

Test report 2023-0313-EMC-TR-23-0199-V02

Designation:	CAP M2 34T/37T/37T F-DC-F1 [37T]
Manufacturer:	Commscope
Serial No(s):	BGCMAD2321001
ID No.	7856326-1004 Rev: 00
FCC ID	XS5-CAPM2343737
Test Specification(s):	ANSI 63.26:2015
	FCC Rules and Regulations as listed in 47 CFR, Part 20
	and Part 27:2022-07-29
Test Plan:	"Info_Blatt_CAP-M2_34T-37T-37T_FCC" from customer.
Test Result:	Passed

Date of issue:	2023-12-08		Signature:
Version:	02	Technical	
Date of delivery:	2023-08-28	Reviewer:	
Performance date:	2023-09-06 - 2023-12-06	Report Reviewer:	

The test results relates only to the tested item. The sample has been provided by the client. Without the written consent of Burau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

 Bureau
 Veritas
 Consumer
 Products
 ServicesSchwerin

 Germany
 GmbH
 Wilhelm-H

 www.bureauveritas.de/cps
 cps-schwer

 Tel.:
 +49 (0)40 - 740 41 - 0

SSchwerin Wilhelm-Hennemann-Str. 8, 19061 Schwerin cps-schwerin@bureauveritas.com

Managing Director: Sebastian Doose / StefanHamburg Kischka Oehlecker VAT-No.: DE164793120 cps-hamb Reg.No.: Schwerin HRB 3564

anHamburg Oehleckerring 40, 22419 Hamburg cps-hamburg@bureauveritas.com Tuerkheim Businesspark A96, 86842 Tuerkheim cps-tuerkheim@bureauveritas.com

Nuremberg Thurn-und-Taxis-Str. 18, 90411 Nuremberg cps-nuernberg@bureauveritas.com

Client:	Commscope			
	Andrew Wireless System GmbH			
	Industriering 10			
	86675 Buchdorf			
	Germany			
Test laboratory:	Bureau Veritas Consumer Products Services Germany GmbH			
	Thurn-und-Taxis-Straße 18			
	D-90411 Nürnberg			
	Tel.: +49 40 74041 0			
Test location:	Bureau Veritas Consumer Products Se	rvices Germany GmbH		
	Thurn-und-Taxis-Straße 18			
	D-90411 Nürnberg			
	Laboratory accreditation no	DAkkS D-PL-12024-06-04		
	Laboratory accreditation no.	BNETZA-CAB-19/21-20		
	FCC Designation Number:	DE0023		
	FCC Test Firm Registration:	366481		

Versions management:	
V 01.00	Initial release
V 02.00	Chapter 4.7 "Frequency Stability" added with corresponding commentary; Antenna gain on page 23 corrected from 9 dBi to 15 dBi; Bandwidth measurement values corrected in the tables in chapter 4.3.3; Radiated measurements in the MIMO 4x4 constellation added as table on pages 156 and as plots from page 181 to 192; Overlapping calibration data taken into account in the tables on page 194.

The test results relate only to the tested item. The sample has been provided by the client.

Table of Contents

1	APP	LIED STANDARDS AND TEST SUMMARY	4
	1.1	CFR APPLIED STANDARDS	4
	1.2	FCC REFERENCE TABLE	5
	1.3	MEASUREMENT SUMMARY	6
2	ADN	1INISTRATIVE DATA	11
	2.1	TESTING LABORATORY	11
	2.2	APPLICANT DATA	11
	2.3	MANUFACTURER DATA	11
3	TES	T OBJECT DATA	12
	3.1	GENERAL EUT DESCRIPTION	12
	3.2	EUT MAIN COMPONENTS	13
	3.3	ANCILLARY EQUIPMENT	13
	3.4	AUXILIARY EQUIPMENT	14
	3.5	EUT SETUPS	15
	3.6	Operating Modes	16
	3.7	PRODUCT LABELLING	19
4	TES	T RESULTS	20
	4.1	EFFECTIVE RADIATED POWER, MEAN OUTPUT POWER AND ZONE ENHANCER GAIN	120
	4.2	PEAK TO AVERAGE RATIO	43
	4.3	OCCUPIED BANDWIDTH/INPUT-VERSUS-OUTPUT SPECTRUM	56
	4.4	CONDUCTED SPURIOUS EMISSIONS AT ANTENNA TERMINALS	78
	4.5	OUT-OF-BAND EMISSION LIMITS	106
	4.6	OUT-OF-BAND REJECTION	143
	4.7	FREQUENCY STABILITY	147
	4.8	FIELD STRENGTH OF SPURIOUS RADIATION	148
5	TES	T EQUIPMENT	194
	5.1	CONDUCTED EMISSIONS	194
_	5.2	RADIATED EMISSIONS	194
6	ANT	ENNA FACTORS. CABLE LOSS AND SAMPLE CALCULATIONS	195
	6.1	ANTENNA CHASE CBL 6111C (30 MHZ – 1 GHZ)	195
	6.2	ANTENNA ROHDE & SCHWARZ HL 025 (1 GHZ – 18 GHZ)	196
	6.3	ANTENNA ARA INC. MWH-1826-B (18 GHZ – 26.5 GHZ) PARTIALLY IN CONJUNCTI	.ON
	WIIH	PRE-AMPLIFIER MITEQ JS43-1800-4000: THE USE OF THE PRE-AMPLIFIER IS	407
	DEPER	ANTENNA ADA ING MINULIZGAO DI (20 CUIZ) AO CUIZI) DADITALUK IN CONJUNCTI	197
	6.4	ANTENNA ARA INC. MWH-2640-B (26 GHZ - 40 GHZ)) PARTIALLY IN CONJUNCTI	ON
		PRE-AMPLIFIER MITEQ JS43-1800-4000; THE USE OF THE PRE-AMPLIFIER IS	100
7			100
/ Q			200
٥ ۵		Accreditation certificate (for information)	200
A	nex R· /	Additional information provided by client	202

The test results relate only to the tested item. The sample has been provided by the client.

