

#### Frequency Band = Band 809 – 817 MHz, Test Frequency = low, Direction = RF uplink, Signal Type = CW (S01\_AA01)





#### Frequency Band = Band 809 – 817 MHz, Test Frequency = mid, Direction = RF uplink, Signal Type = CW (S01\_AA01)



Frequency Band = Band 809 – 817 MHz, Test Frequency = high, Direction = RF uplink, Signal Type = CW (S01\_AA01)



# 4.4.5 TEST EQUIPMENT USED

- R&S TS8997



4.5 OUT-OF-BAND EMISSION LIMITS

Standard FCC Part 90; §90.219

#### The test was performed according to:

ANSI C63.26, KDB 935210 D05 v01r03: 3.6

#### 4.5.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band emission limit for industrial signal boosters. The limits itself come from the applicable rule part for each operating band.

The EUT was connected to the test setup according to the following diagram:



The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyser settings can be directly found in the measurement diagrams.



### 4.5.2 TEST REQUIREMENTS / LIMITS

#### Part 90, Subpart I

#### §90.219 Use of signal boosters.

This section contains technical and operational rules allowing the use of signal boosters in the Private Land Mobile Radio Services (PLMRS). Rules for signal booster operation in the Commercial Mobile Radio Services under part 90 are found in §20.21 of this chapter.

(d) *Deployment rules.* Deployment of signal boosters must be carried out in accordance with the rules in this paragraph.

(6) Good engineering practice must be used in regard to the radiation of intermodulation products and noise, such that interference to licensed communications systems is avoided. In the event of harmful interference caused by any given deployment, the FCC may require additional attenuation or filtering of the emissions and/or noise from signal boosters or signal booster systems, as necessary to eliminate the interference.

(i) In general, the ERP of intermodulation products should not exceed -30 dBm in 10 kHz measurement bandwidth.



# 4.5.3 TEST PROTOCOL

| Band 758 M | Band 758 MHz – 768 MHz, Downlink, Number of input signals = 2 |           |           |       |                 |  |  |
|------------|---------------------------------------------------------------|-----------|-----------|-------|-----------------|--|--|
| Emission   |                                                               |           |           |       |                 |  |  |
| Designator |                                                               |           |           |       |                 |  |  |
| with       |                                                               | Signal    | Signal    |       | Maximum         |  |  |
| Channel    |                                                               | Frequency | Frequency | Input | Intermodulation |  |  |
| Bandwidth  |                                                               | f1        | f2        | Power | Power           |  |  |
| [MHz]      | Input Power                                                   | [MHz]     | [MHz]     | [dBm] | [dBm]           |  |  |
| CW at 5    | 0.3 dB < AGC                                                  | 762.1640  | 767.1640  | -57.5 | -28.7           |  |  |
| CW at 5    | 3 dB > AGC                                                    | 762.1640  | 767.1640  | -54.2 | -28.8           |  |  |

| Band 769 M                                                      | Band 769 MHz – 775 MHz, Downlink, Number of input signals = 2 |                                    |                                    |                         |                                               |  |  |  |
|-----------------------------------------------------------------|---------------------------------------------------------------|------------------------------------|------------------------------------|-------------------------|-----------------------------------------------|--|--|--|
| Emission<br>Designator<br>with<br>Channel<br>Bandwidth<br>[kHz] | Input Power                                                   | Signal<br>Frequency<br>f1<br>[MHz] | Signal<br>Frequency<br>f2<br>[MHz] | Input<br>Power<br>[dBm] | Maximum<br>Intermodulation<br>Power<br>[dBm]] |  |  |  |
| CW at 6.25                                                      | 0.3 dB < AGC                                                  | 771.8625                           | 771.8688                           | -58.3                   | -24.8                                         |  |  |  |
| CW at 6.25                                                      | 3 dB > AGC                                                    | 771.8625                           | 771.8688                           | -55.1                   | -24.1                                         |  |  |  |
| CW at 12.5                                                      | 0.3 dB < AGC                                                  | 771.8625                           | 771.8750                           | -58.3                   | -26.0                                         |  |  |  |
| CW at 12.5                                                      | 3 dB > AGC                                                    | 771.8625                           | 771.8750                           | -55.1                   | -25.6                                         |  |  |  |
| CW at 25                                                        | 0.3 dB < AGC                                                  | 771.8563                           | 771.8813                           | -58.3                   | -24.5                                         |  |  |  |
| CW at 25                                                        | 3 dB > AGC                                                    | 771.8563                           | 771.8813                           | -55.1                   | -24.0                                         |  |  |  |

| Band 851 M | Band 851 MHz – 854 MHz, Downlink, Number of input signals = 2 |           |           |       |                 |  |  |
|------------|---------------------------------------------------------------|-----------|-----------|-------|-----------------|--|--|
| Emission   |                                                               |           |           |       |                 |  |  |
| Designator |                                                               |           |           |       |                 |  |  |
| with       |                                                               | Signal    | Signal    |       | Maximum         |  |  |
| Channel    |                                                               | Frequency | Frequency | Input | Intermodulation |  |  |
| Bandwidth  |                                                               | f1        | f2        | Power | Power           |  |  |
| [kHz]      | Input Power                                                   | [MHz]     | [MHz]     | [dBm] | [dBm]]          |  |  |
| CW at 12.5 | 0.3 dB < AGC                                                  | 852.9000  | 852.9125  | -57.1 | -24.4           |  |  |
| CW at 12.5 | 3 dB > AGC                                                    | 852.9000  | 852.9125  | -53.8 | -22.6           |  |  |

| Band 854 MHz – 862 MHz, Downlink, Number of input signals = 2 |              |           |           |       |                 |  |
|---------------------------------------------------------------|--------------|-----------|-----------|-------|-----------------|--|
| Emission                                                      |              |           |           |       |                 |  |
| Designator                                                    |              |           |           |       |                 |  |
| with                                                          |              | Signal    | Signal    |       | Maximum         |  |
| Channel                                                       |              | Frequency | Frequency | Input | Intermodulation |  |
| Bandwidth                                                     |              | f1        | f2        | Power | Power           |  |
| [kHz]                                                         | Input Power  | [MHz]     | [MHz]     | [dBm] | [dBm]           |  |
| CW at 12.5                                                    | 0.3 dB < AGC | 856.8000  | 856.8125  | -58.5 | -24.3           |  |
| CW at 12.5                                                    | 3 dB > AGC   | 856.8000  | 856.8125  | -55.2 | -23.1           |  |



| Band 788 M | Band 788 MHz – 798 MHz, Uplink, Number of input signals = 2 |           |           |       |                 |  |  |
|------------|-------------------------------------------------------------|-----------|-----------|-------|-----------------|--|--|
| Emission   |                                                             |           |           |       |                 |  |  |
| Designator |                                                             |           |           |       |                 |  |  |
| with       |                                                             | Signal    | Signal    |       | Maximum         |  |  |
| Channel    |                                                             | Frequency | Frequency | Input | Intermodulation |  |  |
| Bandwidth  |                                                             | f1        | f2        | Power | Power           |  |  |
| [MHz]      | Input Power                                                 | [MHz]     | [MHz]     | [dBm] | [dBm]           |  |  |
| CW at 5    | 0.3 dB < AGC                                                | 788.6040  | 793.6040  | -64.3 | -31.0           |  |  |
| CW at 5    | 3 dB > AGC                                                  | 788.6040  | 793.6040  | -61.1 | -30.1           |  |  |

