

Test report 2023-0314-EMC-TR-23-0223-V01

Designation:	CAP M2 17E/19/23/25T [WCS] F-AC-F1
Manufacturer:	Commscope
Serial No(s):	FICMBA2338001
ID No.	7856326-1010 Rev: 00
FCC ID	XS5-CAPM217192325
Test Specification(s):	ANSI 63.26:2015
	FCC Rules and Regulations as listed in 47 CFR, Part 20 and Part 27:2023-10-13
	"Infoblatt_für_CAP M2 17E_19_21_25T_ID7856326-1010 " from
Test Plan:	customer.

Date of issue:	2024-01-31		Signature:
Version:	01	Technical	
Date of receipt EUT:	2023-10-13	Reviewer:	
Performance date:	2023-11-20 to 2023-12-14	Report Reviewer:	

BNetzA-CAB-19/21-20

The test results relates only to the tested item. The sample has been provided by the client.

Without the written consent of Burau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

Bureau Veritas Consumer Products Services Germany GmbH www.bureauveritas.de/cps

Phone: +49 (0)40 - 740 41 - 0

Schwerin Wilhelm-Hennemann-Str. 8, 19061 Schwerin cps-schwerin@de.bureauveritas.com

Managing Director: Sebastian Doose/Stefan Kischka

Reg.No.: Schwerin HRB 3564

Hamburg Oehleckerring 40, 22419 Hamburg cps-hamburg@de.bureauveritas.com

Tuerkheim Businesspark A96, 86842 Tuerkheim cps-tuerkheim@de.bureauveritas.com

Nuremberg Thurn-und-Taxis-Str. 18, 90411 Nuremberg cps-nuernberg@de.bureauveritas.com

Client:	Commscope
	Andrew Wireless System GmbH
	Industriering 10
	86675 Buchdorf
	Germany

Test laboratory:	Bureau Veritas Consumer Products Services Germany GmbH
	Thurn-und-Taxis-Straße 18
	D-90411 Nürnberg
	Tel.: +49 40 74041 0
Test location:	Bureau Veritas Consumer Products Services Germany GmbH

Test location:Bureau Veritas Consumer Products Services Germany GmbHThurn-und-Taxis-Straße 18D-90411 Nürnberg

Laboratory accreditation no:

DAkkS D-PL-12024-06-04

BNETZA-CAB-19/21-20

FCC Designation Number:DE0023FCC Test Firm Registration:366481

Versions management:

V 01.00

Initial release

Table of Contents

1	APF	PLIED STANDARDS AND TEST SUMMARY	4
	1.1	CFR APPLIED STANDARDS	4
	1.2	FCC REFERENCE TABLE	5
	1.3	MEASUREMENT SUMMARY/SIGNATURES	6
2	ADI	MINISTRATIVE DATA	10
	2.1	TESTING LABORATORY	10
	2.2	APPLICANT DATA	
	2.3	MANUFACTURER DATA	
3	TES	ST OBJECT DATA	
	3.1	GENERAL EUT DESCRIPTION	
	3.2	EUT MAIN COMPONENTS	12
	3.3	ANCILLARY EQUIPMENT	12
	3.4	AUXILIARY EQUIPMENT	
	3.5	EUT SETUPS	
	3.6	OPERATING MODES	
	3.7	PRODUCT LABELLING	
4		ST RESULTS	
		EFFECTIVE RADIATED POWER, MEAN OUTPUT POWER AND ZONE ENHANCE	R
	GAIN		
	4.2	PEAK TO AVERAGE RATIO	
	4.3	OCCUPIED BANDWIDTH/INPUT-VERSUS-OUTPUT SPECTRUM	
	4.4	CONDUCTED SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
	4.5	OUT-OF-BAND EMISSION LIMITS	
	4.6	OUT-OF-BAND REJECTION	
	4.7	FREQUENCY STABILITY	
-	4.8	FIELD STRENGTH OF SPURIOUS RADIATION	
5			
	5.1 5.2	CONDUCTED EMISSIONS	
6		RADIATED EMISSIONS TENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS	
0	6.1	ANTENNA CHASE CBL 6111C (30 MHZ – 1 GHZ)	
	6.2	ANTENNA CHASE CBE OTTIC (SO MIZ = 1 GHZ) ANTENNA ROHDE & SCHWARZ HL 025 (1 GHZ – 18 GHZ)	
	6.3	ANTENNA ARA INC. MWH-1826-B (18 GHZ – 26.5 GHZ) PARTIALLY IN	102
		UNCTION WITH PRE-AMPLIFIER MITEQ JS43-1800-4000: THE USE OF THE	
		AMPLIFIER IS DEPENDENT FROM THE FIELD STRENGTH	103
7		ASUREMENT UNCERTAINTIES	
8		DTO REPORT	
-		X A: ACCREDITATION CERTIFICATE (FOR INFORMATION)	
		X B: ADDITIONAL INFORMATION PROVIDED BY CLIENT	

