RF Exposure Info / MPE Sample Calculation

Model: ION-M4 ENW
 FCC-ID: XS5-M4

The ION-M4 ENW is a robust, intelligent optical Remote Unit to meet designer's requirements for high reliability and dual-band capability. The ION-M4 ENW is a multioperator dual-band Remote Unit used in conjunction with a Master Unit in the ION optical distribution system.

This system transports LMR400 signals within the 400 MHz frequency range. The ION system transports signals on the RF layer in a very inexpensive manner, enabling coverage driven roll-out. The ION optical distribution system is a costefficient coverage solution for dense urban areas, tunnels, subways, railways, roadways, airports, convention centers and other locations where physical structures increase path loss.

The ION has been specifically designed to reduce zoning problems. The compact mechanical design is architected to mount alongside structures in such a way that it has a minimal visual impact.

The ION can be easily set-up and supervised by a graphical user interface (GUI). An auto leveling function compensates for the optical link loss making installation easy. The entire system can be monitored remotely by the Andrew OMC. The AndrewOMC uses SNMP protocol and is compliant to X. 733 standard. Should a sophisticated management interface not be required, the Master Unit can be directly connected to the alarm interface of a base station via alarm relay contacts.

The specific device generally will be professionally installed.
Hereby the gain of the finally installed antenna(s), cable attenuation and antenna height will be defined site specific at the time of licensing with the appropriate FCC Bureau(s).

The maximum permissible exposure limit is defined in 47 CFR 1.1310 (B).
$\mathrm{S}=$ power density limit [W/m]
$\mathrm{P}=$ power [W]
$\mathrm{R}=$ distance $[\mathrm{m}]$
$S_{n}=\frac{P_{n} G_{n}}{4 \pi R_{n}{ }^{2}}=>R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}}$ (to calculate the distance at one frequency)
If we have more bands, than we have to calculated as a percentage:
The additional of the terms have to be lower than 1.
$\frac{S_{c a l 1}}{S_{1}}+\frac{S_{\text {cal2 }}}{S_{2}}+\frac{S_{c a l 3}}{S_{3}}+\ldots .+\frac{S_{\text {caln }}}{S_{n}}<1$
$\frac{\frac{P_{1} G_{1}}{4 \pi R_{1}{ }^{2}}}{S_{1}}+\frac{\frac{P_{2} G_{2}}{4 \pi R_{2}{ }^{2}}}{S_{2}}+\frac{\frac{P_{3} G_{3}}{4 \pi R_{3}{ }^{2}}}{S_{3}}+\ldots .+\frac{\frac{P_{n} G_{n}}{4 \pi R_{n}{ }^{2}}}{S_{n}}<1$
We are looking for a distance of ensures that the formula is satisfied.
$R_{1}=R_{2}=R_{3}=\ldots=R_{n}$
$\frac{P_{1} G_{1}}{4 \pi R^{2} S_{1}}+\frac{P_{2} G_{2}}{4 \pi R^{2} S_{2}}+\frac{P_{3} G_{3}}{4 \pi R^{2} S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi R^{2} S_{n}}<1$
$\frac{P_{1} G_{1}}{4 \pi S_{1}}+\frac{P_{2} G_{2}}{4 \pi S_{2}}+\frac{P_{3} G_{3}}{4 \pi S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi S_{n}}<R^{2}$

What you have to do for calculate the minimum distance were the power density limit is met:

1) If you have one path, you have to put you special values in the following formula.
$R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}} \quad$ (Distance for one carrier)
Limits for General Population / Uncontrolled Exposures
Frequency Range (MHz) Power Density ($\mathrm{mW} / \mathrm{cm}^{2}$)

300-1500
1550-100,000

$$
S=f / 1500
$$

S $=1$
2) If you have more than one path you must add the individual terms quadratic.

$$
\begin{array}{ll}
R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}} & \text { (Distance for individual carrier) } \\
\sqrt{R_{1}{ }^{2}+R_{2}{ }^{2}+R_{3}{ }^{2}+\ldots+R_{n}{ }^{2}}<R & \text { (See previous page) }
\end{array}
$$

For example:
The EUT operates with one frequency band:

Calculation with maximum possible antenna gain and without cable loss (worst case):

		Max. possible Antenna gain, without cable loss $[\mathrm{dBi}]$	Max. Distance $[\mathrm{m}]$
Frequency $[\mathrm{MHz}]$	Max Power out $[\mathrm{dBm}]$	21	4.585
451	38		

For more accurate calculation, the cable loss and actual antenna gain have to be included in the finally system.

The antenna(s) used with device must be fixed-mounted on permanent structures with a distance to any human body to comply with the RF Exposure limit.