| Band 799 M                                             | Band 799 MHz – 805 MHz, Uplink, Number of input signals = 2 |                           |                           |                |                                     |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|---------------------------|---------------------------|----------------|-------------------------------------|--|--|
| Emission<br>Designator<br>with<br>Channel<br>Bandwidth |                                                             | Signal<br>Frequency<br>f1 | Signal<br>Frequency<br>f2 | Input<br>Power | Maximum<br>Intermodulation<br>Power |  |  |
| [kHz]                                                  | Input Power                                                 | [MHz]                     | [MHz]                     | [dBm]          | [dBm]                               |  |  |
| CW at 6.25                                             | 0.3 dB < AGC                                                | 799.5875                  | 799.5938                  | -63.5          | -25.1                               |  |  |
| CW at 6.25                                             | 3 dB > AGC                                                  | 799.5875                  | 799.5938                  | -60.3          | -25.2                               |  |  |
| CW at 12.5                                             | 0.3 dB < AGC                                                | 799.5875                  | 799.6000                  | -63.5          | -25.7                               |  |  |
| CW at 12.5                                             | 3 dB > AGC                                                  | 799.5875                  | 799.6000                  | -60.3          | -25.3                               |  |  |
| CW at 25                                               | 0.3 dB < AGC                                                | 799.5813                  | 799.6063                  | -63.5          | -26.1                               |  |  |
| CW at 25                                               | 3 dB > AGC                                                  | 799.5813                  | 799.6063                  | -60.3          | -25.3                               |  |  |

| Band 806 M | Band 806 MHz – 809 MHz, Uplink, Number of input signals = 2 |           |           |       |                 |  |  |
|------------|-------------------------------------------------------------|-----------|-----------|-------|-----------------|--|--|
| Emission   |                                                             |           |           |       |                 |  |  |
| Designator |                                                             |           |           |       |                 |  |  |
| with       |                                                             | Signal    | Signal    |       | Maximum         |  |  |
| Channel    |                                                             | Frequency | Frequency | Input | Intermodulation |  |  |
| Bandwidth  |                                                             | f1        | f2        | Power | Power           |  |  |
| [kHz]      | Input Power                                                 | [MHz]     | [MHz]     | [dBm] | [dBm]           |  |  |
| CW at 12.5 | 0.3 dB < AGC                                                | 806.7875  | 806.8000  | -64.9 | -24.8           |  |  |
| CW at 12.5 | 3  dB > AGC                                                 | 806.7875  | 806.8000  | -61.6 | -24.6           |  |  |

| Band 809 MHz – 817 MHz, Uplink, Number of input signals = 2 |              |           |           |       |                 |  |
|-------------------------------------------------------------|--------------|-----------|-----------|-------|-----------------|--|
| Emission                                                    |              |           |           |       |                 |  |
| Designator                                                  |              |           |           |       |                 |  |
| with                                                        |              | Signal    | Signal    |       | Maximum         |  |
| Channel                                                     |              | Frequency | Frequency | Input | Intermodulation |  |
| Bandwidth                                                   |              | f1        | f2        | Power | Power           |  |
| [kHz]                                                       | Input Power  | [MHz]     | [MHz]     | [dBm] | [dBm]           |  |
| CW at 12.5                                                  | 0.3 dB < AGC | 816.8250  | 816.8375  | -64.1 | -25.8           |  |
| CW at 12.5                                                  | 3 dB > AGC   | 816.8250  | 816.8375  | -60.8 | -25.7           |  |

Remark: Please see next sub-clause for the measurement plot.



#### 4.5.4 MEASUREMENT PLOTS

Frequency band = 758 MHz – 768 MHz, Channel bandwidth = 5 MHz, Number of signals = 2, Direction = RF downlink, Input power = = 0.3 dB < AGC, Emission designator = 5M00G7D



Frequency band = 758 MHz – 768 MHz, Channel bandwidth = 5 MHz, Number of signals = 2, Direction = RF downlink, Input power = = 3 dB > AGC, Emission designator = 5M00G7D





#### Frequency band = 769 MHz – 775 MHz, Channel bandwidth = 6.25 kHz, Number of signals = 2, Direction = RF downlink, Input power = 0.3 dB < AGC, Emission designator = 4K00F3E



Frequency band = 769 MHz – 775 MHz, Channel bandwidth = 6.25 kHz, Number of signals = 2, Direction = RF downlink, Input power = = 3 dB > AGC, Emission designator = 4K00F3E



out of band emi;CW;2 carrier +3 dB;771.86570M;100.000k; CB6. 25k



Frequency band = 769 MHz – 775 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF downlink, Input power = = 0.3 dB < AGC, Emission designators = 11K3F3E, 8K10F1D and 9K80D7W



Frequency band = 769 MHz – 775 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF downlink, Input power = = 3 dB > AGC, Emission designators = 11K3F3E, 8K10F1D and 9K80D7W



out of band emi;CW;2 carrier +3 dB;771.86880M;100.000k; CB12 .50k



 $\begin{array}{l} \mbox{Frequency band}\ =\ 769\ \mbox{MHz}\ -\ 775\ \mbox{MHz}\ ,\ \mbox{Channel bandwidth}\ =\ 25\ \mbox{kHz}\ ,\\ \mbox{Number of signals}\ =\ 2,\ \mbox{Direction}\ =\ \mbox{RF downlink}\ ,\ \mbox{Input power}\ =\ =\ 0.3\ \mbox{dB}\ <\ \mbox{AGC}\ ,\\ \mbox{Emission designator}\ =\ \ 16K0F3E \end{array}$ 



Frequency band = 769 MHz – 775 MHz, Channel bandwidth = 25 kHz, Number of signals = 2, Direction = RF downlink, Input power = = 3 dB > AGC, Emission designator = 16K0F3E





Frequency band = 851 MHz – 854 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF downlink, Input power = = 0.3 dB < AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W



Frequency band = 851 MHz – 854 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF downlink, Input power = = 3 dB > AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W





Frequency band = 854 MHz – 862 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF downlink, Input power = = 0.3 dB < AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W



Frequency band = 854 MHz – 862 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF downlink, Input power = = 3 dB > AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W





Frequency band = 788 MHz – 798 MHz, Channel bandwidth = 5 MHz, Number of signals = 2, Direction = RF downlink, Input power = = 0.3 dB < AGC, Emission designator = 5M00G7D



Frequency band = 788 MHz – 798 MHz, Channel bandwidth = 5 MHz, Number of signals = 2, Direction = RF downlink, Input power = = 3 dB > AGC, Emission designator = 5M00G7D





#### Frequency band = 799 MHz – 805 MHz, Channel bandwidth = 6.25 kHz, Number of signals = 2, Direction = RF uplink, Input power = = 0.3 dB < AGC, Emission designator = 4K00F3E



Frequency band = 799 MHz – 805 MHz, Channel bandwidth = 6.25 kHz, Number of signals = 2, Direction = RF uplink, Input power = 3 dB > AGC, Emission designator = 4K00F3E



out of band emi;CW;2 carrier +3 dB;799.59070M;100.000k; CB6. 25k



Frequency band = 799 MHz – 805 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = = 0.3 dB < AGC, Emission designators = 11K3F3E, 8K10F1D and 9K80D7W



Frequency band = 799 MHz – 805 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = = 3 dB > AGC, Emission designators = 11K3F3E, 8K10F1D and 9K80D7W



out of band emi;CW;2 carrier +3 dB;799.59380M;100.000k; CB12 .50k



Frequency band = 799 MHz – 805 MHz, Channel bandwidth = 25 kHz, Number of signals = 2, Direction = RF uplink, Input power = = 0.3 dB < AGC, Emission designator = 16K0F3E



Frequency band = 799 MHz – 805 MHz, Channel bandwidth = 25 kHz, Number of signals = 2, Direction = RF uplink, Input power = = 3 dB > AGC, Emission designator = 16K0F3E





Frequency band = 806 MHz – 809 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = = 0.3 dB < AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W



Frequency band = 806 MHz – 809 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = = 3 dB > AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W





Frequency band = 809 MHz – 817 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = = 0.3 dB < AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W



Frequency band = 809 MHz – 817 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = = 3 dB > AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W



#### 4.5.5 TEST EQUIPMENT USED

- FCC cond. Test Lab, BV Nbg



#### 4.6 OUT-OF-BAND REJECTION

Standard KDB 935210 D05

#### The test was performed according to:

ANSI C63.26; KDB 935210 D05

#### 4.6.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band rejection test case for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:



The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyser settings can be directly found in the measurement diagrams.

