Code)		Description	
-	-	-	

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it.

But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
-		-

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale		
S01_AA01	aa01	Setup for all tests		

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1 TEST CHANNELS

			Upper		
		Lower	Frequency		
		Frequency	Band	Center	
		Band Edge	Edge	Frequency	
Band	Direction	[MHz]	[MHz]	[MHz]	Port
4/10/66	downlink	2110.00	2180.00	2145.00	Donor [Module 1]
4/10/66	downlink	2110.00	2180.00	2145.00	Donor [Module 2]

3.6.2 AUTOMATIC GAIN CONTROL LEVELS

AGC Level	s [Module 1]						
Band	Direction	Signal Type	AGC Start Pin [dBm]	AGC Start Pin -0.3 dB [dBm]	AGC Start Pin +3 dB [dBm]	Frequency [MHz]	Frequency
4/10/66	downlink	Narrowband	-27.6	-27.9	-24.6	2145.0	Contor
4/10/66	downlink	Wideband	-27.2	-27.5	-24.2	2145.0	Center
4/10/66	downlink	Narrowband	-27.8	-28.1	-24.8	2110.0	Low
4/10/66	downlink	Wideband	-27.6	-27.9	-24.6	2110.0	LOW
4/10/66	downlink	Narrowband	-28.2	-28.5	-25.2	2180.0	High
4/10/66	downlink	Wideband	-28.2	-28.5	-25.2	2180.0	підп
4/10/66	downlink	Narrowband	-28.0	-28.3	-25.0	2138.6	Max.
4/10/66	downlink	Wideband	-27.0	-27.3	-24.0	2138.6	Power

AGC Level	s [Module 2]						
Band	Direction	Signal Type	AGC Start Pin [dBm]	AGC Start Pin -0.3 dB [dBm]	AGC Start Pin +3 dB [dBm]	Frequency [MHz]	Frequency
4/10/66	downlink	Narrowband	-27.6	-27.9	-24.6	2145.0	Contor
4/10/66	downlink	Wideband	-27.8	-28.1	-24.8	2145.0	Center
4/10/66	downlink	Narrowband	-28.0	-28.3	-25.0	2110.0	Low
4/10/66	downlink	Wideband	-27.8	-28.1	-24.8	2110.0	LOW
4/10/66	downlink	Narrowband	-28.2	-28.5	-25.2	2180.0	High
4/10/66	downlink	Wideband	-28.0	-28.3	-25.0	2180.0	riigh
4/10/66	downlink	Narrowband	-27.6	-27.9	-24.6	2140.3	Max.
4/10/66	downlink	Wideband	-28.0	-28.3	-25.0	2140.3	Power

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 EFFECTIVE RADIATED POWER, MEAN OUTPUT POWER AND ZONE ENHANCER GAIN

Standard FCC Part 27, §27.50

The test was performed according to: ANSI C63.26, KDB 935210 D05 v01r02: 3.5

4.1.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster - Test Setup; RF Output Power / Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.1.2 TEST REQUIREMENTS / LIMITS

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§ 27.50

Band 13:

(2) Fixed and base stations transmitting a signal in the 746-757 MHz and 776-787 MHz bands with an emission bandwidth of 1 MHz or less must not exceed an ERP of 1000 watts and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are

permitted if power levels are reduced below 1000 watts ERP in accordance with Table 1 of this section.

(3) Fixed and base stations located in a county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, and transmitting a signal in the 746-757 MHz and 776-787 MHz bands with an emission bandwidth of 1 MHz or less must not exceed an ERP of 2000 watts and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 2000 watts ERP in accordance with Table 2 of this section.

(4) Fixed and base stations transmitting a signal in the 746-757 MHz and 776-787 MHz bands with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts/MHz ERP in accordance with Table 3 of this section.

(5) Fixed and base stations located in a county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, and transmitting a signal in the 746-757 MHz and 776-787 MHz bands with an emission bandwidth greater than 1 MHz must not exceed an ERP of 2000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 2000 watts/MHz ERP in accordance with Table 4 of this section.

(6) Licensees of fixed or base stations transmitting a signal in the 746-757 MHz and 776-787 MHz bands at an ERP greater than 1000 watts must comply with the provisions set forth in paragraph (b)(8) of this section and §27.55(c).

Band 12:

c) The following power and antenna height requirements apply to stations transmitting in the 600 MHz band and the 698-746 MHz band:

(1) Fixed and base stations transmitting a signal with an emission bandwidth of 1 MHz or less must not exceed an effective radiated power (ERP) of 1000 watts and an antenna height of 305 m height above average terrain (HAAT), except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts ERP in accordance with Table 1 of this section;

(2) Fixed and base stations located in a county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, and transmitting a signal with an emission bandwidth of 1 MHz or less must not exceed an ERP of 2000 watts and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 2000 watts ERP in accordance with Table 2 of this section;

(3) Fixed and base stations transmitting a signal with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts/MHz ERP in accordance with Table 3 of this section;

(4) Fixed and base stations located in a county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, and transmitting a signal with an emission bandwidth greater than 1 MHz must not exceed an ERP of 2000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 2000 watts/MHz ERP in accordance with Table 4 of this section;

Band 4/10/66:

d) The following power and antenna height requirements apply to stations transmitting in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz and 2180-2200 MHz bands:

(1) The power of each fixed or base station transmitting in the 1995-2000 MHz, 2110-2155 MHz, 2155-2180 MHz or 2180-2200 MHz band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 3280 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 3280 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(2) The power of each fixed or base station transmitting in the 1995-2000 MHz, the 2110-2155 MHz 2155-2180 MHz band, or 2180-2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(3) A licensee operating a base or fixed station in the 2110-2155 MHz band utilizing a power greater than 1640 watts EIRP and greater than 1640 watts/MHz EIRP must coordinate such operations in advance with all Government and non-Government satellite entities in the 2025-2110 MHz band. A licensee operating a base or fixed station in the 2110-2180 MHz band utilizing power greater than 1640 watts EIRP and greater than 1640 watts/MHz EIRP must be coordinated in advance with the following licensees authorized to operate within 120 kilometers (75 miles) of the base or fixed station operating in this band: All Broadband Radio Service (BRS) licensees authorized under this part in the 2155-2160 MHz band and all advanced wireless services (AWS) licensees authorized to operate on adjacent frequency blocks in the 2110-2180 MHz band.

(4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

(6) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

RSS-130; 4.4 Transmitter Output Power and Equivalent Isotropically Radiated Power (e.i.r.p.)