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 CFR APPLIED STANDARDS

Type of Authorization

Certification for an Industrial Signal Booster.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 20, 27, (07/29/2022 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 20, Commercial Mobiles Services

§ 20.21 Signal Boosters

Part 27; Miscellaneous Wireless Communications Services Subpart C – Technical standards

§ 27.50 – Power and duty cycle limits

§ 27.53 – Emission limits

The tests were selected and performed with reference to:

- FCC Public Notice 935210 applying "Signal Boosters Basic Certification Requirements" 935210 D02 v04r02, 2019-04-15.
- FCC Public Notice 935210 applying "Measurement guidance for industrial and nonconsumer signal booster, repeater and amplifier devices" 935210 D05 v01r04, 2020-04-03.
- FCC Public Notice 971168 applying "Measurement guidance for certification of licensed digital transmitters" 971168 D01 v03r01,2018-04-09
- ANSI C63.26: 2015

The test results relate only to the tested item. The sample has been provided by the client.

Summary Test Results:

The EUT complies with all performed tests as listed in chapter 1.3Measurement Summary/Signatures.

1.2 FCC REFERENCE TABLE

Measurement	FCC reference		
Effective radiated power, mean output power and zone enhancer gain	§ 2.1046 § 27.50 KDB 935210 D05 v01r04: 3.5		
Peak to Average Ratio	§ 27.50		
Occupied bandwidth Input-versus-output spectrum	§ 2.1049 KDB 935210 D05 v01r04: 3.4		
Conducted spurious Emission at Antenna Terminal	§ 2.1051 § 27.53 KDB 935210 D05 v01r04: 3.6		
Out-of-band emissions limits	§ 2.1051 § 27.53 KDB 935210 D05 v01r04: 3.6		
Frequency stability	§ 2.1055 § 27.54		
Field strength of spurious radiation	§ 2.1053 § 27.53		
Out-of-band rejection	KDB 935210 D05 v01r04: 3.3		
All measurements	ANSI 63.26		

Final Result

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]

Effective Radiated Power, mean output power and zone enhancer gain The measurement was performed according to ANSI C63.26, KDB 935210 D05 v01r04: 3.5

OP-Mode

Frequency Band, Direction, Input Power, Signal Type	
C-Band, segment 1, RF downlink, 0.3 dB < AGC, Wideband 1 and 2	Passed
C-Band, segment 1, RF downlink, 3 dB > AGC, Wideband 1 and 2	Passed
C-Band, segment 1, RF downlink, 0.3 dB < AGC, Narrowband	Passed
C-Band, segment 1, RF downlink, 3 dB > AGC, Narrowband	Passed
C-Band, segment 2, RF downlink, 0.3 dB < AGC, Wideband 1 and 2	Passed
C-Band, segment 2, RF downlink, 3 dB > AGC, Wideband 1 and 2	Passed
C-Band, segment 2, RF downlink, 0.3 dB < AGC, Narrowband	Passed
C-Band, segment 2, RF downlink, 3 dB > AGC, Narrowband	Passed
C-Band, segment 3, RF downlink, 0.3 dB < AGC, Wideband 1 and 2	Passed
C-Band, segment 3, RF downlink, 3 dB > AGC, Wideband 1 and 2	Passed
C-Band, segment 3, RF downlink, 0.3 dB < AGC, Narrowband	Passed
C-Band, segment 3, RF downlink, 3 dB > AGC, Narrowband	Passed

47 CFR CHAPTER I FCC PART 27 Subpart C § 27.50 [Base Stations/Repeater]

Peak to Average Ratio	
The measurement was performed according to ANSI C63.26	Final Result
OP-Mode Frequency Band, Direction, Input Power, Signal Type	Final Result
C-Band, segment 1, RF downlink, 0.3 dB < AGC, Wideband 1 and 2	Passed
C-Band, segment 1, RF downlink, 3 dB > AGC, Wideband 1 and 2	Passed
C-Band, segment 1, RF downlink, 0.3 dB < AGC, Narrowband	Passed
C-Band, segment 1, RF downlink, 3 dB > AGC, Narrowband	Passed
C-Band, segment 2, RF downlink, 0.3 dB < AGC, Wideband 1 and 2	Passed
C-Band, segment 2, RF downlink, 3 dB > AGC, Wideband 1 and 2	Passed
C-Band, segment 2, RF downlink, 0.3 dB < AGC, Narrowband	Passed
C-Band, segment 2, RF downlink, 3 dB > AGC, Narrowband	Passed
C-Band, segment 3, RF downlink, 0.3 dB < AGC, Wideband 1 and 2	Passed
C-Band, segment 3, RF downlink, 3 dB > AGC, Wideband 1 and 2	Passed
C-Band, segment 3, RF downlink, 0.3 dB < AGC, Narrowband	Passed
C-Band, segment 3, RF downlink, 3 dB > AGC, Narrowband	Passed

The test results relate only to the tested item. The sample has been provided by the client.