#### 4.6.2 TEST REQUIREMENTS / LIMITS

There are no available limits.



# 4.6.3 TEST PROTOCOL

| Band 758 MHz – 7                    |                          |                                                        |                                                        |                             |
|-------------------------------------|--------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------|
| Highest Power<br>Frequency<br>[MHz] | Output<br>Power<br>[dBm] | Lower<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | Upper<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | 20 dB<br>Bandwidth<br>[MHz] |
| 764.6640                            | 29.96                    | 757.0106                                               | 775.9737                                               | 18.9631                     |

| Band 769 MHz – 7                    |                          |                                                        |                                                        |                             |
|-------------------------------------|--------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------|
| Highest Power<br>Frequency<br>[MHz] | Output<br>Power<br>[dBm] | Lower<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | Upper<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | 20 dB<br>Bandwidth<br>[MHz] |
| 771.8650                            | 29.76                    | 757.0095                                               | 775.9716                                               | 18.9621                     |

| Band 851 MHz – 8                    |                          |                                                        |                                                        |                             |
|-------------------------------------|--------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------|
| Highest Power<br>Frequency<br>[MHz] | Output<br>Power<br>[dBm] | Lower<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | Upper<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | 20 dB<br>Bandwidth<br>[MHz] |
| 852.9035                            | 29.76                    | 850.5147                                               | 869.4878                                               | 18.9731                     |

| Band 854 MHz – 8                    | <u> </u>                 |                                                        |                                                        |                             |
|-------------------------------------|--------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------|
| Highest Power<br>Frequency<br>[MHz] | Output<br>Power<br>[dBm] | Lower<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | Upper<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | 20 dB<br>Bandwidth<br>[MHz] |
| 856.8011                            | 31.17                    | 850.5207                                               | 869.4774                                               | 18.9566                     |



| Band 788 MHz – 79                   |                          |                                                        |                                                         |                              |
|-------------------------------------|--------------------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------|
| Highest Power<br>Frequency<br>[MHz] | Output<br>Power<br>[dBm] | Lower<br>Highest Power<br>-13 dB<br>Frequency<br>[MHz] | Upper<br>Highest Power<br>-2.9 dB<br>Frequency<br>[MHz] | 2.9 dB<br>Bandwidth<br>[MHz] |
| 791.1040                            | 24.95                    | 787.7255                                               | 805.4238                                                | 17.6982                      |

| Band 799 MHz – 8                    | <u> </u>                 |                                                        |                                                         |                              |
|-------------------------------------|--------------------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------|
| Highest Power<br>Frequency<br>[MHz] | Output<br>Power<br>[dBm] | Lower<br>Highest Power<br>-17 dB<br>Frequency<br>[MHz] | Upper<br>Highest Power<br>-3.4 dB<br>Frequency<br>[MHz] | 3.4 dB<br>Bandwidth<br>[MHz] |
| 799.5909                            | 24.74                    | 787.6764                                               | 805.4227                                                | 17.7462                      |

| Band 806 MHz – 80                   | ]                        |                                                        |                                                        |                             |
|-------------------------------------|--------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------|
| Highest Power<br>Frequency<br>[MHz] | Output<br>Power<br>[dBm] | Lower<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | Upper<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | 20 dB<br>Bandwidth<br>[MHz] |
| 806.7947                            | 18.45                    | 805.5147                                               | 824.4878                                               | 18.9731                     |

| Band 809 MHz – 8                    | ]                        |                                                        |                                                        |                             |
|-------------------------------------|--------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------|
| Highest Power<br>Frequency<br>[MHz] | Output<br>Power<br>[dBm] | Lower<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | Upper<br>Highest Power<br>-20 dB<br>Frequency<br>[MHz] | 20 dB<br>Bandwidth<br>[MHz] |
| 816.8350                            | 19.22                    | 805.5152                                               | 824.4829                                               | 18.9676                     |

Remarks: Please see next sub-clause for the measurement plot.



### 4.6.4 MEASUREMENT PLOTS



Frequency Band = Band 758 MHz – 768 MHz, Direction = RF downlink

Frequency Band = Band 769 MHz – 775 MHz, Direction = RF downlink



Out of band rejection 772.00000M \_20dB





#### Frequency Band = Band 851 MHz – 854 MHz, Direction = RF downlink

Out of band rejection 852.50000M \_20dB

#### Frequency Band = Band 854 MHz – 862 MHz, Direction = RF downlink



Out of band rejection 858.00000M \_20dB





#### Frequency Band = Band 788 MHz – 798 MHz, Direction = RF uplink

Out of band rejection 793.00000M 20dB

#### Frequency Band = Band 799 MHz – 805 MHz, Direction = RF uplink

| Ref Leve | el 40.00 dBm<br>40 dB |                              |                        | Mode Auto FFT   |                        |
|----------|-----------------------|------------------------------|------------------------|-----------------|------------------------|
| TDF      | 40 UB                 | ami 37.9 µs 🦷                | VBW 300 KH2            | MODE AUTO FFT   |                        |
| 1Pk Max  | :                     |                              |                        |                 |                        |
|          |                       |                              |                        | M1[1]           | 24.74 dBr              |
| 30 dBm—  |                       |                              | MI                     |                 | 799.59090 MH           |
| T1       |                       |                              | M1                     | ndB2            | 3.40 d                 |
| 20 dBm—  | -                     |                              |                        | Q factor        | 17.740200000 Min       |
| 10 dBm—  |                       |                              |                        |                 |                        |
| 10 dBm—  |                       |                              |                        |                 |                        |
| 0 dBm-   |                       |                              |                        |                 |                        |
|          |                       |                              |                        |                 |                        |
| -10 dBm- |                       |                              | +                      |                 |                        |
|          |                       |                              |                        |                 |                        |
| -20 dBm- |                       |                              |                        |                 |                        |
| -30 dBm- |                       |                              |                        |                 |                        |
| 50 abiii |                       |                              |                        |                 |                        |
| -40 dBm- | _                     |                              |                        |                 |                        |
|          |                       |                              |                        |                 |                        |
| -50 dBm- |                       |                              | + + +                  |                 |                        |
|          |                       |                              |                        |                 |                        |
| CF 802.0 | ) MHz                 |                              | 10001 pt               | s               | Span 30.0 MHz          |
| 1arker   |                       |                              |                        |                 |                        |
|          | Ref Trc               | X-value                      | Y-value                | Function        | Function Result        |
| M1<br>T1 | 1                     | 799.5909 MHz<br>787.6764 MHz | 24.74 dBm<br>21.37 dBm | ndB down<br>ndB | 17.7462 MHz<br>3.40 dB |
| T2       | 1                     | 805.4227 MHz                 | 21.37 dBm<br>21.42 dBm | O factor        | 3.40 dB<br>45.1        |

Out of band rejection 802.00000M \_20dB



#### Spectrum Ref Level 40.00 dBm Att 40 dB Offset 20.00 dB ● RBW 200 kHz SWT 38 µs ● VBW 500 kHz Mode Auto FFT TDF ●1Pk Ma M1[1] 18.45 dBr 806.79470 MH 30 dBr 20.00 dl 18.973100000 MH ndB м Bw 20 dBm O fe 42. 10 dBm 0 dBm -10 dBm -20 dBm mound -30 dBr 40 dBm -50 dBm CF 807.5 MHz 10001 pts Span 55.0 MHz larker Function a ndB down a ndB n Q factor Type Ref Trc X-value 806.7947 MHz 805.5147 MHz 824.4878 MHz Y-value 18.45 dBm -1.26 dBm -1.61 dBm Function Result 18.9731 MHz 20.00 dB 42.5 T1 10 A.M

#### Frequency Band = Band 806 MHz – 809 MHz, Direction = RF uplink

Out of band rejection 807.50000M \_20dB

#### Frequency Band = Band 809 MHz - 817 MHz, Direction = RF uplink



Out of band rejection 813.00000M \_20dB

#### 4.6.5 TEST EQUIPMENT USED

- FCC cond. Test Lab, BV Nbg



#### 4.7 NOISE FIGURE

Standard FCC Part 90, §90.219

# The test was performed according to: ANSI C63.26

#### 4.7.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to noise limit for industrial signal boosters. The limits itself come from the applicable rule part for each operating band.