The transmitter output power shall be measured in terms of average power.

For base and fixed equipment, refer to SRSP-518 for power limits

SRSP-518

5.1 Radiated Power and Antenna Height Limits

5.1.1 Fixed and base stations

5.1.1.1 For fixed and base stations transmitting in accordance with sections 4.1.1 to 4.1.3 within the frequency range 716-756 MHz with a channel bandwidth equal to or less than 1 MHz, the maximum permissible equivalent isotropically radiated power (e.i.r.p.) is 1640 watts with an antenna height above average terrain (HAAT)^{Footnote 3} up to 305 metres. The same e.i.r.p. limit also applies to fixed and base stations operating at any frequency in the 700 MHz band in accordance with Section 4.1.4.

5.1.1.2 For fixed and base stations transmitting in accordance with sections 4.1.1 to 4.1.3 within the frequency range 716-756 MHz with a channel bandwidth greater than 1 MHz, the maximum permissible e.i.r.p. is 1640 watts/MHz (i.e. no more than 1640 watts e.i.r.p. in any 1 MHz band segment) with a HAAT up to 305 metres. The same e.i.r.p. limit also applies to fixed and base stations operating at any frequency in the 700 MHz band in accordance with Section 4.1.4.

5.1.1.3 Fixed and base stations located in geographical areas at a distance greater than 26 km from large or medium population centres ^{Footnote_4} and transmitting in accordance with sections 4.1.1 to 4.1.3 within the frequency range 716-756 MHz, may increase their e.i.r.p. up to a maximum of 3280 watts/MHz (i.e. no more than 3280 watts e.i.r.p. in any 1 MHz band segment), with an antenna HAAT up to 305 metres.

Within 26 km of any large or medium population centre, fixed and base stations may operate at increased e.i.r.p. if more than 50% of the population within a particular sector's coverage Footnote 5 is located outside these large and medium population centres.

Fixed and base stations with increased e.i.r.p. must not be used to provide coverage to large and medium population centres. However, some incidental coverage of these large and medium population centres by stations with increased e.i.r.p. is permitted.

This provision also applies for fixed and base stations with a channel bandwidth equal to or less than 1 MHz (i.e. e.i.r.p. may be increased up to a maximum of 3280 watts).

5.1.1.4 For all installations with an antenna HAAT in excess of 305 metres, a corresponding reduction in e.i.r.p. according to the following formula shall be applied:

EIRP_{reduction} =20 log₁₀(HAAT/305) dB

RSS-139; 6.5 Transmitter Output Power

The equivalent isotropically radiated power (e.i.r.p.) for mobile and portable transmitters shall not exceed one watt. The e.i.r.p. for fixed and base stations in the band 1710-1780 MHz shall not exceed one watt.

Consult SRSP-513 for e.i.r.p. limits on fixed and base stations operating in the band 2110-2180 MHz.

SRSP-513

5.1 Radiated Power and Antenna Height Limits

5.1.1 Fixed and Base Stations

5.1.1.1 For fixed and base stations operating within the frequency range 2110-2180 MHz with a channel bandwidth equal to or less than 1 MHz, the maximum permissible equivalent isotropically radiated power (e.i.r.p.) is 1640 watts with an antenna height above average terrain (HAAT)Footnote 4 up to 300 metres.

5.1.1.2 For fixed and base stations operating within the frequency range 2110-2180 MHz with a channel bandwidth greater than 1 MHz, the maximum permissible e.i.r.p. is 1640 watts/MHz e.i.r.p. (i.e. no more than 1640 watts e.i.r.p. in any 1 MHz band segment) with an antenna height above average terrain (HAAT) up to 300 metres.

5.1.1.3 Fixed and base stations located in geographic areas at a distance greater than 26 km from large or medium population centres, Footnote 5 and transmitting within the frequency range 2110-2180 MHz, may increase their e.i.r.p. up to a maximum of 3280 watts/MHz (i.e. no more than 3280 watts e.i.r.p. in any 1 MHz band segment), with an antenna HAAT up to 300 metres.

Within 26 km of any large or medium population centre, fixed and base stations may operate at increased e.i.r.p. if more than 50% of the population within a particular sector's coverageFootnote 6 is located outside these large and medium population centres.

Fixed and base stations with increased e.i.r.p. must not be used to provide coverage to large and medium population centres. However, some incidental coverage of these large and medium population centres by stations with increased e.i.r.p. is permitted.

This provision also applies for fixed and base stations with a channel bandwidth equal to or less than 1 MHz (i.e. the e.i.r.p. may be increased up to a maximum of 3280 watts).

5.1.1.4 Fixed and base station antenna heights above average terrain may exceed 300 metres with a reduction in e.i.r.p. The maximum permissible e.i.r.p. for installations with antenna HAAT in excess of 300 metres is given in the following table:

Table 2 — Reduction to Maximum Allowable E.I.R.P. for HAAT > 300 m

TIAAT (III IIIettes) Maximum e.i.i.p. (watts of watts per Milza	HAAT (in metres	Maximum e.i.r.p.	(watts or watts per MHza
---	--------	-----------	------------------	--------------------------

Notes:

a Depending on the channel bandwidth: watts if less than 1 MHz bandwidth or else watts per MHz.

b If Section 5.1.1.3 applies.

$HAAT \leq 300$	1640 (or 3280b)
300 < HAAT ≤ 500	1070
500 < HAAT ≤ 1000	490
1000 < HAAT ≤ 1500	270
1500 < HAAT ≤ 2000	160

5.1.1.5 Fixed or base stations transmitting in the lower sub-band (1710-1780 MHz) shall comply with the power limits set forth in Section 5.1.2.