Passed

47 CFR CHAPTER I FCC PART 27 Subpart C § 2.1049 [Base Stations/Repeater] Occupied Bandwidth/Input-versus-output Spectrum The measurement was performed according to ANSI C63.26, KDB **Final Result** 935210 D05 v01r04: 3.4 **OP-Mode** Final Frequency Band, Direction, Input Power, Signal Type Result C-Band, segment 1, RF downlink, 0.3 dB < AGC, Wideband 1 and 2 Passed C-Band, segment 1, RF downlink, 3 dB > AGC, Wideband 1 and 2 Passed C-Band, segment 1, RF downlink, 0.3 dB < AGC, Narrowband Passed C-Band, segment 1, RF downlink, 3 dB > AGC, Narrowband Passed C-Band, segment 2, RF downlink, 0.3 dB < AGC, Wideband 1 and 2 Passed C-Band, segment 2, RF downlink, 3 dB > AGC, Wideband 1 and 2 Passed C-Band, segment 2, RF downlink, 0.3 dB < AGC, Narrowband Passed C-Band, segment 2, RF downlink, 3 dB > AGC, Narrowband Passed C-Band, segment 3, RF downlink, 0.3 dB < AGC, Wideband 1 and 2 Passed C-Band, segment 3, RF downlink, 3 dB > AGC, Wideband 1 and 2 Passed Passed

C-Band, segment 3, RF downlink, 0.3 dB < AGC, Narrowband

C-Band, segment 3, RF downlink, 3 dB > AGC, Narrowband

47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]

§ 2.1051, § 27.53

The measurement was performed according to ANSI C63.26	Final Result	
OP-Mode Frequency Band, Direction, Signal Type	Final Result	
C-Band, segment 1, RF downlink, Wideband 1 and 2	Passed	
C-Band, segment 1, RF downlink, Narrowband	Passed	
C-Band, segment 2, RF downlink, Wideband 1 and 2	Passed	
C-Band, segment 2, RF downlink, Narrowband	Passed	
C-Band, segment 3, RF downlink, Wideband 1 and 2	Passed	
C-Band, segment 3, RF downlink, Narrowband	Passed	

47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]

§ 2.1051, § 27.53

Out-of-band emission limits The measurement was performed according to ANSI C63.26, KDB 935210 D05 v01r04: 3.6

OP-Mode

Band Edge, Frequency Band, Number of signals, Direction, Input Power, Signal Type Upper, C-Band segment 1, 1, RF downlink, 0.3 dB < AGC, Wideband 1 and 2 Passed Upper, C-Band segment 1, 1, RF downlink, 3 dB > AGC, Wideband 1 and 2 Passed Upper,C-Band segment 1, 1, RF downlink, 0.3 dB < AGC, Narrowband Passed Upper, C-Band segment 1, 1, RF downlink, 3 dB > AGC, Narrowband Passed Lower, C-Band segment 1, 1, RF downlink, , 0.3 dB < AGC, Wideband 1 and 2 Passed Lower, C-Band segment 1, 1, RF downlink, 0.3 dB < AGC, Wideband 1 and 2 Passed Lower, C-Band segment 1, 1, RF downlink, 0.3 dB < AGC, Narrowband Passed Lower, C-Band segment 1, 1, RF downlink, 3 dB > AGC, Wideband 1 and 2 Passed Upper, C-Band segment 1, 2, RF downlink, 0.3 dB < AGC, Wideband Passed Upper, C-Band segment 1, 2, RF downlink, 3 dB > AGC, Wideband Passed Upper, C-Band segment 1, 2, RF downlink, 0.3 dB < AGC, Narrowband Passed Upper, C-Band segment 1, 2, RF downlink, 3 dB > AGC, Narrowband Passed Lower, C-Band segment 1, 2, RF downlink, , 0.3 dB < AGC, Wideband Passed Lower, C-Band segment 1, 2, RF downlink, 0.3 dB < AGC, Wideband Passed

Lower, C-Band segment 1, 2, RF downlink, 0.3 dB < AGC, Narrowband</th>PassedLower, C-Band segment 1, 2, RF downlink, 3 dB > AGC, WidebandPassed

The test results relate only to the tested item. The sample has been provided by the client.