The EUT was connected to the test setup according to the following diagram:



FCC Part 22/24/27/90 Industrial signal booster - Test Setup; Noise

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyser settings can be directly found in the measurement diagrams.

#### 4.7.2 TEST REQUIREMENTS / LIMITS

#### Part 90, Subpart I

#### §90.219 – Use of signal boosters

(e)(2) The noise figure of a signal booster must not exceed 9 dB in either direction.

Remarks of the test laboratory:

With thermal noise of -174 dBm/Hz at 300 K and measurement bandwidth of 1 MHz the noise value is -114 dBm. Adding the gain of 88 dB (89 dB, dependent from the frequency range), as well as 9 dB for noise figure, the limit for the border line is -16 dBm respectively -15 dBm.

According the used KDB 932210 05 paragraph 4.6 during the measurements the repeater's AGC is switched off.



#### 4.7.3 TEST PROTOCOL

| Band 758 MHz – 775 MHz, downlink |                                                                   |  |  |  |  |  |
|----------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
|                                  |                                                                   |  |  |  |  |  |
| Test step                        | Noise level below theoretical noise level plus 9 dB noise figure? |  |  |  |  |  |
| Passband                         | Yes                                                               |  |  |  |  |  |

| Band 851 MHz – 862 MHz, downlink |                                                                   |  |  |  |  |
|----------------------------------|-------------------------------------------------------------------|--|--|--|--|
|                                  |                                                                   |  |  |  |  |
| Test step                        | Noise level below theoretical noise level plus 9 dB noise figure? |  |  |  |  |
| Passband                         | Yes                                                               |  |  |  |  |

| Band 788 MHz – 805 MHz, uplink |                                                                   |  |  |  |  |
|--------------------------------|-------------------------------------------------------------------|--|--|--|--|
|                                |                                                                   |  |  |  |  |
| Test step                      | Noise level below theoretical noise level plus 9 dB noise figure? |  |  |  |  |
| Passband                       | Yes                                                               |  |  |  |  |
|                                |                                                                   |  |  |  |  |

| Band 806 MHz – 817 MHz, uplink |                                                                   |  |  |  |
|--------------------------------|-------------------------------------------------------------------|--|--|--|
|                                |                                                                   |  |  |  |
| Test step                      | Noise level below theoretical noise level plus 9 dB noise figure? |  |  |  |
| Passband                       | Yes                                                               |  |  |  |

Remarks:

To stimulate noise production in the uplink bands, in the according band as CW signal (the first CW signal per band) is applied within the passband. The according CW signal is spared out of the data line limit.

To prove that in the spared out part is no hidden noise in this first CW signal per band the measurements are done in the according bands with a second CW signal with another frequency than the first CW.

In the cases of stimulating the noise production the 50 Ohms termination shown in the test description setup diagram is substituted by a signal generator for producing CWs.

In the measurement plot the measuring curves of all possible bands supported by the hardware are shown. In the final product only the bands which are part of this report are activated.



#### 4.7.4 MEASUREMENT PLOTS



Frequency Band = Band 758 MHz to 775 MHz, Direction = RF downlink, Test Step = passband (S01\_AA01)

# Frequency Band = Band 851 MHz to 862 MHz, Direction = RF downlink, Test Step = passband (S01\_AA01)



851 MHz to 869 MHz, AGC switched off



# Frequency Band = Band 788 MHz to 805 MHz, Direction = RF uplink, Test Step = passband (S01\_AA01)



#### Second CW signal (stimulation signal)



788 MHz to 805 MHz, AGC switched off



# Frequency Band = Band 806 MHz to 817 MHz, Direction = RF uplink, Test Step = passband (S01\_AA01)



### First CW signal (stimulation signal)

806 MHz to 824 MHz, AGC switched off

# Second CW signal (stimulation signal)



806 MHz to 824 MHz, AGC switched off

# 4.7.5 TEST EQUIPMENT USED

- FCC cond. Test Lab, BV Nbg



## 4.8 FIELD STRENGTH OF SPURIOUS RADIATION

Standard FCC Part 90, §90.219

The test was performed according to: ANSI C63.26

#### 4.8.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements

The EUT was connected to the test setup according to the following diagram:



FCC Part 22/24/27/90; Industrial Signal Booster - Test Setup; Field Strength of Spurious Radiation

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table  $1.0 \times 2.0 \text{ m}^2$  in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.



#### 1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

#### Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by  $\pm$  45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by  $\pm$  100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range:  $\pm$  45 ° around the determined value
- Height variation range: ± 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

#### Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

- EMI receiver settings for step 4:
- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



#### 3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

#### Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45  $^\circ.$ 

#### Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size  $\pm 45^{\circ}$  for the elevation axis is performed.

The turn table azimuth will slowly vary by  $\pm 22.5^{\circ}$ .

The elevation angle will slowly vary by  $\pm 45^{\circ}$ 

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

#### Step 3:

- Spectrum analyser settings for step 3:
- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s



## 4.8.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

#### §90.219 Use of signal boosters.

This section contains technical and operational rules allowing the use of signal boosters in the Private Land Mobile Radio Services (PLMRS). Rules for signal booster operation in the Commercial Mobile Radio Services under part 90 are found in §20.21 of this chapter.

(e) *Device Specifications.* In addition to the general rules for equipment certification in §90.203(a)(2) and part 2, subpart J of this chapter, a signal booster must also meet the rules in this paragraph.

(3) Spurious emissions from a signal booster must not exceed -13 dBm within any 100 kHz measurement bandwidth.



# 4.8.3 TEST PROTOCOL

| Band 758 – 768 MHz, downlink |                            |              |          |              |                |                            |
|------------------------------|----------------------------|--------------|----------|--------------|----------------|----------------------------|
| Spurious<br>Freq.<br>[MHz]   | Spurious<br>Level<br>[dBm] | Pin<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| -                            | -                          | -4.3         | RMS      | 100          | -13.0          |                            |
| -                            | -                          | -4.3         | RMS      | 100          | -13.0          |                            |

| Band 788 – 798 MHz, uplink |                            |              |          |              |                |                            |
|----------------------------|----------------------------|--------------|----------|--------------|----------------|----------------------------|
| Spurious<br>Freq.<br>[MHz] | Spurious<br>Level<br>[dBm] | Pin<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| -                          | -                          | -4.3         | RMS      | 100          | -13.0          |                            |
| -                          | -                          | -4.3         | RMS      | 100          | -13.0          |                            |

| Band 769 – 775 MHz, downlink |                            |              |          |              |                |                            |
|------------------------------|----------------------------|--------------|----------|--------------|----------------|----------------------------|
| Spurious<br>Freq.<br>[MHz]   | Spurious<br>Level<br>[dBm] | Pin<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| -                            | -                          | -4.3         | RMS      | 100          | -13.0          |                            |
| -                            | -                          | -4.3         | RMS      | 100          | -13.0          |                            |

| Band 799 – 805 MHz, uplink |                            |              |          |              |                |                            |
|----------------------------|----------------------------|--------------|----------|--------------|----------------|----------------------------|
| Spurious<br>Freq.<br>[MHz] | Spurious<br>Level<br>[dBm] | Pin<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| -                          | -                          | -4.3         | RMS      | 100          | -13.0          |                            |
| -                          | -                          | -4.3         | RMS      | 100          | -13.0          |                            |

| Band 851 – 854 MHz, downlink |                            |              |          |              |                |                            |
|------------------------------|----------------------------|--------------|----------|--------------|----------------|----------------------------|
| Spurious<br>Freq.<br>[MHz]   | Spurious<br>Level<br>[dBm] | Pin<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| -                            | -                          | -4.3         | RMS      | 100          | -13.0          |                            |
| -                            | -                          | -4.3         | RMS      | 100          | -13.0          |                            |