4.1.3 TEST PROTOCOL

Band 4/10/66, downlink [Module 1]							
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	Maximum Average Output Power [dBm]	Limit Average Output Power [dBm]	Margin to Limit [dB]	Gain [dB]
Wideband	0.3 dB < AGC	2138.600	-27.3	32.8	60.0	27.2	60.1
Wideband	3 dB > AGC	2138.600	-24.0	32.6	60.0	27.4	56.6
Narrowband	0.3 dB < AGC	2138.600	-27.9	32.8	60.0	27.3	60.7
Narrowband	3 dB > AGC	2138.600	-24.6	32.9	60.0	27.1	57.5

Band 4/10/	66, downlink	[Module 2]					
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	Maximum Average Output Power [dBm]	Limit Average Output Power [dBm]	Margin to Limit [dB]	Gain [dB]
Wideband	0.3 dB < AGC	2140.300	-28.3	32.6	60.0	27.4	61.0
Wideband	3 dB > AGC	2140.300	-25.0	32.7	60.0	27.3	57.7
Narrowband	0.3 dB < AGC	2140.300	-27.9	33.1	60.0	26.9	61.0
Narrowband	3 dB > AGC	2140.300	-24.6	32.9	60.0	27.1	57.5

Band 4/10/66, downlink, Composite Power Module 1 & Module 2 [MIMO]										
Signal Type	Input Power	Freq. Module 1 [MHz]	Freq. Module 2 [MHz]	Input Power Module 1 [dBm]	Input Power Module 2 [dBm]	Maximum Average Output Power Module 1 [dBm]	Maximum Average Output Power Module 2 [dBm]	Maximum Average Composite Output Power [dBm]	Limit Average Output Power [dBm]	Margin to Limit [dB]
WB	0.5 dB < AGC	2138.6	2140.3	-28.3	-28.3	32.8	32.6	35.7	60.0	24.3
WB	3 dB > AGC	2138.6	2140.3	-25.0	-25.0	32.6	32.7	35.7	60.0	24.3
NB	0.5 dB < AGC	2138.6	2140.3	-27.9	-27.9	32.8	33.1	35.9	60.0	24.1
NB	3 dB > AGC	2138.6	2140.3	-24.6	-24.6	32.9	32.9	35.9	60.0	24.1

Remark: Please see next sub-clause for the measurement plot.

4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

MODULE 1:

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband

Demorrost put is JANT 1 ; 2.138600

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband (S01_AA01)

PowerAWGN out +3 ANT 1 ; 2.138605

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01_AA01)

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband (S01_AA01)

POW02AWEN Dit -0.3 ANT 1 ; 2.138600

MODULE 2:

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband

4.1.5 TEST EQUIPMENT USED

- FCC Conducted Base Station / Repeater

4.2 PEAK TO AVERAGE RATIO

Standard FCC Part 27, §27.50

The test was performed according to: ANSI C63.26

4.2.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster – Test Setup; RF Output Power / Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.2.2 TEST REQUIREMENTS / LIMITS

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§ 27.50

For the bands 4, 12, 13 exist no FCC peak-to-average power ratio (PAPR) limit.

RSS-130; 4.4 Transmitter Output Power and Equivalent Isotropically Radiated Power (e.i.r.p.)

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

RSS-139; 6.5 Transmitter Output Power

In addition, the peak to average power ratio (PAPR) of the equipment shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.

4.2.3 TEST PROTOCOL

Band 4/10/						
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	PAPR [dB]	Limit PAPR [dB]	Margin to Limit [dB]
Wideband	0.3 dB < AGC	2138.600	-27.5	8.7	13.0	4.3
Wideband	3 dB > AGC	2138.600	-24.6	8.7	13.0	4.3
Narrowband	0.3 dB < AGC	2138.600	-27.9	0.1	13.0	12.9
Narrowband	3 dB > AGC	2138.600	-24.6	0.2	13.0	12.8

Band 4/10/						
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	PAPR [dB]	Limit PAPR [dB]	Margin to Limit [dB]
Wideband	0.3 dB < AGC	2140.300	-28.1	8.8	13.0	4.3
Wideband	3 dB > AGC	2140.300	-24.8	8.7	13.0	4.3
Narrowband	0.3 dB < AGC	2140.300	-27.9	0.1	13.0	12.9
Narrowband	3 dB > AGC	2140.300	-24.6	0.2	13.0	12.8

Remark: Please see next sub-clause for the measurement plot.

4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

MODULE 1:

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband

PAPE AWGN OUT 13 ANT 1 12.1395

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband (S01_AA01)

PAPR AWGN OUL +3 ANT 1 ;2.1396

MODULE 2:

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband

Frequency Band = Band 4/10/66, Direction = RF downlink, , Input Power = 3 dB > AGC, Signal Type = Wideband (S01_AA01)

PAPE AWEN DUE 13 ANT 2 \$2.1405

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband

4.2.5 TEST EQUIPMENT USED

- FCC Conducted Base Station / Repeater

4.3 OCCUPIED BANDWIDTH / INPUT-VERSUS-OUTPUT SPECTRUM

Standard FCC Part 2.1049; Occupied Bandwidth

The test was performed according to:

ANSI C63.26, KDB 935210 D05 v01r02: 3.4

4.3.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission limits per FCC 2.1049, RSS-GEN 6.4 and RSS-131-5.2.2

The EUT was connected to the test setups according to the following diagram:

FCC Part 22/24/27/90; Industrial Signal Booster Test Setup step 2; Occupied Bandwidth/Input-versus-output spectrum

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.3.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1049; Occupied Bandwidth:

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.3 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

TEST REPORT REFERENCE: MDE_COMMS_1703_FCCa_REV2

(h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

(i) Transmitters designed for other types of modulation—when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

RSS-GEN; 6.6 Occupied Bandwidth

The emission bandwidth (×dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated × dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least $3 \times$ the resolution bandwidth.

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately $3\times$ RBW.

Note: Video averaging is not permitted.

A peak, or peak hold, may be used in place of the sampling detector as this may produce a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold may be necessary to determine the occupied bandwidth if the device is not transmitting continuously.

The trace data points are recovered and are directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.3% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded.

The difference between the two recorded frequencies is the 99% occupied bandwidth.

RSS-131; 5.2.2 Input-versus-output spectrum

The spectral growth of the 26 dB bandwidth of the output signal shall be less than 5% of the input signal spectrum.

Band 4/10	766, downlin	k [Module '	1]				
Signal Type	Input Power	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Limit Delta Occupied Bandwidth [kHz]	Margin to Limit [kHz]
Wideband	0.3 dB < AGC	2145.00	4335.3	4326.7	8.6	205.0	196.4
Wideband	3 dB > AGC	2145.00	4330.4	4326.7	3.7	205.0	201.3
Narrowband	0.3 dB < AGC	2145.00	314.7	313.8	1.0	10.0	9.0
Narrowband	3 dB > AGC	2145.00	309.8	315.5	5.6	10.0	4.4

4.3.3 TEST PROTOCOL

_

Band 4/10	/66, downlin	k [Module 2	2]				
Signal Type	Input Power	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Limit Delta Occupied Bandwidth [kHz]	Margin to Limit [kHz]
Wideband	0.3 dB < AGC	2145.00	4332.9	4326.7	6.2	205.0	198.8
Wideband	3 dB > AGC	2145.00	4331.6	4326.7	4.9	205.0	200.1
Narrowband	0.3 dB < AGC	2145.00	314.7	315.8	1.1	10.0	8.9
Narrowband	3 dB > AGC	2145.00	309.8	315.1	5.3	10.0	4.7

Remark: Please see next sub-clause for the measurement plot.