OP-Mode

Band Edge, Frequency Band, Number of signals, Direction, Input Power, Signal Type	
Upper, C-Band segment 2, 1, RF downlink, 0.3 dB < AGC, Wideband 1 and 2	Passed
Upper, C-Band segment 2, 1, RF downlink, 3 dB > AGC, Wideband 1 and 2	Passed
Upper, C-Band segment 2, 1, RF downlink, 0.3 dB < AGC, Narrowband	Passed
Upper, C-Band segment 2, 1, RF downlink, 3 dB > AGC, Narrowband	Passed
Lower, C-Band segment 2, 1, RF downlink, , 0.3 dB < AGC, Wideband 1 and 2	Passed
Lower, C-Band segment 2, 1, RF downlink, 0.3 dB < AGC, Wideband 1 and 2	Passed
Lower, C-Band segment 2, 1, RF downlink, 0.3 dB < AGC, Narrowband	Passed
Lower, C-Band segment 2, 1, RF downlink, 3 dB > AGC, Wideband 1 and 2	Passed
Upper, C-Band segment 2, 2, RF downlink, 0.3 dB < AGC, Wideband	Passed
Upper, C-Band segment 2, 2, RF downlink, 3 dB > AGC, Wideband	Passed
Upper, C-Band segment 2, 2, RF downlink, 0.3 dB < AGC, Narrowband	Passed
Upper, C-Band segment 2, 2, RF downlink, 3 dB > AGC, Narrowband	Passed
Lower, C-Band segment 2, 2, RF downlink, , 0.3 dB < AGC, Wideband	Passed
Lower, C-Band segment 2, 2, RF downlink, 0.3 dB < AGC, Wideband	Passed
Lower, C-Band segment 2, 2, RF downlink, 0.3 dB < AGC, Narrowband	Passed
Lower, C-Band segment 2, 2, RF downlink, 3 dB > AGC, Wideband	Passed

OP-Mode

Band Edge, Frequency Band, Number of signals, Direction, Input Power, Signal Type

Upper, C-Band segment 3, 1, RF downlink, 0.3 dB < AGC, Wideband 1 and 2	Passed
Upper, C-Band segment 3, 1, RF downlink, 3 dB > AGC, Wideband 1 and 2	Passed
Upper, C-Band segment 3, 1, RF downlink, 0.3 dB < AGC, Narrowband	Passed
Upper, C-Band segment 3, 1, RF downlink, 3 dB > AGC, Narrowband	Passed
Lower, C-Band segment 3, 1, RF downlink, , 0.3 dB < AGC, Wideband 1 and 2	Passed
Lower, C-Band segment 3, 1, RF downlink, 0.3 dB < AGC, Wideband 1 and 2	Passed
Lower, C-Band segment 3, 1, RF downlink, 0.3 dB < AGC, Narrowband	Passed
Lower, C-Band segment 3, 1, RF downlink, 3 dB > AGC, Wideband 1 and 2	Passed
Upper, C-Band segment 3, 2, RF downlink, 0.3 dB < AGC, Wideband	Passed
Upper, C-Band segment 3, 2, RF downlink, 3 dB > AGC, Wideband	Passed
Upper, C-Band segment 3, 2, RF downlink, 0.3 dB < AGC, Narrowband	Passed
Upper, C-Band segment 3, 2, RF downlink, 3 dB > AGC, Narrowband	Passed
Lower, C-Band segment 3, 2, RF downlink, , 0.3 dB < AGC, Wideband	Passed
Lower, C-Band segment 3, 2, RF downlink, 0.3 dB < AGC, Wideband	Passed
Lower, C-Band segment 3, 2, RF downlink, 0.3 dB < AGC, Narrowband	Passed
Lower, C-Band segment 3, 2, RF downlink, 3 dB > AGC, Wideband	Passed

The test results relate only to the tested item. The sample has been provided by the client.

Passed

47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]	KDB 935210 D	005 v01r04: 3.3
Out-of-band rejection		
The measurement was performed according to ANSI C6.	3.26; KDB	Final Result
935210 D05 v01r04: 3.3		
OP-Mode		
Frequency Band, Direction		
C-Band, segment 1, RF downlink		Passed
C-Band, segment 2, RF downlink		Passed
C-Band, segment 3, RF downlink		Passed
47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]	§ 2.1053, § 27	7.53
Field strength of spurious radiation		
The measurement was performed according to ANSI C6	3.26	Final Result
OP-Mode		
Frequency Band, Test Frequency, Direction		
C-Band, segment 1, RF downlink		Passed
C-Band, segment 2, RF downlink		Passed

C-Band, segment 3, RF downlink

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Bureau Veritas Consumer Products Services Germany GmbH Thurn-und-Taxis-Straße 18 D-90411 Nürnberg Tel.: +49 40 74041 0 Fax: +49 40 74041-2755

2.2 APPLICANT DATA

Company Name:	Commscope Andrew Wireless Systems GmbH
Address:	Industriering 10 86675 Buchdorf Germany

Contact Person:

Mr. JiriCecka

2.3 MANUFACTURER DATA

Company Name:

Please see applicant data.

Address:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Cellular Repeater
Product name	Cellular Repeater
Туре	CAP M2 34T/37T/37T
Declared EUT data by	the supplier
General Product Description	The EUT is an industrial signal booster supporting the following: C-Band (3700 MHz – 3980 MHz) with three segments
	Segment 1: 3700 MHz - 3800 MHz
	Segment 2: 3790 MHz - 3890 MHz
	Segment 3: 3880 MHz – 3980 MHz
	A RF operation is only supported for the downlink.
Booster Type	Industrial Signal Booster
Voltage Type	DC
Voltage Level	48 V nominal
Maximum Output Donor Port [Uplink]	-
Maximum Output Server Port [Downlink]	All segments: 35 dBm
Maximum Gain [Uplink]	-
Maximum Gain [Downlink]	All segments: 40dB

The main components of the EUT are listed and described in chapter 3.2EUT Main components.