| Band 806 – 8               | <u>309 MHz, uplin</u>      | <u>k</u>     |          |              |                |                            |
|----------------------------|----------------------------|--------------|----------|--------------|----------------|----------------------------|
| Spurious<br>Freq.<br>[MHz] | Spurious<br>Level<br>[dBm] | Pin<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| -                          | -                          | -4.3         | RMS      | 100          | -13.0          |                            |
| _                          | -                          | -4.3         | RMS      | 100          | -13.0          |                            |



| Band 854 – 862 MHz, downlink |                            |              |          |              |                |                            |
|------------------------------|----------------------------|--------------|----------|--------------|----------------|----------------------------|
| Spurious<br>Freq.<br>[MHz]   | Spurious<br>Level<br>[dBm] | Pin<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| -                            | -                          | -4.3         | RMS      | 100          | -13.0          |                            |
| -                            | -                          | -4.3         | RMS      | 100          | -13.0          |                            |

| Band 809 – 817 MHz, uplink |                            |              |          |              |                |                            |
|----------------------------|----------------------------|--------------|----------|--------------|----------------|----------------------------|
| Spurious<br>Freq.<br>[MHz] | Spurious<br>Level<br>[dBm] | Pin<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| -                          | -                          | -4.3         | RMS      | 100          | -13.0          |                            |
| -                          | -                          | -4.3         | RMS      | 100          | -13.0          |                            |

Remark: Please see next sub-clause for the measurement plot.

The three required test frequencies (low, mid, high) were injected simultaneously into the EUT.



# 4.8.4 MEASUREMENT PLOTS



Frequency Band = Band 758 – 768 MHz, Direction = RF downlink

30 MHz - 1 GHz



1 GHz - 10 GHz





Frequency Band = Band 788 – 798 MHz, Direction = RF uplink (S01\_AA01)





1 GHz - 10 GHz





Frequency Band = Band 769 – 775 MHz, Direction = RF downlink (S01\_AA01)





1 GHz - 10 GHz





Frequency Band = Band 799 – 805 MHz, Direction = RF uplink (S01\_AA01)





1 GHz - 10 GHz





Frequency Band = Band 851 – 854 MHz, Direction = RF downlink (S01\_AA01)





1 GHz - 10 GHz





Frequency Band = Band 806 – 809 MHz, Direction = RF uplink (S01\_AA01)





1 GHz - 10 GHz





Frequency Band = Band 854 – 862 MHz, Direction = RF downlink (S01\_AA01)





1 GHz - 10 GHz





Frequency Band = Band 809 – 817 MHz, Direction = RF uplink (S01\_AA01)





1 GHz - 10 GHz

# 4.8.5 TEST EQUIPMENT USED

### - Radiated Emissions



# 5 TEST EQUIPMENT

# 1 R&S TS8997

EN300328/301893/FCC cond. Test Lab

| Ref.No. | Device Name             | Description                                 | Manufacturer                         | Serial Number  | Last<br>Calibration | Calibration<br>Due |
|---------|-------------------------|---------------------------------------------|--------------------------------------|----------------|---------------------|--------------------|
| 1.1     | SMB100A                 | Signal<br>Generator 9<br>kHz - 6 GHz        | Rohde & Schwarz                      | 107695         | 2017-07             | 2020-07            |
| 1.2     | MFS                     | Rubidium<br>Frequency<br>Standard           | Datum-Beverly                        | 5489/001       | 2018-07             | 2020-07            |
| 1.3     | 1515 / 93459            |                                             | Weinschel<br>Associates              | LN673          |                     |                    |
| 1.4     | FSV30                   |                                             | Rohde & Schwarz                      | 103005         | 2018-04             | 2020-04            |
| 1.5     | Fluke 177               | Digital<br>Multimeter 03<br>(Multimeter)    | Fluke Europe B.V.                    | 86670383       | 2018-04             | 2020-04            |
| 1.6     | VT 4002                 | Climatic<br>Chamber                         | Vötsch                               | 58566002150010 | 2018-04             | 2020-04            |
| 1.7     | A8455-4                 | 4 Way Power<br>Divider (SMA)                |                                      | -              |                     |                    |
| 1.8     | Opus10 THI<br>(8152.00) | ThermoHygro                                 | Lufft Mess- und<br>Regeltechnik GmbH | 7482           | 2019-06             | 2021-03            |
| 1.9     | SMBV100A                | Vector Signal<br>Generator 9<br>kHz - 6 GHz | Rohde & Schwarz                      | 259291         | 2016-10             | 2019-10            |
| 1.10    | OSP120                  |                                             | Rohde & Schwarz                      | 101158         | 2018-05             | 2021-05            |

## 2 Radiated Emissions Lab to perform radiated emission tests

| Ref.No. | Device Name   | Description    | Manufacturer      | Serial Number | Last        | Calibration |
|---------|---------------|----------------|-------------------|---------------|-------------|-------------|
|         |               | _              |                   |               | Calibration | Due         |
| 2.1     | NRV-Z1        | Sensor Head A  | Rohde & Schwarz   | 827753/005    | 2018-07     | 2019-07     |
|         |               |                |                   |               | 2019-08     | 2020-08     |
| 2.2     | MFS           | Rubidium       | Datum GmbH        | 002           | 2018-10     | 2020-10     |
|         |               | Frequency      |                   |               |             |             |
|         |               | Normal MFS     |                   |               |             |             |
| 2.3     | Opus10 TPR    | ThermoAirpres  | Lufft Mess- und   | 13936         | 2019-05     | 2021-05     |
|         | (8253.00)     | sure           | Regeltechnik GmbH |               |             |             |
|         |               | Datalogger 13  | -                 |               |             |             |
|         |               | (Environ)      |                   |               |             |             |
| 2.4     | ESW44         | EMI Test       | Rohde & Schwarz   | 101603        | 2018-05     | 2020-05     |
|         |               | Receiver       |                   |               |             |             |
| 2.5     | Anechoic      | 10.38 x 6.38 x | Frankonia         | none          | 2018-06     | 2020-06     |
|         | Chamber       | 6.00 m³        |                   |               |             |             |
| 2.6     | HL 562        | Ultralog new   | Rohde & Schwarz   | 830547/003    | 2018-07     | 2021-07     |
|         |               | biconicals     |                   |               |             |             |
| 2.7     | 5HC2700/12750 | High Pass      | Trilithic         | 9942012       |             |             |
|         | -1.5-KK       | Filter         |                   |               |             |             |