4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

MODULE 1:

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01_AA01)

MSP 17 -0.5 AND 1 12,13865 2645

Output Signal

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband (S01 AA01)

Ref Le Att TDF	vel 0	.00 dBm .20 dB	e RBW SWT 19 μs e VBW	100 kHz 500 kHz Mode	Auto FFT	
1FK M	ах					
-10 dBr	n				mi[1]	-32.81 d 2.13828270 (26.00
-20 dBr	n 				Bw Q factor	4.335300000 N 49
-30 dBr	n		m	min	mm	
-40 dBr	n:					
-50 dBr	n	-	т			2
-60 dBr	n		1			<u>* </u>
78.88	220		man		_	Lamana and a man
-80 dBr	n-+-	_				
-90 dBr	n				-	
CF 2.1	386 G	Hz	11	10001 pt	s	Span 12.3 Mi
Marker						
Type	Ref	Trc	2 1392927 CHz	-37.81.dem	Function	Function Result
T1		1	2.1364256 GHz	-58.73 dBm	ndB	26.00
T2		1	2.1407609 GHz	-58,76 dBm	Q factor	493.

AWGN In -0.3 AWT 1 #2.1386G _26dB

Input Signal

Output Signal

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband

GSM In +3 ANT 1 ;2.1439G _26d3

1986 may of Aur 1 galling added

Output Signal

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband (S01_AA01)

AWGEN IN +3 ANT 1 ;2.14295 _2668

Output Signal

MODULE 2:

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01_AA01)

G5M 1m -0.3 MAT 2 ;2.1405G _264B

GSM THE +0.1 ANT 8 ;2.14036 _2048

Output Signal

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband (S01_AA01)

AWGN IN -0.3 ANT 2 ;2.14040 2608

Input Signal

AWG0-005 -0.3 547 2 92.04036 2648

Output Signal

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband

08M 11 -0.1 ANT 2 f2.14203 _2008

Input Signal

Output Signal

Frequency Band = Band 4/10/66, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband (S01_AA01)

SWG9) ID 43 ANT 2 \$2:14036 _2688

Input Signal

ter a fait and Tanak

Output Signal

4.3.5 TEST EQUIPMENT USED

FCC Conducted Base Station / Repeater

4.4 CONDUCTED SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Standard FCC Part §2.1051, §27.53

The test was performed according to: ANSI C63.26

4.4.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster – Test Setup; RF Output Power / Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 – Emission limits

Band 13

(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $65 + 10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

Band 12:

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Band 4:

(h) *AWS emission limits*—(1) *General protection levels*. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}$ (P) dB.

RSS-130; 4.6 Transmitter Unwanted Emissions

4.6.1 The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside the frequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.

4.6.2 In addition to the limit outlined in Section 4.6.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:

- (a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
 - \circ (i) 76 + 10 log₁₀ p (watts), dB, for base and fixed equipment, and
 - \circ (ii) 65 + 10 log₁₀ p (watts), dB, for mobile and portable equipment.
- (b) The e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW/MHz for wideband signal and -80 dBW for discrete emission with bandwidth less than 700 Hz.
- •

RSS-139; 6.6 Transmitter Unwanted Emissions

Equipment shall comply with the limits in (i) and (ii) below.

- i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.
- ii. After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.

4.4.3 TEST PROTOCOL

Band 4/10)/66, downlii	nk [Module	e 1]				
Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Wideband	-	-	RMS	1000	-13.0	
mid	Wideband	-	-	RMS	1000	-13.0	
high	Wideband	-	-	RMS	1000	-13.0	
low	Narrowband	-	-	RMS	1000	-13.0	
mid	Narrowband	-	-	RMS	1000	-13.0	
high	Narrowband	-	_	RMS	1000	-13.0	

Band 4/10/66, downlink [Module 2]

Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Wideband	-	-	RMS	1000	-13.0	
mid	Wideband	-	-	RMS	1000	-13.0	
high	Wideband	-	-	RMS	1000	-13.0	
low	Narrowband	-	-	RMS	1000	-13.0	
mid	Narrowband	-	-	RMS	1000	-13.0	
high	Narrowband	-	-	RMS	1000	-13.0	

Remark: Please see next sub-clause for the measurement plot.

4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Module 1:

Frequency Band = Band 4/10/66, Test Frequency = mid, Direction = RF downlink, Signal Type = Narrowband

Frequency Band = Band 4/10/66, Test Frequency = mid, Direction = RF downlink, Signal Type = Wideband (S01_AA01)

Frequency Band = Band 4/10/66, Test Frequency = low, Direction = RF downlink, Signal Type = Narrowband (S01_AA01)

Frequency Band = Band 4/10/66, Test Frequency = low, Direction = RF downlink, Signal Type = Narrowband, Final Measurement (S01 AA01)

Att	35.00 dBm 35 dB	SWT	32.1 ms 🖷 🛉	/BW 300 kHz	Mode Sweep		
SGL Count	t 200/200	1Dm AvaD	wr				
30 dBm	Sy Elitesz	Init avgr		1	M1[1]	1	-45,12 dBn 2.10900000 GH
20 dBm			-		-		
10 dBm					-		
) dBm	10 0 						
-10 dBm—	-						
-20 dBm	-D1 -23.000	dBm					
-30 dBm—							
-40 dBm—						MI	Let the second
-50 dBm					eneral distance e de la contracta d		"The second s
-60 dBm						F1	
CF 2.095	GHz			32001	pts		Span 50.0 MHz

TEST REPORT REFERENCE: MDE_COMMS_1703_FCCa_REV2

Frequency Band = Band 4/10/66, Test Frequency = low, Direction = RF downlink, Signal Type = Wideband (S01_AA01)

Frequency Band = Band 4/10/66, Test Frequency = low, Direction = RF downlink, Signal Type = Wideband, Final Measurement

Date: 18.JAN.2018 16:40:17

Frequency Band = Band 4/10/66, Test Frequency = high, Direction = RF downlink, Signal Type = Narrowband (S01_AA01)