The test results relate only to the tested item. The sample has been provided by the client.

3.2 EUT MAIN COMPONENTS

Sample Parameter	Value
Serial Number	BGCMAD2321001
HW Version	7856326-1004 Rev.: 00
SW Version	V5.0.0.170
Comment	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details(Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type, S/N)	Description	
A111/1	Commscope, ION-E PSU Shelf AC, DM77521	Power supply rack	
AUXI	GE Power Electronisc Inc., CAR1212FPBC-Z, EC84946	Power plug-in module	
	Commscope, ION-E WCS-2, SZAEAJ1744A0010	Module rack	
	Commscope, ION-E OPT, SZBEAD1951A0125	Optical plug-in module	
AUX2	Commscope, ION-E SUI, SZBEAC1934A0018	Interface card plug-in module	
	Commscope, RFD HB, SZBEAQ2140A0014	RF card plug-in module	
	Commscope, RFD HB, SZBEAQ2224A0021	RF card plug-in module	

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
	,	Setup for all tests

3.6 Operating Modes

This chapter describes the operating modes of the EUT used for testing.

3.6.1 TEST CHANNELS

		Lower Frequency Band Edge	Upper Frequency Band Edge	Center Frequency	
Segment of C-Band	Direction	[MHz]	[MHz]	[MHz]	Port
1 / Iow	Downlink	3700.00	3800.00	3750.00	Donor
2 / mid	Downlink	3790.00	3890.00	3840.00	Donor
3 / high	Downlink	3880.00	3980.00	3930.00	Donor

3.6.2 DEFINITION OF USED FREQUENCY BANDS

Narrowband: representation by a GSM signal Wideband 1: representation by an AWGN signal with 4.1 MHz Wideband 2: representation by an AWGN signal with 98.3 MHz

3.6.3 AUTOMATIC GAIN CONTROL LEVELS

AGC Leve	els						
Segment of C-Band	Direction	Signal Type	AGC Start Pin [dBm]	AGC Start Pin -0.3 dB [dBm]	AGC Start Pin +3 dB [dBm]	Frequency [MHz]	Frequency
1	downlink	Narrowband	-5.0	-5.3	-2.0	3752.00	
2	downlink	Narrowband	-6.2	-6.5	-3.2	3842.00	
3	downlink	Narrowband	-4.2	-4.5	-1.2	3931.00	
1	downlink	Wideband 1	-4.8	-5.1	-1.8	3750.00	Mid (all AWGN)
2	downlink	Wideband 1	-5.6	-5.9	-2.6	3840.00	also see chanter
3	downlink	Wideband 1	-3.8	-4.1	-0.8	3930.00	3.5.4
1	downlink	Wideband 2	-5.4	-5.7	-2.4	3750.00	
2	downlink	Wideband 2	-4.8	-5.1	-1.8	3840.00	
3	downlink	Wideband 2	-5.0	-5.3	-2.0	3930.00	
1	downlink	Narrowband	-6.0	-6.3	-3.0	3700.20	
2	downlink	Narrowband	-6.2	-6.5	-3.2	3790.20	
3	downlink	Narrowband	-3.8	-4.1	-0.8	3880.20	Low
1	downlink	Wideband 1	-6.0	-6.3	-3.0	3702.50	LOW
2	downlink	Wideband 1	-6.0	-6.3	-3.0	3792.50	
3	downlink	Wideband 1	-5.0	-5.3	-2.0	3882.50	
1	downlink	Narrowband	-4.4	-4.7	-1.4	3799.80	
2	downlink	Narrowband	-5.0	-5.3	-2.0	3889.80	
3	downlink	Narrowband	-4.2	-4.5	-1.2	3979.80	Lliab
1	downlink	Wideband 1	-5.4	-5.7	-2.4	3797.50	підп
2	downlink	Wideband 1	-5.8	-6.1	-2.8	3887.50	
3	downlink	Wideband 1	-4.8	-5.1	-1.8	3977.50	
1	downlink	Narrowband	-5.6	-5.9	-2.6	3712.80	
2	downlink	Narrowband	-5.6	-5.9	-2.6	3887.00	
3	downlink	Narrowband	-5.0	-5.3	-2.0	3886.70	Max Dowor
1	downlink	Wideband 1	-6.2	-6.5	-3.2	3712.80	Max.Power
2	downlink	Wideband 1	-6.4	-6.7	-3.4	3887.00	
3	downlink	Wideband 1	-5.2	-5.5	-2.2	3886.70	

The test results relate only to the tested item. The sample has been provided by the client.

3.6.4 REMARKS TO THE MEASUREMENTS

Cause of an inappropriate control mode in the transmission of the narrowband signal (GSM signal) at f_{mid} , f_{mid} is increased by 1 MHz. Hereby the abbreviations are:

f_{mid} for wideband signals (AWGN signals) f_{mid+1} for narrowband signals (GSM signals)

In the real use of the repeater narrowband signals aren't used.

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 EFFECTIVE RADIATED POWER, MEAN OUTPUT POWER AND ZONE ENHANCER GAIN

Standard FCC Part 27, §27.50

The test was performed according to: ANSI C63.26, KDB KDB 935210 D05 v01r04: 3.5

Test date: 2023-09-06 - 2023-11-14

Environmental conditions: 23 ° C ± 5 K; 40 % r. F. ± 20 % r. F.