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 CFR APPLIED STANDARDS

Type of Authorization

Certification for an Industrial Signal Booster.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 20, 22 and 27. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 20, Commercial Mobiles Services

§ 20.21 Signal Boosters

Part 27; Miscellaneous Wireless Communications Services Subpart C – Technical standards

- § 27.50 Power and antenna height limits
- § 27.54 Frequency stability
- § 27.53 Emission

The tests were selected and performed with reference to:

- FCC Public Notice 935210 applying "Signal Boosters Basic Certification Requirements" 935210 D02, 2019-15-04.
- FCC Public Notice 935210 applying "Measurement guidance for industrial and nonconsumer signal booster, repeater and amplifier devices"
- 935210 D05, 2019-04-03.
- FCC Public Notice 971168 applying "Measurement guidance for certification of licensed digital transmitters" 971168 D01, 2019-04-09.
- ANSI C63.26: 2015

Summary Test Results:

The EUT complies with all performed tests as listed in chapter 1.3 Measurement Summary/Signatures.

1.2 FCC REFERENCE TABLE

Measurement	FCC reference
Effective radiated power, mean output power and zone enhancer gain	§ 2.1046 § 27.50 KDB 935210 D05 v01r04: 3.5
Peak to Average Ratio	§ 27.50
Occupied bandwidth Input-versus-output spectrum	§ 2.1049 KDB 935210 D05 v01r04: 3.4
Conducted spurious Emission at Antenna Terminal	§ 2.1051 § 27.53 KDB 935210 D05 v01r04: 3.6
Out-of-band emissions limits	§ 2.1051 § 27.53 KDB 935210 D05 v01r04: 3.6
Frequency stability	§ 2.1055 § 27.54
Field strength of spurious radiation	§ 2.1053 § 27.53
Out-of-band rejection	KDB 935210 D05 v01r04: 3.3
All measurements	ANSI 63.26