Frequency Band = Band 4/10/66, Test Frequency = high, Direction = RF downlink, Signal Type = Narrowband, Final Measurement

(S01_AA01) Spectrum Ref Level 35.00 d8m Offset 17.10 dB - RBW 100 kHz 32.1 ms 🖷 VBW 300 kHz Att 35 dB SWT Mode Sweep SGL Count 200/200 M1[1] 45.01 dBm 30 dBm 2.18100000 GHz 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm-D1 -23.000 -30 dBm -40 dBm -50 dBm -60 dBm-CF 2.195 GHz 32001 pts Span 50.0 MHz Ready 18.01.2018 1.10 Date: 18.JAN.2018 16:44:38

Frequency Band = Band 4/10/66, Test Frequency = high, Direction = RF downlink, Signal Type = Wideband (S01_AA01)

Frequency Band = Band 4/10/66, Test Frequency = high, Direction = RF downlink, Signal Type = Wideband, Final Measurement

Module 2

:

Frequency Band = Band 4/10/66, Test Frequency = mid, Direction = RF downlink, Signal Type = Wideband (S01_AA01)

10M 30

Frequency in Hz

100M 300 1G 3G 10G 22G

-80 -85 9k

30

100k 300 1M 3M

Frequency Band = Band 4/10/66, Test Frequency = low, Direction = RF downlink, Signal Type = Narrowband (S01_AA01)

Frequency Band = Band 4/10/66, Test Frequency = low, Direction = RF downlink, Signal Type = Narrowband, Final Measurement $(S01 \quad AA01)$

Controlled Ł	200/200 by EMC32 💿	1Rm AvgPw	r						
30 dBm			-		M	(1)		2.109	-45.70 dBn 900000 GH:
20 dBm					_				
10 dBm			+						
0 dBm	1.0	1.000	-						-
-10 dBm—			-			-			
-20 dBm—	D1 -23,000) dBm	-					-	
-30 dBm									
-40 dBm							MI	-	
-50 dBm—	and a state of		in the second states		n galanan dalam kingan tah				1
-60 dBm					_	_			
CF 2.095	GHz		4	32001	pts			Span	1 50.0 MHz

Frequency Band = Band 4/10/66, Test Frequency = low, Direction = RF downlink, Signal Type = Wideband (S01_AA01)

Frequency Band = Band 4/10/66, Test Frequency = low, Direction = RF downlink, Signal Type = Wideband, Final Measurement (S01_AA01)

TEST REPORT REFERENCE: MDE_COMMS_1703_FCCa_REV2

Frequency Band = Band 4/10/66, Test Frequency = high, Direction = RF downlink, Signal Type = Narrowband (S01_AA01)

Frequency Band = Band 4/10/66, Test Frequency = high, Direction = RF downlink, Signal Type = Narrowband, Final Measurement (S01_AA01)

Date: 18.JAN.2018 16:45:34

Frequency Band = Band 4/10/66, Test Frequency = high, Direction = RF downlink, Signal Type = Wideband (S01_AA01)

Frequency Band = Band 4/10/66, Test Frequency = high, Direction = RF downlink, Signal Type = Wideband, Final Measurement

4.4.5 TEST EQUIPMENT USED - R&S TS8997

4.5 OUT-OF-BAND EMISSION LIMITS

Standard FCC Part §2.1051, §27.53

The test was performed according to: ANSI C63.26, KDB 935210 D05 v01r02: 3.6

4.5.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band emission limit for industrial signal boosters. The limits itself come from the applicable rule part for each operating band.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster – Test Setup; Out-of-band emissions

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.5.2 TEST REQUIREMENTS / LIMITS

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 – Emission limits

Band 13

(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $65 + 10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

Band 12:

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Band 4:

(h) *AWS emission limits*—(1) *General protection levels*. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}$ (P) dB.

RSS-130; 4.6 Transmitter Unwanted Emissions

4.6.1 The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside the frequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.

4.6.2 In addition to the limit outlined in Section 4.6.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:

- (a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
 - \circ (i) 76 + 10 log₁₀ p (watts), dB, for base and fixed equipment, and
 - (ii) $65 + 10 \log_{10} p$ (watts), dB, for mobile and portable equipment.
- (b) The e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW/MHz for wideband signal and -80 dBW for discrete emission with bandwidth less than 700 Hz.

RSS-139; 6.6 Transmitter Unwanted Emissions

Equipment shall comply with the limits in (i) and (ii) below.

- i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.
- ii. After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.

Band 4/10/66	, downlink, Nur	nber of in	put signals =	1 [Modul	e 1]		
Signal Type	Input Power	Band Edge	Signal Frequency [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
Wideband	0.3 dB < AGC	upper	2177.50	-27.5	-39.4	-13.0	26.4
Wideband	3 dB > AGC	upper	2177.50	-24.6	-38.2	-13.0	25.2
Narrowband	0.3 dB < AGC	upper	2179.80	-27.5	-24.6	-13.0	11.6
Narrowband	3 dB > AGC	upper	2179.80	-24.6	-25.1	-13.0	12.1
Wideband	0.3 dB < AGC	lower	2112.50	-27.5	-37.5	-13.0	24.5
Wideband	3 dB > AGC	lower	2112.50	-24.6	-36.9	-13.0	23.9
Narrowband	0.3 dB < AGC	lower	2110.20	-27.5	-23.7	-13.0	10.7
Narrowband	3 dB > AGC	lower	2110.20	-24.6	-24.4	-13.0	11.4

4.5.3 TEST PROTOCOL

Band 4	/10/66, downli	nk, Num	ber of input s	signals = 2 [Module 1]		
Signal Type	Input Power	Band Edge	Signal Frequency f1 [MHz]	Signal Frequency f2 [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
WB	0.3 dB < AGC	upper	2177.50	2172.50	-27.5	-34.4	-13.0	21.4
WB	3 dB > AGC	upper	2177.50	2172.50	-24.6	-33.8	-13.0	20.8
NB	0.3 dB < AGC	upper	2179.80	2179.60	-27.5	-27.9	-13.0	14.9
NB	3 dB > AGC	upper	2179.80	2179.60	-24.6	-27.6	-13.0	14.6
WB	0.3 dB < AGC	lower	2112.50	2117.50	-27.5	-33.2	-13.0	20.2
WB	3 dB > AGC	lower	2112.50	2117.50	-24.6	-33.9	-13.0	20.9
NB	0.3 dB < AGC	lower	2110.20	2110.40	-27.5	-27.8	-13.0	14.8
NB	3 dB > AGC	lower	2110.20	2110.40	-24.6	-27.3	-13.0	14.3

