

RADIO TEST REPORT – REP013281

Type of assessment: Transmitters co-location Applicant: **Andrew Wireless Systems** Industriering 10, Buchdorf 86675 Germany Model: UAP 2 17E/19/25T/37T C-PE FCC ID: XS5-UAP217192537 Specifications: FCC 47 CFR Part 24 Subpart E, §24.238 Emission limitations for Broadband PCS equipment. FCC 47 CFR Part 27 Subpart C, §27.53 Emission limits for Miscellaneous Wireless Communications Services Date of issue: 2023-07-14 P. Barbieri Tested by D. Guarnone Reviewed by

This test report shall not be partially reproduced without the prior written consent of Nemko S.p.A. The phase of sampling of equipment under testis carried out by the customer. Results indicated in this report refer exclusively to the tested samples and apply to the sample as received. This Test Report, when bearing the Nemko name and logo is only valid when issued by a Nemko laboratory or by a laboratory having agreement with Nemko. Doc. No. TRF001 Rev. 1 Date 2022-10-31

Signature

Test location(s)

Company name	Nemko Spa
Address	Via del Carroccio, 4
City	Biassono
Province	MB
Postal code	20853
Country	Italy
Telephone	+39 039 220 12 01
Facsimile	+39 039 220 12 21
Website	www.nemko.com
Site number	FCC: 682159

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Spa ISO/IEC 17025 accreditation.

Copyright notification

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Report reference REP013281

Table of contents

Table of	ontents	3
Section	1. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test method	4
1.4	Statement of compliance	4
1.5	Exclusions	4
1.6	Test report revision history	4
Section	2. Summary of test results	5
2.1	FCC Part 15 Subpart C, general requirements test results	5
Section	3. Equipment under test (EUT) details	6
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	EUT setup diagram	6
3.5	Product description and theory of operation	7
3.6	Equipment Used During Test	7
3.7	EUT exercise details	7
Section	4. Engineering considerations	9
4.1	Modifications incorporated in the EUT	9
4.2	Technical judgment	9
4.3	Deviations from laboratory tests procedures	9
Section	5. Test conditions	10
5.1	Atmospheric conditions	10
5.2	Power supply range	10
Section	6. Measurement uncertainty	11
6.1	Uncertainty of measurement	11
Section	7. Test equipment	12
7.1	Test equipment list	12
Section	8. Testing data	14
8.1	Radiated emission limits	14
Section	9. Block diagrams of test set-ups	22
9.1	Radiated emissions set-up for frequencies below 1 GHz	22
9.2	Radiated emissions set-up for frequencies above 1 GHz	22
Section	10. Photos	23
10.1	Photos of the test set-up	23
10.2	Photos of the EUT	24

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Andrew Wireless Systems
Address	Industriering 10, Buchdorf 86675 Germany

1.2 Test specifications

FCC 47 CFR Part 27 Subpart C, §27.53	Emission limits for Miscellaneous Wireless Communications Services
FCC 47 CFR Part 24 Subpart E, §24.238	Emission limitations for Broadband PCS equipment

1.3 Test method

ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services		
KDB 996369 D04	Module Integration Guide		
KDB 662911 D015	Indus Booster Basic Meas		

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.5 below. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

As per quote, the purpose of this report is verification of transmitters colocation. Only inter-modulation products within restricted bands were assessed, other requirements were excluded from the scope of this report.

1.6 Test report revision history

Revision #	Date of issue	Details of changes made to test report
REP013281	2023-07-14	Original report issued

Report reference REP013281

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.209	Radiated emission limits; general requirements.	Pass
§27.53(h)(1)	Emission limits.	Pass
§24.238(a)	Out of band emissions.	Pass
§27.53(m)(2)	Emission limits.	Pass
§27.53(I)(1)	Emission limits.	Pass

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	2023-06-30
Nemko sample ID number	PRJ00348370007

3.2 EUT information

Product name	Carrier Access Point Radio Module
Model	UAP 2 17E/19/25T/37T C-PE
Serial number	FIUPEC2307002

3.3 Technical information

Frequency band	17E-B66:	from 2110 to 2180 MHz
	19-B25:	from 1930 to 1995 MHz
	25T-B41:	from 2496 to 2690 MHz
	37T C-Band:	from 3700 to 3980 MHz
EUT power requirements	48 V DC from PoE	
Antenna information	The EUT uses four integrated antennas	