| Ref.No. | Device Name                         | Description                                            | Manufacturer                         | Serial Number                  | Last<br>Calibration | Calibration<br>Due |
|---------|-------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------|---------------------|--------------------|
| 2.8     | ASP 1.2/1.8-10<br>kg                | Antenna Mast                                           | Maturo GmbH                          | -                              |                     |                    |
| 2.9     |                                     | 8.80m x<br>4.60m x<br>4.05m (l x w x<br>h)             | Albatross Projects                   | P26971-647-001-<br>PRB         | 2018-06             | 2020-06            |
| 2.10    | Fluke 177                           | Digital<br>Multimeter 03<br>(Multimeter)               | Fluke Europe B.V.                    | 86670383                       | 2018-04             | 2020-04            |
| 2.11    |                                     | Broadband<br>Amplifier 18<br>GHz - 26 GHz              | Miteq                                | 849785                         |                     |                    |
| 2.12    | FSW 43                              | Spectrum<br>Analyzer                                   | Rohde & Schwarz                      | 103779                         | 2019-02             | 2021-02            |
| 2.13    | 3160-09                             |                                                        | EMCO Elektronic<br>GmbH              | 00083069                       |                     |                    |
| 2.14    |                                     | High Pass<br>Filter                                    | Wainwright                           | 09                             |                     |                    |
| 2.15    | 4HC1600/12750<br>-1.5-KK            | High Pass<br>Filter                                    | Trilithic                            | 9942011                        |                     |                    |
| 2.16    | Chroma 6404                         | AC Power<br>Source                                     | Chroma ATE INC.                      | 64040001304                    |                     |                    |
| 2.17    | JS4-00102600-<br>42-5A              | Broadband<br>Amplifier 30<br>MHz - 26 GHz              | Miteq                                | 619368                         |                     |                    |
| 2.18    | TT 1.5 WI                           | Turn Table                                             | Maturo GmbH                          | -                              |                     |                    |
| 2.19    | HL 562 Ultralog                     | Logper.<br>Antenna                                     | Rohde & Schwarz                      | 100609                         | 2019-05             | 2022-05            |
| 2.20    | 3160-10                             | Standard Gain<br>/ Pyramidal<br>Horn Antenna<br>40 GHz | EMCO Elektronic<br>GmbH              | 00086675                       |                     |                    |
| 2.21    | 5HC3500/18000<br>-1.2-KK            |                                                        | Trilithic                            | 200035008                      |                     |                    |
| 2.22    | Opus10 THI                          | ThermoHygro<br>Datalogger 12<br>(Environ)              | Lufft Mess- und<br>Regeltechnik GmbH | 12482                          | 2019-06             | 2021-06            |
| 2.23    | ESR 7                               | EMI Receiver /<br>Spectrum<br>Analyzer                 | Rohde & Schwarz                      | 101424                         | 2019-01             | 2020-01            |
| 2.24    |                                     | Broadband<br>Amplifier 30<br>MHz - 18 GHz              | Miteq                                | 896037                         |                     |                    |
| 2.25    | AS 620 P                            | Antenna mast                                           | HD GmbH                              | 620/37                         |                     |                    |
| 2.26    | Tilt device<br>Maturo<br>(Rohacell) | Antrieb TD1.5-<br>10kg                                 |                                      | TD1.5-<br>10kg/024/37907<br>09 |                     |                    |
| 2.27    |                                     | Antenna Mast                                           | Maturo GmbH                          | -                              |                     |                    |
| 2.28    |                                     |                                                        | Maturo GmbH                          | AM4.0/180/1192<br>0513         |                     |                    |
| 2.29    | HF 907                              | Double-ridged<br>horn                                  | Rohde & Schwarz                      | 102444                         | 2018-07             | 2021-07            |



| 3 | ID | FCC Conducted Base Station / Repeater |
|---|----|---------------------------------------|
|   |    | FCC cond. Test Lab, BV Nbg            |

| Ref.No. | Device Name | Description    | Manufacturer    | Serial Number | Last        | Calibration |
|---------|-------------|----------------|-----------------|---------------|-------------|-------------|
|         |             |                |                 |               | Calibration | Due         |
| 3.1     | FSV40       | Signal         | Rohde & Schwarz | 100886        | 2018-10     | 2019-10     |
|         |             | Analyzer 10 Hz |                 |               | 2019-10     | 2020-10     |
|         |             | - 40 GHz       |                 |               |             |             |
| 3.2     | SMBV100A    |                | Rohde & Schwarz | 255975        | 2017-08     | 2020-08     |
|         |             | Generator 9    |                 |               |             |             |
|         |             | kHz - 6 GHz    |                 |               |             |             |
| 3.3     | SMIQ        | Vector Signal  | Rohde & Schwarz | 831389/062    | 2018-10     | 2020-10     |
|         |             | Generator 9    |                 |               |             |             |
|         |             | kHz – 3.3 GHz  |                 |               |             |             |

The calibration interval is the time interval between "Last Calibration" and "Calibration Due" In the testing period from 2019-08-23 to 2020-01-28 for ID 7831758-0011 with SN 190729AA0005 the whole equipment was used.

In the testing period from 2020-06-26 to 2020-07-02 for ID 7831758-0001 with SN 190805AA0006 only the equipment with the ref. numbers 3.1 and 3.2 was used.



# 6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

|           |       | LISN<br>insertion<br>loss<br>ESH3- | cable<br>loss<br>(incl. 10<br>dB<br>atten- |
|-----------|-------|------------------------------------|--------------------------------------------|
| Frequency | Corr. | Z5                                 | uator)                                     |
| MHz       | dB    | dB                                 | dB                                         |
| 0.15      | 10.1  | 0.1                                | 10.0                                       |
| 5         | 10.3  | 0.1                                | 10.2                                       |
| 7         | 10.5  | 0.2                                | 10.3                                       |
| 10        | 10.5  | 0.2                                | 10.3                                       |
| 12        | 10.7  | 0.3                                | 10.4                                       |
| 14        | 10.7  | 0.3                                | 10.4                                       |
| 16        | 10.8  | 0.4                                | 10.4                                       |
| 18        | 10.9  | 0.4                                | 10.5                                       |
| 20        | 10.9  | 0.4                                | 10.5                                       |
| 22        | 11.1  | 0.5                                | 10.6                                       |
| 24        | 11.1  | 0.5                                | 10.6                                       |
| 26        | 11.2  | 0.5                                | 10.7                                       |
| 28        | 11.2  | 0.5                                | 10.7                                       |
| 30        | 11.3  | 0.5                                | 10.8                                       |

### 6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

#### Sample calculation

 $U_{LISN}$  (dB  $\mu$ V) = U (dB  $\mu$ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.



|           |          |       | cable    | cable    | cable   | cable     | distance | d <sub>Limit</sub> | dused    |
|-----------|----------|-------|----------|----------|---------|-----------|----------|--------------------|----------|
|           |          |       | loss 1   | loss 2   | loss 3  | loss 4    | corr.    | (meas.             | (meas.   |
| _         | AF       |       | (inside  | (outside | (switch | (to       | (-40 dB/ | distance           | distance |
| Frequency | HFH-Z2)  | Corr. | chamber) | chamber) | unit)   | receiver) | decade)  | (limit)            | (used)   |
| MHz       | dB (1/m) | dB    | dB       | dB       | dB      | dB        | dB       | m                  | m        |
| 0.009     | 20.50    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.01      | 20.45    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.015     | 20.37    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.02      | 20.36    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.025     | 20.38    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.03      | 20.32    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.05      | 20.35    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.08      | 20.30    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.1       | 20.20    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.2       | 20.17    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.3       | 20.14    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.49      | 20.12    | -79.6 | 0.1      | 0.1      | 0.1     | 0.1       | -80      | 300                | 3        |
| 0.490001  | 20.12    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                 | 3        |
| 0.5       | 20.11    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                 | 3        |
| 0.8       | 20.10    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                 | 3        |
| 1         | 20.09    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                 | 3        |
| 2         | 20.08    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                 | 3        |
| 3         | 20.06    | -39.6 | 0.1      | 0.1      | 0.1     | 0.1       | -40      | 30                 | 3        |
| 4         | 20.05    | -39.5 | 0.2      | 0.1      | 0.1     | 0.1       | -40      | 30                 | 3        |
| 5         | 20.05    | -39.5 | 0.2      | 0.1      | 0.1     | 0.1       | -40      | 30                 | 3        |
| 6         | 20.02    | -39.5 | 0.2      | 0.1      | 0.1     | 0.1       | -40      | 30                 | 3        |
| 8         | 19.95    | -39.5 | 0.2      | 0.1      | 0.1     | 0.1       | -40      | 30                 | 3        |
| 10        | 19.83    | -39.4 | 0.2      | 0.1      | 0.2     | 0.1       | -40      | 30                 | 3        |
| 12        | 19.71    | -39.4 | 0.2      | 0.1      | 0.2     | 0.1       | -40      | 30                 | 3        |
| 14        | 19.54    | -39.4 | 0.2      | 0.1      | 0.2     | 0.1       | -40      | 30                 | 3        |
| 16        | 19.53    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                 | 3        |
| 18        | 19.50    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                 | 3        |
| 20        | 19.57    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                 | 3        |
| 22        | 19.61    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                 | 3        |
| 24        | 19.61    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                 | 3        |
| 26        | 19.54    | -39.3 | 0.3      | 0.1      | 0.2     | 0.1       | -40      | 30                 | 3        |
| 28        | 19.46    | -39.2 | 0.3      | 0.1      | 0.3     | 0.1       | -40      | 30                 | 3        |
| 30        | 19.73    | -39.1 | 0.4      | 0.1      | 0.3     | 0.1       | -40      | 30                 | 3        |