1.3 MEASUREMENT SUMMARY/SIGNATURES

WCS 2300, RF downlink, 3 dB > AGC, Narrowband

WCS 2300, RF downlink, 0.3 dB < AGC, Wideband 5G

WCS 2300, RF downlink, 3 dB > AGC, Wideband 5G

47 CFR CHAPTER I FCC PART 27 Subpart C [Base	§ 2.1046, § 27.50)
Stations/Repeater]		
Effective Radiated Power, mean output power and zone The measurement was performed according to ANSI C6 935210 D05 v01r04: 3.5		Final Result
OP-Mode Frequency Band, Direction, Input Power, Signal Type WCS 2300, RF downlink, 0.3 dB < AGC, Wideband WCS 2300, RF downlink, 3 dB > AGC, Wideband WCS 2300, RF downlink, 0.3 dB < AGC, Narrowband WCS 2300, RF downlink, 3 dB > AGC, Narrowband WCS 2300, RF downlink, 0.3 dB < AGC, Wideband 5G WCS 2300, RF downlink, 3 dB > AGC, Wideband 5G		Passed Passed Passed Passed Passed Passed
47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]	§ 27.50	
Peak to Average Ratio The measurement was performed according to ANSI C6	3.26	Final Result
WCS 2300, RF downlink, 0.3 dB < AGC, Wideband		Passed
WCS 2300, RF downlink, 3 dB > AGC, Wideband		Passed
WCS 2300, RF downlink, 0.3 dB < AGC, Narrowband		Passed
WCS 2300, RF downlink, 3 dB > AGC, Narrowband		Passed
WCS 2300, RF downlink, 0.3 dB < AGC, Wideband 5G		Passed
WCS 2300, RF downlink, 3 dB > AGC, Wideband 5G		Passed
47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]	§ 2.1049	
Occupied Bandwidth/Input-versus-output Spectrum The measurement was performed according to ANSI C6 935210 D05 v01r04: 3.4	3.26, KDB	Final Result
OP-Mode		
Frequency Band, Direction, Input Power, Signal Type		
WCS 2300, RF downlink, 0.3 dB < AGC, Wideband		Passed
WCS 2300, RF downlink, 3 dB > AGC, Wideband		Passed
WCS 2300, RF downlink, 0.3 dB < AGC, Narrowband		Passed
		D

Passed

Passed

Passed

	47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]	§ 2.1051, § 27.53	
-	Conducted spurious emissions at antenna terminals The measurement was performed according to ANSI C63	3 26	Final Result
		5.20	That Result
	OP-Mode		
	Frequency Band, Direction, Input Power, Signal Type		
	WCS 2300, low, RF downlink, Wideband		
	WCS 2300, mid, RF downlink, Wideband		Passed
	WCS 2300, high, RF downlink, Wideband		Passed
	WCS 2300low, RF downlink, Narrowband		Passed
	WCS 2300, mid, RF downlink, Narrowband		Passed
	WCS 2300, high, RF downlink, Narrowband		Passed
	WCS 2300, low, RF downlink, Wideband 5G		Passed
	WCS 2300, mid, RF downlink, Wideband 5G		Passed
	WCS 2300, high, RF downlink, Wideband 5G		Passed

47 CFR CHAPTER | FCC PART 27 Subpart C [Base Stations/Repeater] §2.1051, § 27.53

Out-of-band emission limits

The measurement was performed according to ANSI C63.26, KDB 935210 D05 v01r04: 3.6

OP-Mode

Band Edge, Frequency Band, Number of signals, Direction, Input Power, Signal Type Upper, Band 30 WCS 2300, 1, RF downlink, 0.3 dB < AGC, Wideband Passed Upper, Band 30 WCS 2300, 1, RF downlink, 3 dB > AGC, Wideband Passed Upper, Band 30 WCS 2300, 1, RF downlink, 0.3 dB < AGC, Wideband 5G Passed Upper, Band 30 WCS 2300, 1, RF downlink, 3 dB > AGC, Wideband 5G Passed Upper, Band 30 WCS 2300, 1, RF downlink, 0.3 dB < AGC, Narrowband Passed Upper, Band 30 WCS 2300, 1, RF downlink, 3 dB > AGC, Narrowband Passed Lower, Band 30 WCS 2300, 1, RF downlink, 0.3 dB < AGC, Wideband Passed Lower, Band 30 WCS 2300, 1, RF downlink, 3 dB > AGC, Wideband Passed Lower, Band 30 WCS 2300, 1, RF downlink, 0.3 dB < AGC, Wideband 5G Passed Lower, Band 30 WCS 2300, 1, RF downlink, 3 dB > AGC, Wideband 5G Passed Lower, Band 30 WCS 2300, 1, RF downlink, 0.3 dB < AGC, Narrowband Passed Lower, Band 30 WCS 2300, 1, RF downlink, 3 dB > AGC, Narrowband Passed Upper, Band 30 WCS 2300, 2, RF downlink, 0.3 dB < AGC, Wideband Passed Upper, Band 30 WCS 2300, 2, RF downlink, 3 dB > AGC, Wideband Passed Upper, Band 30 WCS 2300, 2, RF downlink, 0.3 dB < AGC, Narrowband Passed Upper, Band 30 WCS 2300, 2, RF downlink, 3 dB > AGC, Narrowband Passed Lower, Band 30 WCS 2300, 2, RF downlink, 0.3 dB < AGC, Wideband Passed Lower, Band 30 WCS 2300, 2, RF downlink, 3 dB > AGC, Wideband Passed Lower, Band 30 WCS 2300, 2, RF downlink, 0.3 dB < AGC, Narrowband Passed Lower, Band 30 WCS 2300, 2, RF downlink, 3 dB > AGC, Narrowband Passed