3.4 EUT setup diagram

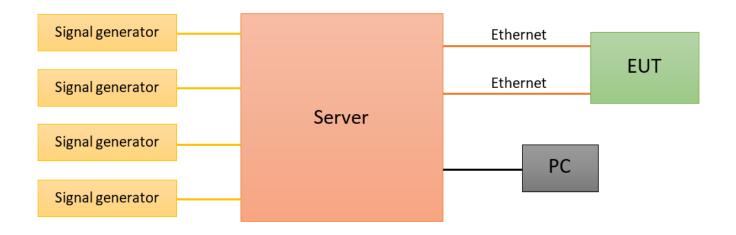


Figure 3.4-1: Setup diagram

Report reference REP013281 Page 6 of 24

3.5 Product description and theory of operation

The EUT is a Carrier Access Point provided with four radio modules equipped with a dedicate integral antenna. The EUT is supplied by PoE.

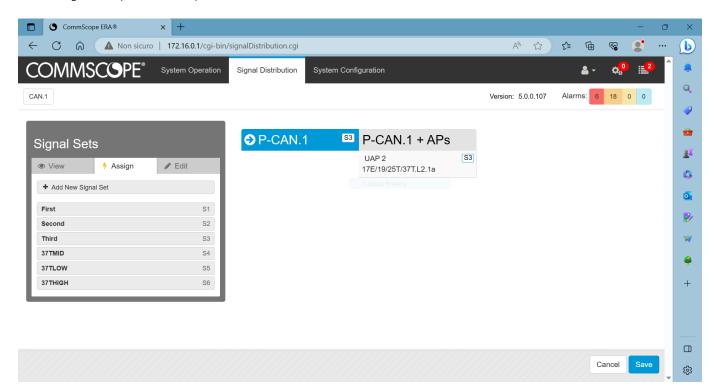
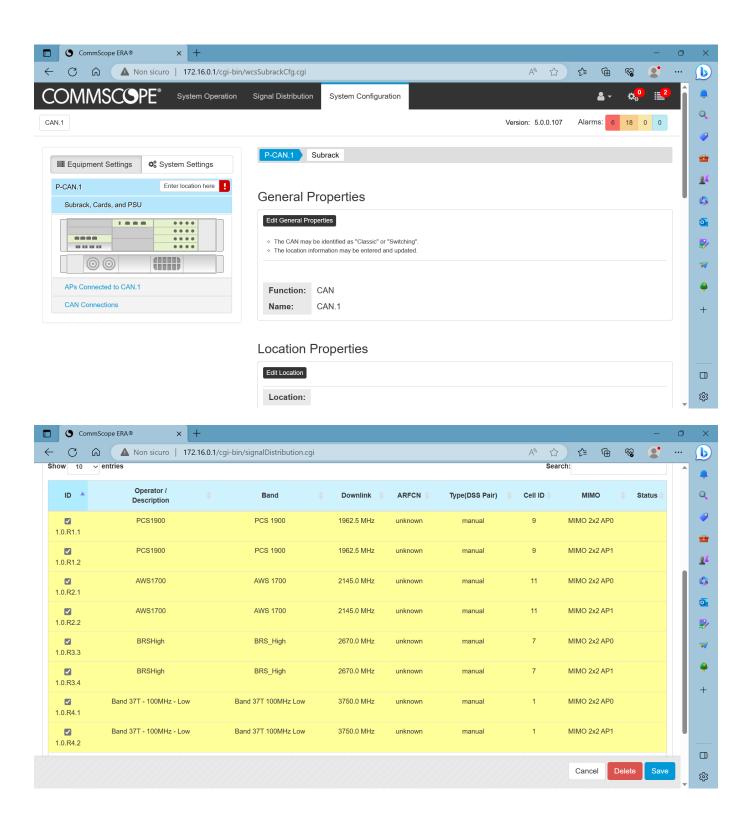

3.6 Equipment Used During Test

Table 3.6-1: Equipment Used During Test


Description	Brand name	Model/Part number	Serial number
Subrack	Commscope	7642110-00	S/N 13017180026
RFD.R1	Commscope	7633229-01	S/N SZBEAG1906A0104
RFD.R2	Commscope	7633229-01	S/N SZBEAG1906A0118
RFD.R3	Commscope	7841277-00	S/N SZBEAQ2235A0033
RFD.R4	Commscope	7841277-00	S/N SZBEAQ2235A0032
SUI.M3	Commscope	7642125-00	S/N SZBEAC1649A0001
CAT.L2	Commscope	7847569-00	S/N SZEAV2224A0004