Test engineer: Thomas Hufnagel

4.1.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster - Test Setup; RF Output Power / Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

The test results relate only to the tested item. The sample has been provided by the client.

4.1.2 TEST REQUIREMENTS/LIMITS

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§ 27.50

- (j) The following power requirements apply to stations transmitting in the 3700-3980 MHz band:
 - (1) The power of each fixed or base station transmitting in the 3700-3980 MHz band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to an equivalent isotropically radiated power (EIRP) of 3280 Watts/MHz. This limit applies to the aggregate power of all antenna elements in any given sector of a base station.
 - (2) The power of each fixed or base station transmitting in the 3700-3980 MHz band and situated in any geographic location other than that described in paragraph (j)(1) of this section is limited to an EIRP of 1640 Watts/MHz. This limit applies to the aggregate power of all antenna elements in any given sector of a base station.
 - (3) Mobile and portable stations are limited to 1 Watt EIRP. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.
 - (4) Equipment employed must be authorized in accordance with the provisions of § 27.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (j)(5) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.
 - (5) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, and any other relevant factors, so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

The test results relate only to the tested item. The sample has been provided by the client.

4.1.3 TEST PROTOCOL

C-Band, seg	ment 1, dow						
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	Maximum Average Output Power [dBm]	Limit Average Output Power [dBm]	Margin to Limit [dB]	Gain [dB]
Wideband 1	0.3 dB < AGC	3712.80	-6.08	33.98	62.1	28.1	40.1
Wideband 1	3 dB > AGC	3712.80	-2.89	34.00	62.1	28.1	36.9
Narrowband	0.3 dB < AGC	3712.80	-5.35	33.78	62.1	28.3	39.1
Narrowband	3 dB > AGC	3712.80	-1.97	33.90	62.1	28.2	35.9
Wideband 2	0.3 dB < AGC	3750.00	-5.21	34.02	62.1	28.1	39.2
Wideband 2	3 dB > AGC	3750.00	-2.04	34.01	62.1	28.1	36.1

C-Band, seg	ment 2, dow						
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	Maximum Average Output Power [dBm]	Limit Average Output Power [dBm]	Margin to Limit [dB]	Gain [dB]
Wideband 1	0.3 dB < AGC	3887.00	-6.40	34.60	62.1	27.5	41.0
Wideband 1	3 dB > AGC	3887.00	-3.07	34.62	62.1	27.5	37.7
Narrowband	0.3 dB < AGC	3887.00	-5.50	34.78	62.1	27.3	40.3
Narrowband	3 dB > AGC	3887.00	-2.08	34.63	62.1	27.5	36.7
Wideband 2	0.3 dB < AGC	3840.00	-5.00	34.17	62.1	27.9	39.2
Wideband 2	3 dB > AGC	3840.00	-1.86	34.21	62.1	27.9	36.1

C-Band, seg	ment 3, dow						
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	Maximum Average Output Power [dBm]	Limit Average Output Power [dBm]	Margin to Limit [dB]	Gain [dB]
Wideband 1	0.3 dB < AGC	3886.70	-5.26	33.06	62.1	29.0	38.3
Wideband 1	3 dB > AGC	3886.70	-2.12	33.14	62.1	29.0	35.3
Narrowband	0.3 dB < AGC	3886.70	-4.95	33.11	62.1	29.0	38.1
Narrowband	3 dB > AGC	3886.70	-1.59	33.13	62.1	29.0	34.7
Wideband 2	0.3 dB < AGC	3930.00	-5.19	32.89	62.1	29.2	38.1
Wideband 2	3 dB > AGC	3930.00	-2.00	32.82	62.1	29.3	34.8

Remark: Please see next sub-clause for the measurement plots.

The test results relate only to the tested item. The sample has been provided by the client.

Maximum output power at the worst case consideration

The highest power level in the tables above is $p_{highest} = 34.8$ dBm at the channel which has the most output power of all channels.

Hereby at an antenna gain of $G_{dB} = 15$ dBi the highest effective radiated output power EIRP $p_{EIRP 1CH}$ of one channel is:

 $p_{\text{EIRP 1CH}} = p_{\text{highest}} + G_{\text{dB}}$

This results in:

 $p_{EIRP \ 1CH} = 34.8 \ dBm + 15 \ dB = 49.8 \ dBm$

The eqivalent power P is according the given formula:

 $P_{EIRP 1CH} =$

$$P EIRP 1CH [W] = 10EXP \quad \left(p EIRP 1CH [dBm] - 10\right) * 0.001 [W]$$

This results in:

P EIRP 1CH [W] = 10EXP (49.8 [dBm] - 10) * 0.001 [W] = 95.5 W

Supposed all four antenna ports are working together in MIMO operation the worst case of the highest output power $p_{EIRP \ 4CH}$ is:

 $p_{EIRP 4CH} = 4 * p_{EIRP1CH}$

This results in:

 $p_{EIRP 4CH} = 4 * 95.5 W = 382 W$

Final result of this consideration:

 $p_{EIRP 4CH}$ = 382 W <1640 W, hereby 1640 W is the highest allowed limit in this band.