Band 4/10/66	, downlink, Nur	nber of in	put signals =	1 [Modul	e 2]		
Signal Type	Input Power	Band Edge	Signal Frequency [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
Wideband	0.3 dB < AGC	upper	2177.50	-27.5	-38.3	-13.0	25.3
Wideband	3 dB > AGC	upper	2177.50	-24.6	-37.6	-13.0	24.6
Narrowband	0.3 dB < AGC	upper	2179.80	-27.5	-24.1	-13.0	11.1
Narrowband	3 dB > AGC	upper	2179.80	-24.6	-24.5	-13.0	11.5
Wideband	0.3 dB < AGC	lower	2182.50	-27.5	-37.1	-13.0	24.1
Wideband	3 dB > AGC	lower	2182.50	-24.6	-37.2	-13.0	24.2
Narrowband	0.3 dB < AGC	lower	2180.20	-27.5	-24.6	-13.0	11.6
Narrowband	3 dB > AGC	lower	2180.20	-24.6	-23.9	-13.0	10.9

Band 4	/10/66, downli	nk, Num	ber of input s	signals = 2 [Module 2	2]		
Signal Type	Input Power	Band Edge	Signal Frequency f1 [MHz]	Signal Frequency f2 [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
WB	0.3 dB < AGC	upper	2177.50	2175.00	-27.5	-33.4	-13.0	20.4
WB	3 dB > AGC	upper	2177.50	2175.00	-24.6	-33.9	-13.0	20.9
NB	0.3 dB < AGC	upper	2179.80	2179.60	-27.5	-28.6	-13.0	15.6
NB	3 dB > AGC	upper	2179.80	2179.60	-24.6	-27.5	-13.0	14.5
WB	0.3 dB < AGC	lower	2182.50	2115.00	-27.5	-34.4	-13.0	21.4
WB	3 dB > AGC	lower	2182.50	2115.00	-24.6	-32.8	-13.0	19.8
NB	0.3 dB < AGC	lower	2180.20	2110.40	-27.5	-27.6	-13.0	14.6
NB	3 dB > AGC	lower	2180.20	2110.40	-24.6	-27.4	-13.0	14.4

Remark: Please see next sub-clause for the measurement plot.

4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Module 1:

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband

(S01_AA01)

Count 100/100 TDF	The second se	1				
1Rm AvgLog						
Limit Check Line li	PASS	M1[1]	í î	-37.52 dBn 2_10967840 GH		
50 0011						
20 dBm-						
ID dBm-						
) dBm						
-10 dBm						
20 dBm						
-30 dBm				(A)		
40 dBm						
-50 dBm						
Start 2,107 CHz	200	1 atc		Stop 2 11 CHz		

out of band oml;ANT 1;AWGN;Lower;. carrier -0.0 d3;1.107G;2 1105

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband (S01_AA01)

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband (S01 AA01)

RefLevel 40.00 dBm Offset 20 Att 40 dB SWT 3 Coupt 100/100 TDE	0.00 dB - RBW 50 k 87.9 µs - VBW 200 k	Hz Hz Mode Auto FFT			
1Rm AvgLog					
Limit Check Line fi	PASS	M1(1)	2,1	-83.17 dBm 2.10942800 GHz	
O DBM:					
20 dBm				-	
0 dBm				-	
) dBm-				-	
10 dBm					
20 dBm				-	
80 dBm-		New York	No. 1	0.00	
ŧ0 dBm		hours	~~~~~		
50 dBm					
itart 2.107 GHz	200	1 pts	St	op 2.11 GHz	

out of Lanz ami;ANT];AWEN;Lower;Z carries -0.3 dB;Z.107G;2.

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband (S01_AA01)

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband (S01_AA01)

Att Count 100/10	40 dB SWT	37.9 µs • VBW 200	kHz Mode Auto FFT		
1Rm AvgLog	-	1			
Limit Che Line li	ck	PABS PABS	M1[1]	-38 2.18024	1.19 dBn 1360 GH
30 dBm					
20 dBm					
10 dBm		-			_
dBm					
-10 dBm					
-20 dBm					
30 dBm		_			
MI		S. A. Completion			
AC OPIC		- marine		m	~
-50 dBm					-
	2	20	01 pts	Stop 2	193 GHz

our of band anigANT 1;AWGN;upper;1 carrier +3 dB;2.100G;2.10 BB

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband (S01_AA01)

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband (S01_AA01)

cut of band emi;ANT 1;AWGN;upper;2 becsier -0.3 dB;2.180G;2. 1836

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01_AA01)

out of manu wai;ANT :;GSM;Iower;1 catrier =0.3 dB;2.;07G;2.1 105

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01 AA01)

IRM AVGL	.og									
Line I	imil Check ine II		PA PA	85 66	M1[1]			-27.75 dBm 2.109986500 GHz		
30 dBm						-				
20 dBm			-							
10 dBm			_		-					
0 dBm	_	_	-		_					
-10 dBm			_							
20 dBm-						1000				
30 dBm-			_							
40 dBm-										
-50 d8m			_		_	_	_	and the state of the	ment	

out of band smithly lfGEM;lower;2 partier -0.2 dB;2.107Gf2.: 106

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01 AA01)

IRm Avgu	g									
Limit C Line li	theck	PA PA		88 88	M1[1]			-24.59 dB/ 2.180011500 GF		
0.0010		T	II							
20 dBm							-			
0 dBm		-	_							
dBm								-		
10 dBm										
20 dBm										
30 dBm										
40 dBm								_		
50 dem-								4		
1	-	minution	(almadiante and a	-	Annound	-	and the second s			

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01_AA01)

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband (S01_AA01)

out of band ani;ANT 1;GSM;upper;S carrier -0.3 dB;z,180G;z.1 838

Module 2:

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband (S01_AA01)

out of band sml;AVE 2;AWGN;[dwar;] cartist +0.3 dB;2.10)G;2.