## 6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction =  $-40 * LOG (d_{Limit}/d_{used})$ 

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values



# 6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

 $(d_{\text{Limit}} = 3 \text{ m})$ 

| Frequency | AF<br>R&S<br>HL562 | Corr. |
|-----------|--------------------|-------|
| MHz       | dB (1/m)           | dB    |
| 30        | 18.6               | 0.6   |
| 50        | 6.0                | 0.9   |
| 100       | 9.7                | 1.2   |
| 150       | 7.9                | 1.6   |
| 200       | 7.6                | 1.9   |
| 250       | 9.5                | 2.1   |
| 300       | 11.0               | 2.3   |
| 350       | 12.4               | 2.6   |
| 400       | 13.6               | 2.9   |
| 450       | 14.7               | 3.1   |
| 500       | 15.6               | 3.2   |
| 550       | 16.3               | 3.5   |
| 600       | 17.2               | 3.5   |
| 650       | 18.1               | 3.6   |
| 700       | 18.5               | 3.6   |
| 750       | 19.1               | 4.1   |
| 800       | 19.6               | 4.1   |
| 850       | 20.1               | 4.4   |
| 900       | 20.8               | 4.7   |
| 950       | 21.1               | 4.8   |
| 1000      | 21.6               | 4.9   |

| cable<br>loss 1<br>(inside<br>chamber) | cable<br>loss 2<br>(outside<br>chamber) | cable<br>loss 3<br>(switch<br>unit) | cable<br>loss 4<br>(to<br>receiver) | distance<br>corr.<br>(-20 dB/<br>decade) | d <sub>Limit</sub><br>(meas.<br>distance<br>(limit) | d <sub>used</sub><br>(meas.<br>distance<br>(used) |
|----------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------------------------|---------------------------------------------------|
| dB                                     | dB                                      | dB                                  | dB                                  | dB                                       | m                                                   | m                                                 |
| 0.29                                   | 0.04                                    | 0.23                                | 0.02                                | 0.0                                      | 3                                                   | 3                                                 |
| 0.39                                   | 0.09                                    | 0.32                                | 0.08                                | 0.0                                      | 3                                                   | 3                                                 |
| 0.56                                   | 0.14                                    | 0.47                                | 0.08                                | 0.0                                      | 3                                                   | 3                                                 |
| 0.73                                   | 0.20                                    | 0.59                                | 0.12                                | 0.0                                      | 3                                                   | 3                                                 |
| 0.84                                   | 0.21                                    | 0.70                                | 0.11                                | 0.0                                      | 3                                                   | 3                                                 |
| 0.98                                   | 0.24                                    | 0.80                                | 0.13                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.04                                   | 0.26                                    | 0.89                                | 0.15                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.18                                   | 0.31                                    | 0.96                                | 0.13                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.28                                   | 0.35                                    | 1.03                                | 0.19                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.39                                   | 0.38                                    | 1.11                                | 0.22                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.44                                   | 0.39                                    | 1.20                                | 0.19                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.55                                   | 0.46                                    | 1.24                                | 0.23                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.59                                   | 0.43                                    | 1.29                                | 0.23                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.67                                   | 0.34                                    | 1.35                                | 0.22                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.67                                   | 0.42                                    | 1.41                                | 0.15                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.87                                   | 0.54                                    | 1.46                                | 0.25                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.90                                   | 0.46                                    | 1.51                                | 0.25                                | 0.0                                      | 3                                                   | 3                                                 |
| 1.99                                   | 0.60                                    | 1.56                                | 0.27                                | 0.0                                      | 3                                                   | 3                                                 |
| 2.14                                   | 0.60                                    | 1.63                                | 0.29                                | 0.0                                      | 3                                                   | 3                                                 |
| 2.22                                   | 0.60                                    | 1.66                                | 0.33                                | 0.0                                      | 3                                                   | 3                                                 |
| 2.23                                   | 0.61                                    | 1.71                                | 0.30                                | 0.0                                      | 3                                                   | 3                                                 |

(d<sub>Limit</sub> = 10 m)

|      | ·/   |      |      |      |      |      |       |    |   |
|------|------|------|------|------|------|------|-------|----|---|
| 30   | 18.6 | -9.9 | 0.29 | 0.04 | 0.23 | 0.02 | -10.5 | 10 | 3 |
| 50   | 6.0  | -9.6 | 0.39 | 0.09 | 0.32 | 0.08 | -10.5 | 10 | 3 |
| 100  | 9.7  | -9.2 | 0.56 | 0.14 | 0.47 | 0.08 | -10.5 | 10 | 3 |
| 150  | 7.9  | -8.8 | 0.73 | 0.20 | 0.59 | 0.12 | -10.5 | 10 | 3 |
| 200  | 7.6  | -8.6 | 0.84 | 0.21 | 0.70 | 0.11 | -10.5 | 10 | 3 |
| 250  | 9.5  | -8.3 | 0.98 | 0.24 | 0.80 | 0.13 | -10.5 | 10 | 3 |
| 300  | 11.0 | -8.1 | 1.04 | 0.26 | 0.89 | 0.15 | -10.5 | 10 | 3 |
| 350  | 12.4 | -7.9 | 1.18 | 0.31 | 0.96 | 0.13 | -10.5 | 10 | 3 |
| 400  | 13.6 | -7.6 | 1.28 | 0.35 | 1.03 | 0.19 | -10.5 | 10 | 3 |
| 450  | 14.7 | -7.4 | 1.39 | 0.38 | 1.11 | 0.22 | -10.5 | 10 | 3 |
| 500  | 15.6 | -7.2 | 1.44 | 0.39 | 1.20 | 0.19 | -10.5 | 10 | 3 |
| 550  | 16.3 | -7.0 | 1.55 | 0.46 | 1.24 | 0.23 | -10.5 | 10 | 3 |
| 600  | 17.2 | -6.9 | 1.59 | 0.43 | 1.29 | 0.23 | -10.5 | 10 | 3 |
| 650  | 18.1 | -6.9 | 1.67 | 0.34 | 1.35 | 0.22 | -10.5 | 10 | 3 |
| 700  | 18.5 | -6.8 | 1.67 | 0.42 | 1.41 | 0.15 | -10.5 | 10 | 3 |
| 750  | 19.1 | -6.3 | 1.87 | 0.54 | 1.46 | 0.25 | -10.5 | 10 | 3 |
| 800  | 19.6 | -6.3 | 1.90 | 0.46 | 1.51 | 0.25 | -10.5 | 10 | 3 |
| 850  | 20.1 | -6.0 | 1.99 | 0.60 | 1.56 | 0.27 | -10.5 | 10 | 3 |
| 900  | 20.8 | -5.8 | 2.14 | 0.60 | 1.63 | 0.29 | -10.5 | 10 | 3 |
| 950  | 21.1 | -5.6 | 2.22 | 0.60 | 1.66 | 0.33 | -10.5 | 10 | 3 |
| 1000 | 21.6 | -5.6 | 2.23 | 0.61 | 1.71 | 0.30 | -10.5 | 10 | 3 |

### Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction =  $-20 * LOG (d_{Limit}/d_{used})$ 

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.