47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]	KDB 935210 D0	5 v01r04: 3.3
Out-of-band rejection The measurement was performed according to ANSI 935210 D05 v01r04: 3.3	I C63.26; KDB	Final Result
OP-Mode Frequency Band, Direction Band 30 WCS 2300, RF downlink	Setup	Passed
47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater] Frequency stability	§2.1055, §27.54	l
		Final Result
OP-Mode Not applicable		Not applicable
47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater]	§ 2.1053, § 27.5	53
Field strength of spurious radiation The measurement was performed according to ANSI	I C63.26	Final Result
OP-Mode, one antenne in use Frequency Band, Test Frequency, Direction WCS 2300, RF downlink		Passed
OP-Mode, MIMO Frequency Band, Test Frequency, Direction WCS 2300, RF downlink		Passed

Report version control			
Version	Release date	Change Description	Version validity
Initial	2024-01-31		Valid

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Bureau Veritas Consumer Products Services Germany GmbH Thurn-und-Taxis-Straße 18 D-90411 Nürnberg Tel.: +49 40 74041 0 Fax: +49 40 74041-2755

2.2 APPLICANT DATA

Company Name:

Address:

86675 Buchdorf Germany

Contact Person:

Mr. Jiri Cecka

Commscope

Industriering 10

Andrew Wireless Systems GmbH

2.3 MANUFACTURER DATA

Company Name:	Please see applicant data.
Address:	Please see applicant data.

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Cellular Repeater
Product name	Cellular Repeater
Туре	CAP M2 17E/19/23/25T F-AC-F1
Declared EUT data by	the supplier
General Product Description	The EUT is an industrial signal booster supporting the following:
	Band 30 (WCS-2300): 2350 – 2360 MHz
	A RF operation is only supported for the downlink.
Booster Type	Industrial Signal Booster
Voltage Type	AC
Voltage Level	100 to 240 V
Maximum Output Donor Port [Uplink]	-
Nominal Output Server Port [Downlink]	32 dBm
Nominal Gain [Uplink]	-
Nominal Gain [Downlink]	37 dB

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Parameter	Value
Serial Number	FICMBA2338001
HW Version	7856326-1010 Rev: 00
SW Version	V5.0.0.196
Comment	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it.

But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type, S/N)	Description	
	Commscope, ION-E PSU Shelf AC, DC18596	Power supply rack	
AUX1	GE Power Electronisc Inc., CAR1212FPBC-Z, DC17936	Power plug-in module	
	Commscope, ION-E WCS-2, SZAEAJ1819A0005	Module rack	
	Commscope, ION-E OPT, SZBEAD2012A0115	Optical plug-in module	
	Commscope, RFD HB, SZBEAQ2140A0006	RF card plug-in module	
AUX2	Commscope, RFD HB, SZBEAG2210A0008	RF card plug-in module	
	Commscope, ION-E RFD, SZBEAG1825A0018	RF card plug-in module	
	Commscope, ION-E RFD, SZBEAP2103A0457	RF card plug-in module	

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
	,	Setup for all tests

3.6 OPERATING MODES

This chapter describes the operating modes of the EUT used for testing.