3.7 EUT exercise details

A signal generator with an AWGN5 signal with 4.1 MHz 99% OBW representative of a 5 MHz LTE channel has been connected to the RF input of the server. The following software (inside the server) has been used:

Report reference REP013281

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

In the laboratory, the following ambient conditions are respected for each test reported below:

Temperature	18 − 33 °C
Relative humidity	25 – 70 %
Air pressure	860 – 1060 mbar

The following instruments are used to monitor the environmental conditions:

Equipment	Manufacturer	Model no.	Asset no.	Cal date	Next cal.
Thermo-hygrometer data loggers	Testo	175-H2	20012380/305	2022-12	2024-12
Thermo-hygrometer data loggers	Testo	175-H2	38203337/703	2022-12	2024-12
Barometer	Castle	GPB 3300	072015	2023-05	2024-05

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

The measurement uncertainty was calculated for each test and quantity listed in this test report, according to CISPR 16-4-2 and other specific test standard and is documented in Nemko Spa working manual WML1002.

The assessment of conformity for each test performed on the equipment is performed not taking into account the measurement uncertainty. The two following possible verdicts are stated in the report:

P (Pass) - The measured values of the equipment respect the specification limit at the points tested. The specific risk of false accept is up to 50% when the measured result is close to the limit.

F (Fail) - One or more measured values of the equipment do not respect the specification limit at the points tested. The specific risk of false reject is up to 50% when the measured result is close to the limit.

Hereafter Nemko's measurement uncertainties are reported:

Test	Range	Measurement Uncertainty	Notes
	Antenna distance 1 m, 3 m, 10 m 0.009 ÷ 200 MHz	5.0 dB	(1)
	Antenna distance 1 m, 3 m, 10 m 200 ÷ 1000 MHz	5.2 dB	(1)
Radiated Disturbance	Antenna distance 1 m, 3 m, 10 m 1 ÷ 6 GHz	5.2 dB	(1)
	Antenna distance 1 m, 3 m 6 ÷ 18 GHz	5.5 dB	(1)
	Antenna distance 1 m, 3 m 18 ÷ 40 GHz	7.2 dB	(1)
Radiated Disturbance with large loop antenna system (LLAS)	0.009 ÷ 30 MHz	3.3 dB	(1)
	0.02 ÷ 150 kHz with AMN	3.8 dB	(1)
	150 kHz ÷ 30 MHz with AMN	3.4 dB	(1)
Conducted Disturbance	150 kHz ÷ 30 MHz with AAN	4.6 dB	(1)
	9 kHz ÷ 30 MHz with voltage probe	2.9 dB	(1)
	150 kHz ÷ 30 MHz with current probe	2.9 dB	(1)
Fraguency	10 Hz ÷ 1 kHz	0.2 %	(1)
Frequency	1 kHz ÷ 40 GHz	10 ⁻⁶	(1)
Electromagnetic fields (EMF)	Magnetic, Electric and Electromagnetic fields: 0 Hz ÷ 40 GHz	25 %	(1)
Electrical quantities (voltage, current, resistance)	AC/DC Voltage 10 mV \div 1000 V 0 \div 100 kHz AC/DC Current 0.1 mA \div 400 A 0 \div 1 kHz Resistance 100 m Ω \div 10 M Ω	2.5 %	(1)

NOTES:

(1) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %

(2) The instruments used for this immunity test is according to the tolerances requested by the applicable standard

(3) The reported expanded uncertainty of measurement is related to the stimulus quantity

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI receiver	Rohde & Schwarz	ESU8	100202	2022-09	2023-09
EMI receiver	Rohde & Schwarz	ESW44	101620	2022-08	2023-08
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2023-01	2024-01
Trilog Antenna	Schwarzbeck	VULB 9162	9162-025	2021-07	2024-07
Antenna Trilog	Schwarzbeck	VULB 9168	9168-242	2021-06	2024-06
Bilog antenna	Schwarzbeck	STLP 9148	9148-123	2021-06	2024-06
Double Ridge Horn Antenna	RFSpin	DRH40	061106A40	2023-05	2026-05
Broadband Amplifier	Schwarzbeck	BBV9718C	00121	2023-03	2024-03
Preamplifier	Schwarzbeck	BBV9718	BBV9718-137	2023-05	2024-05
Controller	Maturo	FCU3.0	10041	NCR	NCR
Tilt antenna mast	Maturo	TAM4.0-E	10042	NCR	NCR
Turntable	Maturo	TT4.0-5T	2.527	NCR	NCR
3m Semi anechoic chamber	Comtest	SAC-3	1711-150	2022-09	2024-09
Semi-anechoic chamber	Nemko S.p.a.	10m semi-anechoic chamber	530	2021-09	2023-09