Thu:

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband (S01_AA01)

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband

sub of bond unitANT 2/AWGN; hower; 2 carrier $(-0.3, \, \mathrm{dGr\,S}\,, \mathrm{10}\,/\mathrm{Gr\,S}\,,$ 1106

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband (S01_AA01)

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband (S01_AA01)

out of sand emitANY stAWHWropperts carries -0.8 date.1000f2." 1836

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Wideband (S01_AA01)

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Wideband (S01 AA01)

out of bend smithNT 2:AWGB:upper:2 carrier -0.3 dB:2:1503:2, 1836

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband (S01_AA01)

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01 AA01)

THUR MANUE	00			_					
Limit (Line li	heck	PABS M1[PABS		1[1] -24.63 dt 2.109985500 G					
30 dBm									
20 dBm						-			
10 dBm		_							
0 dBm								_	
-10 dBm						-	-		
-20 dBm									-
-30 d6m								-	- 1
-40 dBm					•				
				100					

cut of band awijANT 2;GSM; towar; : catzier -0.2 45;2,1076;2.1 100

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband

Band Edge = Lower, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01 AA01)

TKUU WAG	.og								
Line li	init theck PASS		-	M1[1] 2.10			-27.59 dBm		
30 dBm					_			-	
20 dBm					-	-	-	_	
10 dBm					_		-	_	
d8m				-	-			-	-
10 dBm-					_			_	
20 dBm—							-		
30 dBm		_			_		_	_	
40 dBm-			_		-	-		_	-/
				· - + -					

out of band emi;ANT 2;USM:1cwer;2 carrier -0.J dB;2.107G;2.1 1991

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband (S01_AA01)

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 1, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01_AA01)

out of many sweitHNT 2:GSM;upper;1 carrier -0.3 dB;2.1906;2.1

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 0.3 dB < AGC, Signal Type = Narrowband (S01_AA01)

Band Edge = Upper, Frequency Band = Band 4/10/66, Number of signals = 2, Direction = RF downlink, Input Power = 3 dB > AGC, Signal Type = Narrowband (S01_AA01)

4.5.5 TEST EQUIPMENT USED

- FCC Conducted Base Station / Repeater

4.6 OUT-OF-BAND REJECTION

Standard FCC Part 27

The test was performed according to: ANSI C63.26

4.6.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band rejection test case for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster – Test Setup; Out-of-band rejection

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.6.2 TEST REQUIREMENTS / LIMITS

For this test case exists no applicable limit

4.6.3 TEST PROTOCOL

Band 4/10/66, do				
		Lower Highest Power	Upper Highest Power	
Highest Power	Output	-20 dB	-20 dB	20 dB
Frequency	Power	Frequency	Frequency	Bandwidth
[MHz]	[dBm]	[MHz]	[MHz]	[kHz]
2138.600	20.940	2100.290	2190.520	90230.0

Band 4/10/66, do				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [kHz]
2140.300	21.250	2099.660	2190.100	90440.0

Remark: Please see next sub-clause for the measurement plot.

4.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") **Module 1**:

Nut of band rejection Met I 2.145006 _20dB

Module 2:

Frequency Band = Band 4/10/66, Direction = RF downlink (S01_AA01)

4.6.5 TEST EQUIPMENT USED

- FCC Conducted Base Station / Repeater

4.7 FIELD STRENGTH OF SPURIOUS RADIATION

Standard FCC Part 27, §24.53

The test was performed according to: ANSI C63.26

4.7.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90; Industrial Signal Booster – Test Setup; Field Strength of Spurious Radiation

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz

- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: \pm 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. **Step 2**:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by ± 22.5°. The elevation angle will slowly vary by ± 45° EMI receiver settings (for all steps): - Detector: Peak, Average - IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

4.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 – Emission limits

Band 13

(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $65 + 10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with

an antenna that is representative of the type that will be used with the equipment in normal operation.

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

Band 12:

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Band 4:

(h) *AWS emission limits*—(1) *General protection levels*. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}$ (P) dB.

RSS-130; 4.6 Transmitter Unwanted Emissions

4.6.1 The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside the frequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.

4.6.2 In addition to the limit outlined in Section 4.6.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:

- (a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
 - \circ (i) 76 + 10 log₁₀ p (watts), dB, for base and fixed equipment, and
 - (ii) $65 + 10 \log_{10} p$ (watts), dB, for mobile and portable equipment.
- (b) The e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW/MHz for wideband signal and -80 dBW for discrete emission with bandwidth less than 700 Hz.

RSS-139; 6.6 Transmitter Unwanted Emissions

Equipment shall comply with the limits in (i) and (ii) below.

- i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.
- ii. After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.

Band 4/1	0/66, dowr						
[Module 1	&2]						
							Margin
Spurious	Spurious	Pin	Pin				to
Freq.	Level	Module 1	Module 2		RBW	Limit	Limit
[MHz]	[dBm]	[dBm]	[dBm]	Detector	[kHz]	[dBm]	[dB]
-	-	-27.9	-27.9	RMS	100	-13.0	
-	-	-27.9	-27.9	RMS	100	-13.0	
-	-	-27.9	-27.9	RMS	100	-13.0	
-	-	-27.9	-27.9	RMS	100	-13.0	
-	-	-27.9	-27.9	RMS	100	-13.0	

4.7.3 TEST PROTOCOL

Remark: Please see next sub-clause for the measurement plot.

Both modules were transmitting simultaneously

The three required test frequencies (low, mid, high) were injected simultaneously conducted into the EUT. The RF output ports were terminated with 50 Ohm

Pin: The composite power of all three channels.

1 GHz - 22 GHz

Frequency Band = Band 4/10/66, Test Frequency = mid, Direction = RF downlink (S01_AA01)

30 MHz - 1 GHz

1 GHz - 22 GHz

Frequency Band = Band 4/10/66, Test Frequency = high, Direction = RF downlink (S01_AA01)

30 MHz - 1 GHz

- 4.7.5 TEST EQUIPMENT USED
 - Radiated Emissions

5 TEST EQUIPMENT

1 R&S TS8997 EN300328/301893/FCC cond. Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		-			Calibration	Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
1.2	MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2017-07	2018-07
1.3	1515 / 93459	Broadband Power Divider SMA (Aux)	Weinschel Associates	LN673		
1.4	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2016-02	2018-02
1.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
1.6	VT 4002	Climatic Chamber	Vötsch	58566002150010	2016-03	2018-03
1.7	A8455-4	4 Way Power Divider (SMA)		-		
1.8	Opus10 THI (8152.00)	ThermoHygro Datalogger 03 (Environ)	Lufft Mess- und Regeltechnik GmbH	7482	2017-03	2019-03
1.9	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10
1.10	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2016-11	2018-11