## 6.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AF       R&S         Frequency       HF907       Corr.         MHz       dB (1/m)       dB         1000       24.4       -19.4         2000       28.5       -17.4         3000       31.0       -16.1         4000       33.1       -14.7         5000       34.4       -13.7         6000       34.7       -12.7         7000       35.6       -11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AF<br>R&S         cable         loss 2         atten-<br>uator &<br>pre-amp)         cable         loss 4 (to<br>receiver)           MHz         dB (1/m)         dB         dB </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4000         33.1         -14.7           5000         34.4         -13.7           6000         34.7         -12.7           7000         35.6         -11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5000         34.4         -13.7           6000         34.7         -12.7           7000         35.6         -11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6000         34.7         -12.7         2.74         0.90         -17.83         1.47           7000         35.6         -11.0         2.82         0.86         -16.19         1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6000         34.7         -12.7         2.74         0.90         -17.83         1.47           7000         35.6         -11.0         2.82         0.86         -16.19         1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7000         35.6         -11.0         2.82         0.86         -16.19         1.46           cable         loss 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cable loss 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| loss 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| loss 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| cable (switch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| loss 1 cable cable unit, used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AF (relay loss 2 loss 3 atten- cable for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| R&S inside (inside outside uator & loss 5 (to FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Frequency HF907 Corr. chamber) chamber) pre-amp) receiver) 15.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MHz dB (1/m) dB dB dB dB dB dB dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3000 31.0 -23.4 0.47 1.87 0.53 -27.58 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4000 33.1 -23.3 0.56 2.41 0.67 -28.23 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5000         34.4         -21.7         0.61         2.78         0.86         -27.35         1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         35.6         -19.8         0.66         2.82         0.86         -25.58         1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         35.6         -19.8         0.66         2.82         0.86         -25.58         1.46           cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         35.6         -19.8         0.66         2.82         0.86         -25.58         1.46           cable           loss 1         cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         35.6         -19.8         0.66         2.82         0.86         -25.58         1.46           cable         loss 1         cable         cable         cable         cable         cable         loss 3         loss 4         loss 5         loss 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         35.6         -19.8         0.66         2.82         0.86         -25.58         1.46           cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         35.6         -19.8         0.66         2.82         0.86         -25.58         1.46           cable           AF         R&S         (relay         loss 2         loss 3         loss 4         loss 5         loss 6           Frequency         HF907         Corr.         Pass)         amp)         chamber)         receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         35.6         -19.8         0.66         2.82         0.86         -25.58         1.46           AF         Image: Constant of the second se |
| 6000         34.7         -21.2         0.58         2.74         0.90         -26.89         1.47           7000         35.6         -19.8         0.66         2.82         0.86         -25.58         1.46           AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6000         34.7         -21.2           7000         35.6         -19.8           0.66         2.82         0.86         -25.58         1.47           0.66         2.82         0.86         -25.58         1.46           AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6000         34.7         -21.2           7000         35.6         -19.8           0.66         2.82         0.86         -25.58         1.47           0.66         2.82         0.86         -25.58         1.46           AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.



|           |          |       |          | -      |          | -       |           |
|-----------|----------|-------|----------|--------|----------|---------|-----------|
|           |          |       | cable    | cable  | cable    | cable   | cable     |
|           | AF       |       | loss 1   | loss 2 | loss 3   | loss 4  | loss 5    |
|           | EMCO     |       | (inside  | (pre-  | (inside  | (switch | (to       |
| Frequency | 3160-09  | Corr. | chamber) | amp)   | chamber) | unit)   | receiver) |
| MHz       | dB (1/m) | dB    | dB       | dB     | dB       | dB      | dB        |
| 18000     | 40.2     | -23.5 | 0.72     | -35.85 | 6.20     | 2.81    | 2.65      |
| 18500     | 40.2     | -23.2 | 0.69     | -35.71 | 6.46     | 2.76    | 2.59      |
| 19000     | 40.2     | -22.0 | 0.76     | -35.44 | 6.69     | 3.15    | 2.79      |
| 19500     | 40.3     | -21.3 | 0.74     | -35.07 | 7.04     | 3.11    | 2.91      |
| 20000     | 40.3     | -20.3 | 0.72     | -34.49 | 7.30     | 3.07    | 3.05      |
| 20500     | 40.3     | -19.9 | 0.78     | -34.46 | 7.48     | 3.12    | 3.15      |
| 21000     | 40.3     | -19.1 | 0.87     | -34.07 | 7.61     | 3.20    | 3.33      |
| 21500     | 40.3     | -19.1 | 0.90     | -33.96 | 7.47     | 3.28    | 3.19      |
| 22000     | 40.3     | -18.7 | 0.89     | -33.57 | 7.34     | 3.35    | 3.28      |
| 22500     | 40.4     | -19.0 | 0.87     | -33.66 | 7.06     | 3.75    | 2.94      |
| 23000     | 40.4     | -19.5 | 0.88     | -33.75 | 6.92     | 3.77    | 2.70      |
| 23500     | 40.4     | -19.3 | 0.90     | -33.35 | 6.99     | 3.52    | 2.66      |
| 24000     | 40.4     | -19.8 | 0.88     | -33.99 | 6.88     | 3.88    | 2.58      |
| 24500     | 40.4     | -19.5 | 0.91     | -33.89 | 7.01     | 3.93    | 2.51      |
| 25000     | 40.4     | -19.3 | 0.88     | -33.00 | 6.72     | 3.96    | 2.14      |
| 25500     | 40.5     | -20.4 | 0.89     | -34.07 | 6.90     | 3.66    | 2.22      |
| 26000     | 40.5     | -21.3 | 0.86     | -35.11 | 7.02     | 3.69    | 2.28      |
| 26500     | 40.5     | -21.1 | 0.90     | -35.20 | 7.15     | 3.91    | 2.36      |

## 6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

#### Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver readingAF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.



| Frequency | AF<br>EMCO<br>3160-10 | Corr. | cable<br>loss 1<br>(inside<br>chamber) | cable<br>loss 2<br>(outside<br>chamber) | cable<br>loss 3<br>(switch<br>unit) | cable<br>loss 4<br>(to<br>receiver) | distance<br>corr.<br>(-20 dB/<br>decade) | d <sub>Limit</sub><br>(meas.<br>distance<br>(limit) | d <sub>used</sub><br>(meas.<br>distance<br>(used) |
|-----------|-----------------------|-------|----------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------------------------|---------------------------------------------------|
| GHz       | dB (1/m)              | dB    | dB                                     | dB                                      | dB                                  | dB                                  | dB                                       | m                                                   | m                                                 |
| 26.5      | 43.4                  | -11.2 | 4.4                                    | 45                                      |                                     | 45                                  | -9.6                                     | 3                                                   | 1.0                                               |
| 27.0      | 43.4                  | -11.2 | 4.4                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 28.0      | 43.4                  | -11.1 | 4.5                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 29.0      | 43.5                  | -11.0 | 4.6                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 30.0      | 43.5                  | -10.9 | 4.7                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 31.0      | 43.5                  | -10.8 | 4.7                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 32.0      | 43.5                  | -10.7 | 4.8                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 33.0      | 43.6                  | -10.7 | 4.9                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 34.0      | 43.6                  | -10.6 | 5.0                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 35.0      | 43.6                  | -10.5 | 5.1                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 36.0      | 43.6                  | -10.4 | 5.1                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 37.0      | 43.7                  | -10.3 | 5.2                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 38.0      | 43.7                  | -10.2 | 5.3                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 39.0      | 43.7                  | -10.2 | 5.4                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |
| 40.0      | 43.8                  | -10.1 | 5.5                                    |                                         |                                     |                                     | -9.6                                     | 3                                                   | 1.0                                               |

### 6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction =  $-20 \times LOG (d_{Limit}/d_{used})$ 

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.



# 7 MEASUREMENT UNCERTAINTIES

| Test Case(s)                                                                                                              | Parameter          | Uncertainty            |  |
|---------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|--|
| - Field strength of spurious radiation                                                                                    | Power              | ± 5.5 dB               |  |
| <ul> <li>Out-of-band rejection</li> <li>Occupied Bandwidth</li> <li>Input versus output spectrum</li> </ul>               | Power<br>Frequency | ± 2.9 dB<br>± 11.2 kHz |  |
| <ul> <li>Effective radiated power, mean output<br/>power and zone enhancer gain</li> <li>Peak to Average Ratio</li> </ul> | Power              | ± 2.2 dB               |  |
| <ul> <li>Out-of-band emission limits</li> <li>Conducted Spurious Emissions at<br/>Antenna Terminal</li> </ul>             | Power<br>Frequency | ± 2.2 dB<br>± 11.2 kHz |  |

# 8 PHOTO REPORT

Please see separate photo report.