3.6.1 TEST CHANNELS

Band	Direction	Lower Frequency Band Edge [MHz]	Upper Frequency Band Edge [MHz]	Center Frequency [MHz]	Port
30, WCS 2300	Downlink	2350.00	2360.00	2355.00	Donor

3.6.2 DEFINITION OF USED FREQUENCY BANDS

Narrowband: representation by a GSM signal Wideband: representation by an AWGN signal with 4.1 MHz Wideband 5G: representation by an AWGN signal with 9.4 MHz

3.6.3 AUTOMATIC GAIN CONTROL LEVEL

AGC Le	vels						
Band	Direction	Signal Type	AGC Start Pin [dBm]	AGC Start Pin -0.3 dB [dBm]	AGC Start Pin +3 dB [dBm]	Frequency [MHz]	Frequency
30	Downlink	Narrowband	-4.0	-4.3	-1.3	2356.0	
30	Downlink	Wideband	-4.2	-4.5	-1.5	2355.0	Mid
30	Downlink	Wideband 5G	-4.3	-4.6	-1.6	2355.0	
30	Downlink	Narrowband	-6.0	-6.3	-3.0	2350.2	
30	Downlink	Wideband	-4.0	-4.3	-1.0	2357.5	Low
30	Downlink	Wideband 5G	-4.3	-4.6	-1.6	2355.0	
30	Downlink	Narrowband	-4.2	-4.5	-1.2	2359.8	
30	Downlink	Wideband	-4.2	-4.5	-1.2	2357.5	High
30	Downlink	Wideband 5G	-4.7	-5.0	-2.0	2355.0	
30	Downlink	Narrowband	-4.4	-4.8	-1.4	2357.6	
30	Downlink	Wideband	-4.2	-4.5	-1.2	2357.5	Max.Power
30	Downlink	Wideband 5G	-4.3	-4.6	-1.6	2355.0	

Remark:

If the measured frequency f_0 for the max power has a too low distance to the band edges, because in the tests modulated signals must be used: The next possible frequency to the according band edge is used.

For example for minimum distances to the band edges:

GSM signal (narrowband): 0.2 MHz

AWGN signal (wideband): 2.5 MHz

AWGN signal (wideband 5G): Here only measurements at the mid frequency are possible, because the signal band has the same bandwidth as the used

channel.

3.6.4 REMARKS TO THE MEASUREMENTS

Cause of an inappropriate control mode in the transmission of the narrowband signal (GSM signal) at f_{mid} , f_{mid} is increased by 1 MHz, Hereby the abbreviations are:

f_{mid} for wideband signals (AWGN signals) f_{mid+1} for narrowband signals (GSM signals)

In the real use of the repeater narrowband signals aren't used.

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

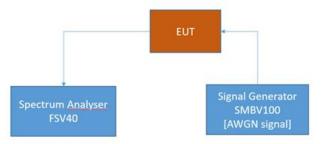
4.1 EFFECTIVE RADIATED POWER, MEAN OUTPUT POWER AND ZONE ENHANCER GAIN

Standard FCC Part 27, §27.50

The test was performed according to:

ANSI C63.26, KDB 935210 D05 v01r04: 3.5

Test date: 2023-11-20


Environmental conditions: 23 °C ± 5 K; 40 % r. F. ± 20 % r. F.

Test engineer: Thomas Hufnagel

4.1.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster - Test Setup; RF Output Power / Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.1.2 TEST REQUIREMENTS/LIMITS: ABSTRACTS FROM STANDARDS

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§ 27.50

Abstract § 27.50 from FCC:

(a) The following power limits and related requirements apply to stations transmitting in the 2305-2320 MHz band or the 2345-2360 MHz band.