Note: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

8.1 Radiated emission limits

8.1.1 Definitions and limits

§2.947(f):

A composite system is a system that incorporates different devices contained either in a single enclosure or in separate enclosures connected by wire or cable. If the individual devices in a composite system are subject to different technical standards, each such device must comply with its specific standards. In no event may the measured emissions of the composite system exceed the highest level permitted for an individual component. Testing for compliance with the different standards shall be performed with all of the devices in the system functioning. If the composite system incorporates more than one antenna or other radiating source and these radiating sources are designed to emit at the same time, measurements of conducted and radiated emissions shall be performed with all radiating sources that are to be employed emitting.

§27.53(h)(1):

General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

§27.53(m)(2):

For digital base stations, the attenuation shall be not less than 43 + 10 log (P) dB, unless a documented interference complaint is received from an adjacent channel licensee with an overlapping Geographic Service Area

§27.53(I)(1):

For base station operations in the 3700–3980 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed –13 dBm/MHz. Compliance with this paragraph (I)(1) is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

§24.238(a):

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

KDB 996369 §3.2:

Because the host needs an equipment authorization as an unintentional radiator for compliance as an individual unintentional radiator following 15.33 (b), the additional recommended composite investigation testing can be done as a part of this event with all the transmitter(s) active. The frequency spectrum to be investigated for this composite investigation testing at a minimum is based on the 15.33 (b) table. The highest frequency generated or used in the device or on which the device operates or tunes (MHz) shall include the frequencies of the transmitters and comply with the limits of 15.109 or the highest level permitted for an individual component. Filters to prevent measurement system overload may be required.

Table 8.1-1: General radiated emission limits

Frequency,	Field strength of emissions		Measurement distance, m
MHz	μV/m dBμV/m		
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges. For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Report reference REP013281 Page 14 of 24

Trace mode:

8.1.2 Test summary

Test start date	2023-07-03
Test engineer	P. Barbieri

8.1.3 Observations, settings and special notes

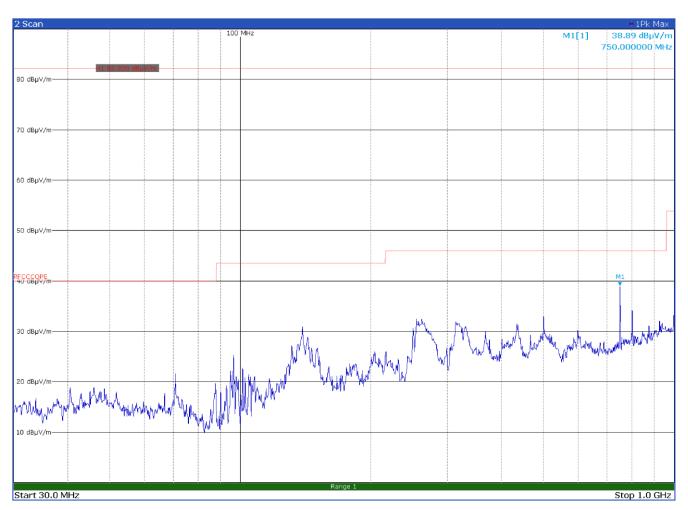
The spectrum was searched from 30 MHz to the 5th harmonic.

Radiated measurements were performed at a distance of 3 m.