The DUT doesn't exceed the limit.

The test results relate only to the tested item. The sample has been provided by the client.

4.1.4 MEASUREMENT PLOT

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0;Mod: AWGN; Input Power 0.3 dB < AGC

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0;Mod: AWGN; Output Power 0.3 dB < AGC

3.5.3 Power AWGN Out -0.3 3.71280G

The test results relate only to the tested item. The sample has been provided by the client.

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0;Mod: AWGN; Input Power 3 dB > AGC

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0;Mod: AWGN; Output Power 3 dB > AGC

3.5.3 Power AWGN Out +3 3.71280G

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0;Mod: GSM; Input Power 0.3 dB < AGC

3.5.3 Power GSM In-0.3 3.71280G

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0;Mod: GSM; Output Power 0.3 dB < AGC

3.5.3 Power GSM Out -0.3 3.71280G

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0;Mod: GSM; Input Power 3 dB > AGC

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0;Mod: GSM; Output Power 3 dB > AGC

3.5.3 Power GSM Out +3 3.71280G

Band: Band C low A2; Frequency: 3.7500 GHz; Band Edge: mid; Mod: AWGN100; Input Power 0.3 dB < AGC

3.5.3 Power AWGN100 In-0.3 3.75000G

Band: Band C low A2; Frequency: 3.7500 GHz; Band Edge: mid; Mod: AWGN100; Output Power 0.3 dB < AGC

3.5.3 Power AWGN100-0.3 3.75000G

Band: Band C low A2; Frequency: 3.7500 GHz; Band Edge: mid; Mod: AWGN100; Input Power 3 dB > AGC

Band: Band C low A2; Frequency: 3.7500 GHz; Band Edge: mid; Mod: AWGN100; Output Power 3 dB > AGC

3.5.3 Power AWGN100+3 3.75000G

3.5.3 Power AWGN In-0.3 3.88700G

Band: Band C mid A2; Frequency: 3.8870 GHz; Band Edge: f0; Mod: AWGN; Output Power 0.3 dB < AGC

3.5.3 Power AWGN Out -0.3 3.88700G

Band: Band C mid A2; Frequency: 3.8870 GHz; Band Edge: f0; Mod: AWGN; Input Power 3 dB > AGC

Band: Band C mid A2; Frequency: 3.8870 GHz; Band Edge: f0; Mod: AWGN; Output Power 3 dB > AGC

3.5.3 Power AWGN Out +3 3.88700G

Band: Band C mid A2; Frequency: 3.8870 GHz; Band Edge: f0; Mod: GSM; Input Power 0.3 dB < AGC

Band: Band C mid A2; Frequency: 3.8870 GHz; Band Edge: f0; Mod: GSM; Output Power 0.3 dB < AGC

3.5.3 Power GSM Out -0.3 3.88700G

Band: Band C mid A2; Frequency: 3.8870 GHz; Band Edge: f0; Mod: GSM; Input Power 3 dB > AGC

Band: Band C mid A2; Frequency: 3.8870 GHz; Band Edge: f0; Mod: GSM; Output Power 3 dB > AGC

3.5.3 Power GSM Out +3 3.88700G

Band: Band C mid A2; Frequency: 3.8400 GHz; Band Edge: mid; Mod: AWGN100; Input Power 0.3 dB < AGC

Band: Band C mid A2; Frequency: 3.8400 GHz; Band Edge: mid; Mod: AWGN100; Output Power 0.3 dB < AGC

3.5.3 Power AWGN100-0.3 3.84000G

Band: Band C mid A2; Frequency: 3.8400 GHz; Band Edge: mid; Mod: AWGN100; Input Power 3 dB > AGC

Band: Band C mid A2; Frequency: 3.8400 GHz; Band Edge: mid; Mod: AWGN100; Output Power 3 dB > AGC

3.5.3 Power AWGN100+3 3.84000G

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: AWGN; Input Power 0.3 dB < AGC

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: AWGN; Output Power 0.3 dB < AGC

3.5.3 Power AWGN Out -0.3 3.88670G

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: AWGN; Input Power 3 dB > AGC

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: AWGN; Output Power 3 dB > AGC

3.5.3 Power AWGN Out +3 3.88670G

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: GSM; Input Power 0.3 dB < AGC

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: GSM; Output Power 0.3 dB < AGC

3.5.3 Power GSM Out -0.3 3.88670G

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: GSM; Input Power 3 dB > AGC

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: GSM; Output Power 3 dB > AGC

3.5.3 Power GSM Out +3 3.88670G

Band: Band C high A2; Frequency: 3.9300 GHz; Band Edge: mid; Mod: AWGN100; Input Power 0.3 dB < AGC

Band: Band C high A2; Frequency: 3.9300 GHz; Band Edge: mid; Mod: AWGN100; Output Power 0.3 dB < AGC

3.5.3 Power AWGN100-0.3 3.93000G

The test results relate only to the tested item. The sample has been provided by the client. Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

2023-0313-EMC-TR-23-0199-V02

Band: Band C high A2; Frequency: 3.9300 GHz; Band Edge: mid; Mod: AWGN100; Input Power 3 dB > AGC

Band: Band C high A2; Frequency: 3.9300 GHz; Band Edge: mid; Mod: AWGN100; Output Power 3 dB > AGC

3.5.3 Power AWGN100+3 3.93000G

4.1.5 TEST EQUIPMENT USED

- Conducted

4.2 PEAK TO AVERAGE RATIO

Standard FCC Part 27, §27.50

The test was performed according to: ANSI C63.26

Test date: 2023-09-06 - 2023-11-14

Environmental conditions: 23 ° C ± 5 K; 40 % r. F. ± 20 % r. F.