(1) Base and fixed stations. (i) For base and fixed stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band:

(A) The average equivalent isotropically radiated power (EIRP) must not exceed 2,000 watts within any 5 megahertz of authorized bandwidth and must not exceed 400 watts within any 1 megahertz of authorized bandwidth.

4.1.3 TEST PROTOCOL

Band 30 WCS	2300, downlin						
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	Maximum Average Output Power [dBm]	Limit Average Output Power [dBm]	Margin to Limit [dB]	Gain [dB]
Wideband	0.3 dB < AGC	2357.5	-5.0	31.9	63.0	31.1	36.8
Wideband	3 dB > AGC	2357.5	-1.6	31.8	63.0	31.2	33.5
Narrowband	0.3 dB < AGC	2357.6	-4.8	31.7	56.0	24.3	36.5
Narrowband	3 dB > AGC	2357.6	-1.4	31.7	56.0	24.3	33.2
Wideband 5G	0.3 dB < AGC	2355.0	-4.7	31.8	63.0	31.2	36.4
Wideband 5G	3 dB > AGC	2355.0	-1.4	31.8	63.0	31.2	33.2

Remark: Please see next sub-clause for the measurement plot.

Maximum output power at the worst case consideration

The highest power level in the tables above is $p_{highest} = 31.9$ dBm at the channel which has the most output power of all channels.

Hereby at an antenna gain of $G_{dB} = 15$ dBi the highest effecitve radiated output power EIRP $p_{EIRP \ 1CH}$ of one channel is:

 $p_{\text{EIRP 1CH}} = p_{\text{highest}} + G_{\text{dB}}$

This results in:

 $p_{EIRP 1CH} = 31.9 \text{ dBm} + 15 \text{ dB} = 46.9 \text{ dBm}$

The eqivalent power P is according the given formula:

 $p_{\text{EIRP 1CH}} =$

P EIRP 1CH [W] = 10EXP(p EIRP 1CH [dBm] / 10) * 0.001 [W]

This results in:

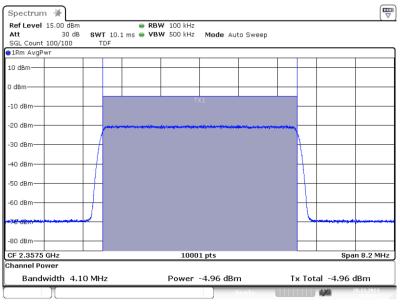
P EIRP 1CH [W] = 10 EXP(46.9 [dBm] / 10) * 0.001 [W] = 49.0 W

Supposed all four antenna ports are working together in MIMO operation the worst case of the highest output power $p_{\text{EIRP 2CH}}$ is:

 $p_{EIRP 2CH} = 2 * p_{EIRP 1CH}$

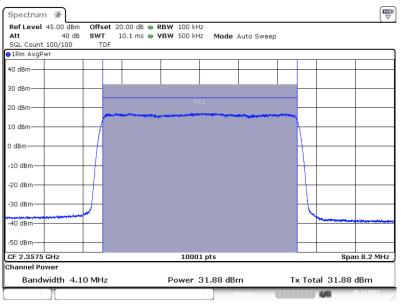
This results in:

 $p_{EIRP 4CH} = 2 * 49.9 W = 98.0 W$


Final result of this consideration:

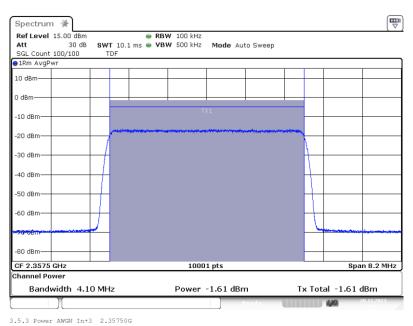
 $p_{EIRP 4CH} = 98.0 \text{ W} < 2000 \text{ W}$, hereby 2000 W is the highest allowed limit in this band.