According to ANSI C63.26 the field strength has been measured. The limit of -13 dBm has been converted with the following formula: $dBm = dB\mu V/m$

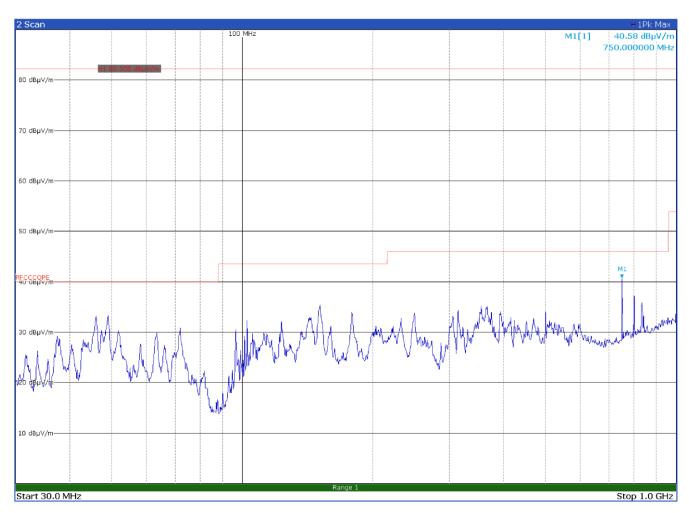
Spectrum analyser settings for radiated measurements below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

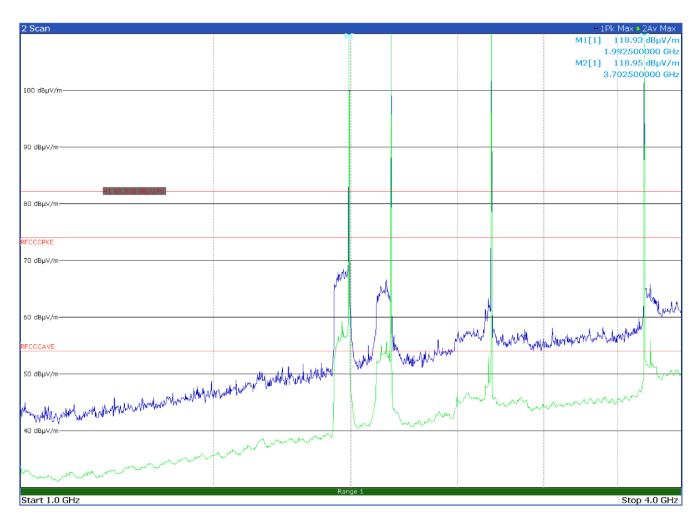

Spectrum analyser settings for radiated measurements above 1 GHz:

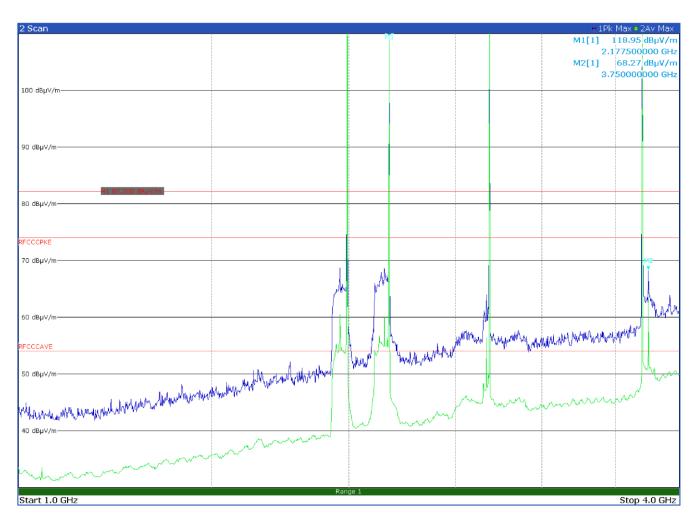
Max Hold

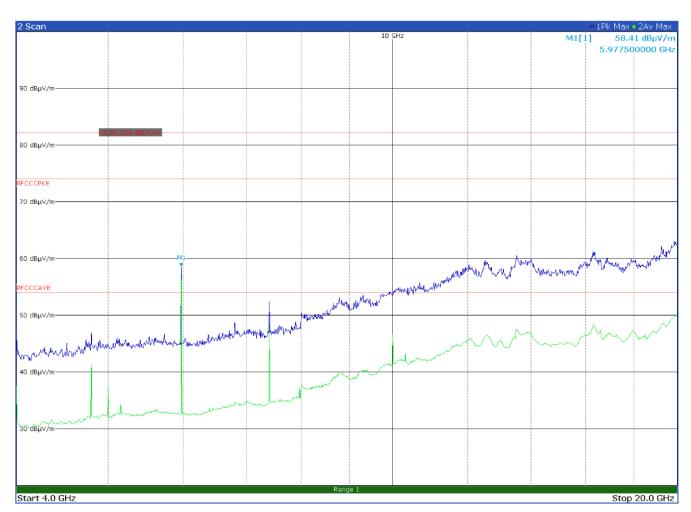
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Average