2 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
2.1	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005	2017-05	2018-05
2.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2017-10	2018-10
2.3	Opus10 TPR (8253.00)	ThermoAirpres sure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
2.4	Anechoic Chamber	10.38 x 6.38 x 6.00 m³	Frankonia	none	2016-05	2019-05
2.5	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2015-06	2018-06
2.6	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		
2.7	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
	Device Hame	Description	manufacturer		Calibration	Due
2.8	Fully Anechoic Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB	2015-06	2018-06
2.9	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
2.10	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.11	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-12	2018-12
2.12	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
2.13	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
2.14	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
2.15	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
2.16	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.17	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.18	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
2.19	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.20	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
2.21	Opus10 THI (8152.00)	ThermoHygro Datalogger 12 (Environ)	Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03
2.22	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11	2018-11
2.23	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
2.24	AS 620 P	Antenna mast	HD GmbH	620/37		
2.25	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
2.26	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
2.27	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
2.28	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2015-05	2018-05

3 FCC Conducted Base Station / Repeater EN300328/301893/FCC cond. Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration
3.1	FSV40	Signal Analyzer 10 Hz - 40 GHz	Rohde & Schwarz	100886	2017-08	2018-08
3.2	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	255975	2017-08	2020-08
3.3	SMIQ	Vector Signal Generator 9 kHz – 3.3 GHz	Rohde & Schwarz	831389/062	2016-08	2018-08
3.4	SMIQ	Vector Signal Generator 9 kHz – 3.3 GHz	Rohde & Schwarz	831389/063	2016-10	2018-10

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

		LISN insertion loss ESH3-	cable loss (incl. 10 dB atten-
Frequency	Corr.	Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.3	0.2	10.3
10	10.3	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.3
20	10.9	0.4	10.3
22	11.1	0.3	10.6
24	11.1	0.3	10.6
26	11.2	0.3	10.7
28	11.2	0.3	10.7
30	11.3	0.3	10.8

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table.

			ashla	aphla	askla	ashla	diatanaa	a	d
							uistance	ULimit (moac	(moac
	ΔF		(inside	(outside	(switch	(to	(-40 dB/	distance	distance
Frequency	HFH-72)	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB		m
0.009	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.3	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit} / d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.36	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.39	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.34	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(d_{Limit} = 10 m)

30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.3	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.3	10	3
100	9.7	-9.2	0.36	0.14	0.47	0.08	-10.3	10	3
150	7.9	-8.8	0.73	0.20	0.39	0.12	-10.3	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.3	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.3	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.3	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.3	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.3	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.3	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.3	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.3	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.3	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.3	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.3	10	3
750	19.1	-6.3	1.87	0.34	1.46	0.25	-10.3	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.3	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.3	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.3	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.3	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.3	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

						cable			
				cable		loss 3			
				loss 1		(switch			
				(relay +	cable	unit,			
	AF			cable	loss 2	atten-	cable		
	R&S			inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.		chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB		dB	dB	dB	dB		
1000	24.4	-19.4		0.99	0.31	-21.51	0.79		
2000	28.5	-17.4		1.44	0.44	-20.63	1.38		
3000	31.0	-16.1		1.87	0.33	-19.85	1.33		
4000	33.1	-14.7		2.41	0.67	-19.13	1.31		
5000	34.4	-13.7		2.78	0.86	-18.71	1.40		
6000	34.7	-12.7		2 74	0.90	-17.83	1 47		
7000	35.6	-11.0		2.7	0.96	-16.19	1.17		
/000	55.0	11.0		2.02	0.00	10.19	1.40		
							cable		
							loss 4		
				cable			(switch		
				loss 1	cable	cable	unit,		used
	AF			(relay	loss 2	loss 3	atten-	cable	for
	R&S			inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr.		chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	
3000	31.0	-23.4		0.47	1.87	0.33	-27.58	1.33	
4000	33.1	-23.3		0.36	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2		0.38	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46	
				cable					
				loss 1	cable	cable	cable	cable	cable
	AF			(relay	loss 2	loss 3	loss 4	loss 5	loss 6
_	R&S	-		inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.		chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
/000	35.6	-57.3		0.36	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.09	1.60
10000	37.5	-56.2		0.70	0.34	-61.91	3.28	1.20	1.67
11000	37.5	-55.3		0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7		0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5		0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3		0.91	0.33	-63.03	3.91	1.40	1.77
15000	40.9	-54.1		0.98	0.34	-61.05	4.02	1.44	1.83
16000	41.3	-54.1		1.23	0.49	-61.51	4.17	1.51	1.85
17000	42.8	-54.4		1.36	0.76	-62.36	4.34	1.53	2.00
18000	44.2	-54.7	1	1.70	0.33	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			cable	cable	cable	cable	cable
	AF		loss 1	loss 2	loss 3	loss 4	loss 5
	EMCO		(inside	(pre-	(inside	(switch	(to
Frequency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.3	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.3	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.3	-21.1	0.90	-35.20	7.15	3.91	2.36

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

F	AF EMCO	Com	cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-15.6	3	0.3
27.0	43.4	-11.2	4.4				-15.6	3	0.3
28.0	43.4	-11.1	4.5				-15.6	3	0.3
29.0	43.5	-11.0	4.6				-15.6	3	0.3
30.0	43.5	-10.9	4.7				-15.6	3	0.3
31.0	43.5	-10.8	4.7				-15.6	3	0.3
32.0	43.5	-10.7	4.8				-15.6	3	0.3
33.0	43.6	-10.7	4.9				-15.6	3	0.3
34.0	43.6	-10.6	5.0				-15.6	3	0.3
35.0	43.6	-10.3	5.1				-15.6	3	0.3
36.0	43.6	-10.4	5.1				-15.6	3	0.3
37.0	43.7	-10.3	5.2				-15.6	3	0.3
38.0	43.7	-10.2	5.3				-15.6	3	0.3
39.0	43.7	-10.2	5.4				-15.6	3	0.3
40.0	43.8	-10.1	5.5				-15.6	3	0.3

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 MEASUREMENT UNCERTAINTIES

Test Case(s)	Parameter	Uncertainty
- Field strength of spurious radiation	Power	± 5.5 dB
 Out-of-band rejection Occupied Bandwidth Input versus output spectrum 	Power Frequency	± 2.9 dB ± 11.2 kHz
 Effective radiated power, mean output power and zone enhancer gain Peak to Average Ratio 	Power	± 2.2 dB
 Out-of-band emission limits Conducted Spurious Emissions at Antenna Terminal 	Power Frequency	± 2.2 dB ± 11.2 kHz

8 PHOTO REPORT

Please see separate photo report.