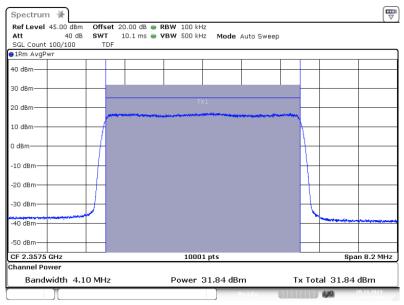
The DUT doesn't exceed the limit.


4.1.4 MEASUREMENT PLOT

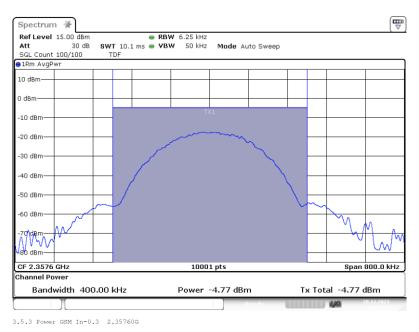
Band: .WCS 2300; ANT 2; Frequency: 2.3575 GHz; Band Edge: f0; Mod: AWGN; Input Power 0.3 dB < AGC

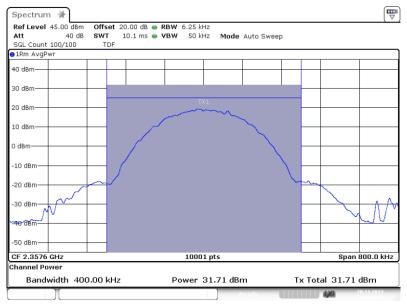
3.5.3 Power AWGN In-0.3 2.35750G


Band: .WCS 2300; ANT 2; Frequency: 2.3575 GHz; Band Edge: f0; Mod: AWGN; Output Power 0.3 dB < AGC

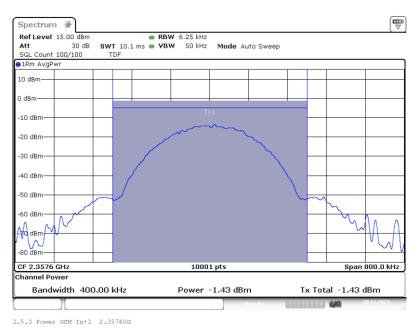

3.5.3 Power AWGN Out -0.3 2.35750G

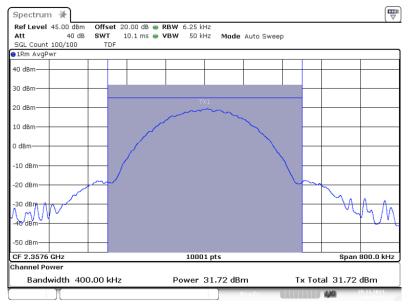
Band: .WCS 2300; ANT 2; Frequency: 2.3575 GHz; Band Edge: f0; Mod: AWGN; Input Power 3 dB > AGC


Band: .WCS 2300; ANT 2; Frequency: 2.3575 GHz; Band Edge: f0; Mod: AWGN; Output Power 3 dB > AGC

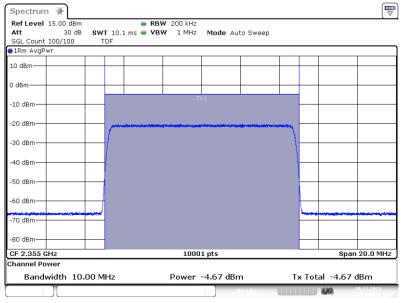

3.5.3 Power AWGN Out +3 2.35750G

Band: .WCS 2300; ANT 2; Frequency: 2.3576 GHz; Band Edge: f0; Mod: GSM; Input Power 0.3 dB < AGC

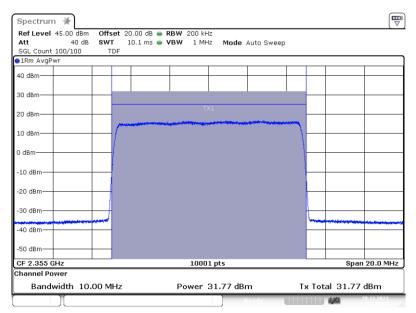

Band: .WCS 2300; ANT 2; Frequency: 2.3576 GHz; Band Edge: f0; Mod: GSM; Output Power 0.3 dB < AGC