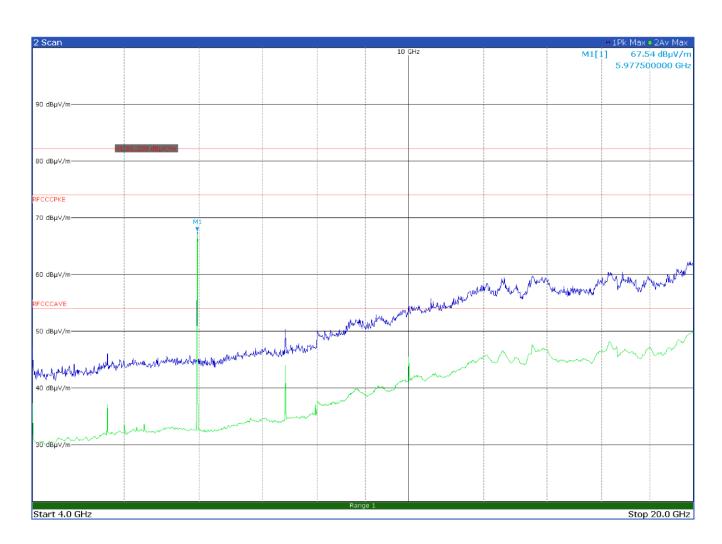
8.1.4 Test data


Radiated emission in the frequency range 30 to 1000 MHz with antenna in horizontal polarization No intermodulaction products found


Radiated emission in the frequency range 30 to 1000 MHz with antenna in vertical polarization No intermodulaction products found

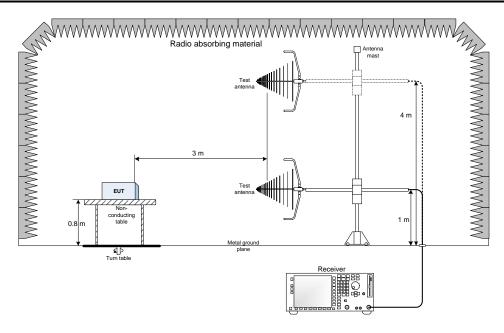

Radiated emission in the frequency range 1 to 4 GHz with antenna in horizontal polarization Limits excededd by the carriers. No intermodulaction products found

Radiated emission in the frequency range 1 to 4 GHz with antenna in vertical polarization Limits excededd by the carriers. No intermodulaction products found

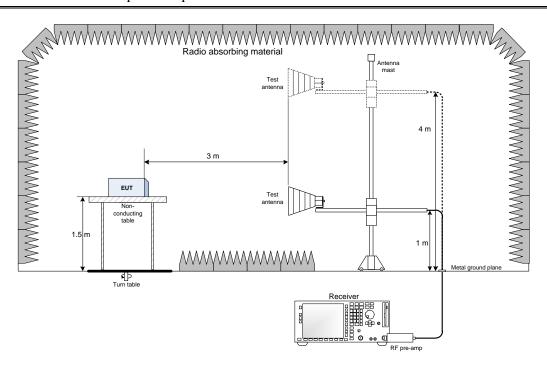


Radiated emission in the frequency range 4 to 20 GHz with antenna in horizontal polarization

Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
5977.50	58.4	82.2	-23.8	Pk


Radiated emission in the frequency range 4 to 20 GHz with antenna in vertical polarization

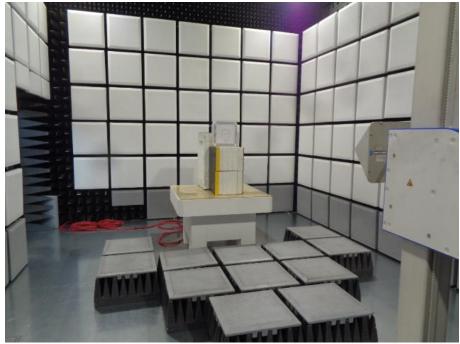
Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
5977.50	67.5	82.2	-14.7	Pk



Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up for frequencies below 1 GHz

9.2 Radiated emissions set-up for frequencies above 1 GHz



Section 10. Photos

10.1 Photos of the test set-up

Radiated emission below 1 GHz

Radiated emission above 1 GHz

10.2 Photos of the EUT

(End of report)