Test engineer: Thomas Hufnagel

4.2.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster - Test Setup; RF Output Power / Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

The test results relate only to the tested item. The sample has been provided by the client.

4.2.2 TEST REQUIREMENTS/LIMITS

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§ 27.50

- (j) The following power requirements apply to stations transmitting in the 3700-3980 MHz band:
 - (4) Equipment employed must be authorized in accordance with the provisions of § 27.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (j)(5) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

4.2.3 TEST PROTOCOL

C-Band, seg						
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	PAPR [dB]	Limit PAPR [dB]	Margin to Limit [dB]
Wideband 1	0.3 dB < AGC	3712.80	-6.08	8.43	13.0	4.6
Wideband 1	3 dB > AGC	3712.80	-2.89	8.41	13.0	4.6
Narrowband	0.3 dB < AGC	3712.80	-5.35	0.14	13.0	12.9
Narrowband	3 dB > AGC	3712.80	-1.97	0.17	13.0	12.8
Wideband 2	0.3 dB < AGC	3750.00	-5.21	8.46	13.0	4.5
Wideband 2	3 dB > AGC	3750.00	-2.04	8.46	13.0	4.5

C-Band. segment 2. downlink						
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	PAPR [dB]	Limit PAPR [dB]	Margin to Limit [dB]
Wideband 1	0.3 dB < AGC	3887.00	-6.40	8.46	13.0	4.5
Wideband 1	3 dB > AGC	3887.00	-3.07	8.43	13.0	4.6
Narrowband	0.3 dB < AGC	3887.00	-5.50	0.14	13.0	12.9
Narrowband	3 dB > AGC	3887.00	-2.08	0.20	13.0	12.8
Wideband 2	0.3 dB < AGC	3840.00	-5.00	8.46	13.0	4.5
Wideband 2	3 dB > AGC	3840.00	-1.86	8.46	13.0	4.5

C-Band. segment 3. downlink						
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	PAPR [dB]	Limit PAPR [dB]	Margin to Limit [dB]
Wideband 1	0.3 dB < AGC	3886.70	-5.26	8.43	13.0	4.6
Wideband 1	3 dB > AGC	3886.70	-2.12	8.41	13.0	4.6
Narrowband	0.3 dB < AGC	3886.70	-4.95	0.14	13.0	12.9
Narrowband	3 dB > AGC	3886.70	-1.59	0.17	13.0	12.8
Wideband 2	0.3 dB < AGC	3930.00	-5.19	8.52	13.0	4.5
Wideband 2	3 dB > AGC	3930.00	-2.00	8.46	13.0	4.5

Remark: Please see next sub-clause for the measurement plot.

The test results relate only to the tested item. The sample has been provided by the client.

4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE. "WORST CASE")

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0; Mod: AWGN; PAPR 0.3 dB < AGC

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0; Mod: AWGN; PAPR 3 dB > AGC

^{4.0} PAPR AWGN Out +3 3.713G

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0; Mod: GSM; PAPR 0.3 dB < AGC

Band: Band C low A2; Frequency: 3.7128 GHz; Band Edge: f0; Mod: GSM; PAPR 3 dB > AGC

4.0 PAPR GSM Out +3 3.713G

Band: Band C low A2; Frequency: 3.7500 GHz; Band Edge: mid; Mod: AWGN100; PAPR 0.3 dB < AGC

Band: Band C low A2; Frequency: 3.7500 GHz; Band Edge: mid; Mod: AWGN100; PAPR 3 dB > AGC

4.0 PAPR AWGN100+3 3.750G

The test results relate only to the tested item. The sample has been provided by the client.

Band: Band C mid A2; Frequency: 3.8870 GHz; Band Edge: f0; Mod: AWGN; PAPR 3 dB > AGC

4.0 PAPR AWGN Out +3 3.887G

Band: Band C mid A2; Frequency: 3.8870 GHz; Band Edge: f0; Mod: GSM; PAPR 3 dB > AGC

4.0 PAPR GSM Out +3 3.887G

The test results relate only to the tested item. The sample has been provided by the client.

Band: Band C mid A2; Frequency: 3.8400 GHz; Band Edge: mid; Mod: AWGN100; PAPR 0.3 dB < AGC

Band: Band C mid A2; Frequency: 3.8400 GHz; Band Edge: mid; Mod: AWGN100; PAPR 3 dB > AGC

The test results relate only to the tested item. The sample has been provided by the client. Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

2023-0313-EMC-TR-23-0199-V02

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: AWGN; PAPR 0.3 dB < AGC

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: AWGN; PAPR 3 dB > AGC

4.0 PAPR AWGN Out +3 3.887G

Band: Band C high A2; Frequency: 3.8867 GHz; Band Edge: f0; Mod: GSM; PAPR 3 dB > AGC

4.0 PAPR GSM Out +3 3.887G