RF Exposure Info / MPE Sample Calculation

Model: ION-M7P/17EHP/19P
 FCC-ID: XS5-M7P17EHP/19P

The ION system transports signals on the RF layer in a very cost-effective manner enabling multiple operators to use multiple technologies and move their signals simultaneously from a cluster of base station to a number of remote locations over the same fiber.

The ION-M optical distribution system is a cost-effective coverage solution for dense urban areas, tunnels, subways, airports, convention centers, high-rise buildings and other locations where physical structures increase path loss.

The ION-M7P/17EHP/19P is specifically tested and optimized for LTE, CDMA and WCDMA signals in the $700 \mathrm{MHz}, 1900 \mathrm{MHz}$ and $1700 / 2100 \mathrm{MHz}$ bands. Furthermore it is provisioned for future modulation schemes and communication technologies.

The ION can be easily set-up and supervised from a graphical user interface (GUI). Remote units are commissioned through the use of built-in test equipment. An auto leveling function compensates for the optical link loss making installation easy and quick.

The entire system as well as complete network of systems can be managed remotely most efficiently by Commscope`s A.I.M.O.S, which includes alarm monitoring, task automation, statistics, inventory management and ION-M7P/17EHP/19P many more features. Should a sophisticated interface not be required, the Master Unit can be directly connected to the alarm interface of a base station via its contact relay.

The specific device generally will be professionally installed.
Hereby the gain of the finally installed antenna(s), cable attenuation and antenna height will be defined site specific at the time of licensing with the appropriate FCC Bureau(s).

The maximum permissible exposure limit is defined in 47 CFR 1.1310 (B).
$\mathrm{S}=$ power density limit [W/m]
$\mathrm{P}=$ power [W]
$\mathrm{R}=$ distance $[\mathrm{m}]$
$S_{n}=\frac{P_{n} G_{n}}{4 \pi R_{n}{ }^{2}} \Rightarrow R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}}$ (to calculate the distance at one frequency)
If we have more bands, than we have to calculated as a percentage:
The additional of the terms have to be lower than 1.
$\frac{S_{c a l 1}}{S_{1}}+\frac{S_{c a l 2}}{S_{2}}+\frac{S_{c a l 3}}{S_{3}}+\ldots .+\frac{S_{c a l n}}{S_{n}}<1$
$\frac{\frac{P_{1} G_{1}}{4 \pi R_{1}{ }^{2}}}{S_{1}}+\frac{\frac{P_{2} G_{2}}{4 \pi R_{2}{ }^{2}}}{S_{2}}+\frac{\frac{P_{3} G_{3}}{4 \pi R_{3}{ }^{2}}}{S_{3}}+\ldots .+\frac{\frac{P_{n} G_{n}}{4 \pi R_{n}{ }^{2}}}{S_{n}}<1$

We are looking for a distance of ensures that the formula is satisfied.
$R_{1}=R_{2}=R_{3}=\ldots=R_{n}$
$\frac{P_{1} G_{1}}{4 \pi R^{2} S_{1}}+\frac{P_{2} G_{2}}{4 \pi R^{2} S_{2}}+\frac{P_{3} G_{3}}{4 \pi R^{2} S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi R^{2} S_{n}}<1$
$\frac{P_{1} G_{1}}{4 \pi S_{1}}+\frac{P_{2} G_{2}}{4 \pi S_{2}}+\frac{P_{3} G_{3}}{4 \pi S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi S_{n}}<R^{2}$
$\sqrt{\frac{P_{1} G_{1}}{4 \pi S_{1}}+\frac{P_{2} G_{2}}{4 \pi S_{2}}+\frac{P_{3} G_{3}}{4 \pi S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi S_{n}}}<R$
$\sqrt{R_{1}{ }^{2}+R_{2}{ }^{2}+R_{3}{ }^{2}+\ldots+R_{n}{ }^{2}}<R$

What you have to do for calculate the minimum distance were the power density limit is met:

1) If you have one path, you have to put you special values in the following formula.
$R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}} \quad$ (Distance for one carrier)
Limits for General Population / Uncontrolled Exposures

Frequency Range (MHz)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
$300-1500$	$\mathrm{~S}=\mathrm{f} / 1500$
$1550-100,000$	$\mathrm{~S}=1$

2) If you have more than one path, you must add the individual terms quadratic.
$R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}}$
(Distance for individual carrier)
$\sqrt{R_{1}{ }^{2}+R_{2}{ }^{2}+R_{3}{ }^{2}+\ldots+R_{n}{ }^{2}}<R \quad$ (See previous page)

For example:

The EUT operates in the 3 frequency bands: $728 \mathrm{MHz}-757 \mathrm{MHz}, 2110 \mathrm{MHz}-2180 \mathrm{MHz}$ and $1930 \mathrm{MHz}-1995 \mathrm{MHz}$.
The measured conducted output power is $42.5 \mathrm{dBm}, 44.5 \mathrm{dBm}$ and 42.5 dBm .

Calculation for every path with maximum allowed antenna gain and without cable loss:

Frequency [MHz]	Max Power out [dBm]	Typ. antenna gain, without cable loss [dBi]	Max. Distance [m]
728	42.5	9	0.481
2110	44.5	9	0.422
1930	42.5	9	0.335

The worst case would be if all bands were active:
$\sqrt{R_{1}^{2}+R_{2}^{2}+R_{3}^{2}+\ldots+R_{n}^{2}}<R$
$\underline{R}_{\text {all }}>0.723 \mathrm{~m} \quad$ (see previous page for derivation)
For more accurate calculation, the cable loss and actual antenna gain have to be included in the finally system.
The antenna(s) used with device must be fixed-mounted on permanent structures with a distance to any human body to comply with the RF Exposure limit.

