RF Exposure Info / MPE Sample Calculation

Model: ION-M7P/7P/17P
 FCC-ID: XS5-M7717P

The ION optical distribution system is a cost-effective coverage solution for dense urban areas, tunnels, subway, airports, convention centers, high-rise buildings and other locations where physical structures increase path loss. It has been specifically designed to reduce zoning problems and to provide homogeneous coverage. The compact, mechanical design is specifically architected to mount inside of poles or alongside structures in such a way that it has a minimal visual impact.

The ION-M7P/7P/17P is a LTE 700 MHz MIMO, $1700 / 2100 \mathrm{MHz}$ CDMA, WCDMA, and LTE multi-operator Remote Unit. It is used in conjunction with a Master Unit in the ION optical distribution system. This system transports multiple LTE channels, and $1700 / 2100 \mathrm{MHz}$ wideband signals simultaneously, providing a cost-effective solution for distributing capacity from one or more base stations.

The ION-M7P/7P/17P transports signals on the RF layer in a very inexpensive manner. This means that multiple operators and multiple technologies are moved simultaneously from a cluster of base stations to a remote location over the same fiber.

The ION-M7P/7P/17P is available in single (SISO) or multi-channel (MIMO) configuration supporting 700 MHz , and $1700 / 2100 \mathrm{MHz}$ in parallel. It has been specifically tested and optimized for LTE, CDMA, and WCDMA signals. The ION is easily set-up and supervised via a graphical user interface (GUI). Remote units can be commissioned through the use of built-in test equipment. An autoleveling function compensates for the optical link loss making installation easy and quick. The entire system may be monitored remotely via an Andrew OMC. This platform uses SNMP protocol and is compliant to X .733 standard.

The specific device generally will be professionally installed.
Hereby the gain of the finally installed antenna(s), cable attenuation and antenna height will be defined site specific at the time of licensing with the appropriate FCC Bureau(s).

The maximum permissible exposure limit is defined in 47 CFR 1.1310 (B).
$\mathrm{S}=$ power density limit [W/m]
$\mathrm{P}=$ power [W]
$\mathrm{R}=$ distance $[\mathrm{m}]$
$S_{n}=\frac{P_{n} G_{n}}{4 \pi R_{n}{ }^{2}} \Rightarrow R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}}$ (to calculate the distance at one frequency)
If we have more bands, than we have to calculated as a percentage:
The additional of the terms have to be lower than 1.
$\frac{S_{c a l 1}}{S_{1}}+\frac{S_{c a l 2}}{S_{2}}+\frac{S_{c a l 3}}{S_{3}}+\ldots .+\frac{S_{c a l n}}{S_{n}}<1$
$\frac{\frac{P_{1} G_{1}}{4 \pi R_{1}{ }^{2}}}{S_{1}}+\frac{\frac{P_{2} G_{2}}{4 \pi R_{2}{ }^{2}}}{S_{2}}+\frac{\frac{P_{3} G_{3}}{4 \pi R_{3}{ }^{2}}}{S_{3}}+\ldots .+\frac{\frac{P_{n} G_{n}}{4 \pi R_{n}{ }^{2}}}{S_{n}}<1$

We are looking for a distance of ensures that the formula is satisfied.
$R_{1}=R_{2}=R_{3}=\ldots=R_{n}$
$\frac{P_{1} G_{1}}{4 \pi R^{2} S_{1}}+\frac{P_{2} G_{2}}{4 \pi R R^{2} S_{2}}+\frac{P_{3} G_{3}}{4 \pi R^{2} S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi R^{2} S_{n}}<1$
$\frac{P_{1} G_{1}}{4 \pi S_{1}}+\frac{P_{2} G_{2}}{4 \pi S_{2}}+\frac{P_{3} G_{3}}{4 \pi S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi S_{n}}<R^{2}$
$\sqrt{\frac{P_{1} G_{1}}{4 \pi S_{1}}+\frac{P_{2} G_{2}}{4 \pi S_{2}}+\frac{P_{3} G_{3}}{4 \pi S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi S_{n}}}<R$
$\sqrt{R_{1}{ }^{2}+R_{2}{ }^{2}+R_{3}{ }^{2}+\ldots+R_{n}{ }^{2}}<R$

What you have to do for calculate the minimum distance were the power density limit is met:

1) If you have one path, you have to put you special values in the following formula.
$R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}} \quad$ (Distance for one carrier)
Limits for General Population / Uncontrolled Exposures

Frequency Range (MHz)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
$300-1500$	$\mathrm{~S}=\mathrm{f} / 1500$
$1550-100,000$	$\mathrm{~S}=1$

2) If you have more than one path, you must add the individual terms quadratic.
$R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}}$
(Distance for individual carrier)
$\sqrt{R_{1}{ }^{2}+R_{2}{ }^{2}+R_{3}{ }^{2}+\ldots+R_{n}{ }^{2}}<R \quad$ (See previous page)

For example:

The EUT operates in the 4 frequency bands: 728-746, 746-757, 869-894 and 1850-1915 MHz. The max measured conducted output power is $43.0 \mathrm{dBm}(20 \mathrm{~W})$ at the all frequency paths.

Calculation for every path with maximum possible antenna gain and without cable loss:

Frequency [MHz]	Max Power out [dBm]	Max. possible Antenna gain, without cable loss [dBi]	Max. Distance [m]
728	43	19.15	5.1865
747	43	19.15	5.1201
2110	43	19	3.5514

The worst case would be if all bands were active:
$\sqrt{R_{1}^{2}+R_{2}{ }^{2}+R_{3}^{2}+\ldots+R_{n}^{2}}<R$
$\underline{R}_{\text {all }}>8.107 \mathrm{~m} \quad$ (see previous page for formula)

For more accurate calculation, the cable loss and actual antenna gain have to be included in the finally system.
The antenna(s) used with device must be fixed-mounted on permanent structures with a distance to any human body to comply with the RF Exposure limit.