3.5.3 Power GSM Out -0.3 2.35760G

Band: .WCS 2300; ANT 2; Frequency: 2.3576 GHz; Band Edge: f0; Mod: GSM; Input Power 3 dB > AGC

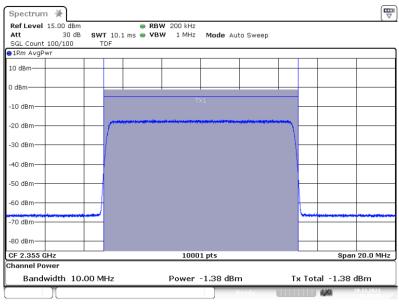

Band: .WCS 2300; ANT 2; Frequency: 2.3576 GHz; Band Edge: f0; Mod: GSM; Output Power 3 dB > AGC

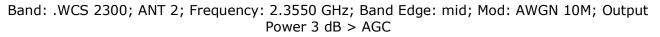
3.5.3 Power GSM Out +3 2.35760G

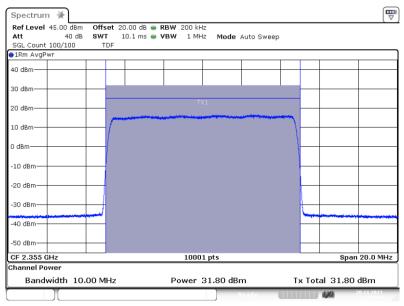


Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN 10M; Input Power 0.3 dB < AGC

3.5.3 Power AWGN 10M In-0.3 2.35500G




3.5.3 Power AWGN 10M Out -0.3 2.35500G



Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN 10M; Input Power 3 dB > AGC

^{3.5.3} Power AWGN 10M In+3 2.35500G

3.5.3 Power AWGN 10M Out +3 2.35500G

4.1.5 TEST EQUIPMENT USED

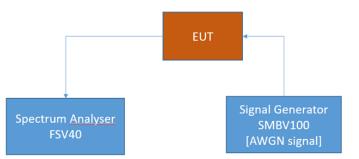
- Conducted

4.2 PEAK TO AVERAGE RATIO

Standard FCC PART 27, § 27.50

The test was performed according to: ANSI C63.26

Test date: 2023-11-20


Environmental conditions: 23 °C ± 5 K; 40 % r. F. ± 20 % r. F.

Test engineer: Thomas Hufnagel

4.2.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal booster.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster – Test Setup; RF Output Power / Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.2.2 TEST REQUIREMENTS/LIMITS

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

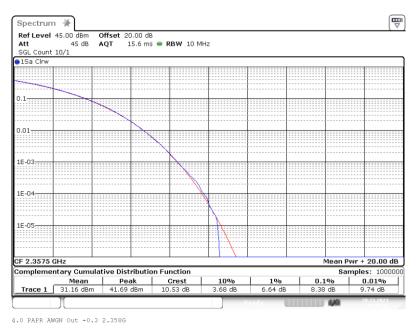
§ 27.50

Abstract § 27.50 from FCC:

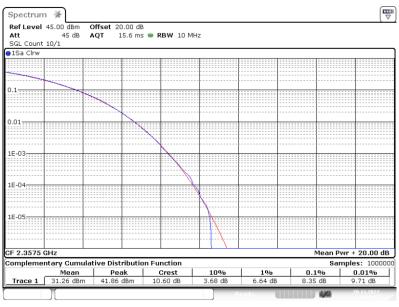
(a) The following power limits and related requirements apply to stations transmitting in the 2305-2320 MHz band or the 2345-2360 MHz band.

(B) The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

4.2.3 TEST PROTOCOL

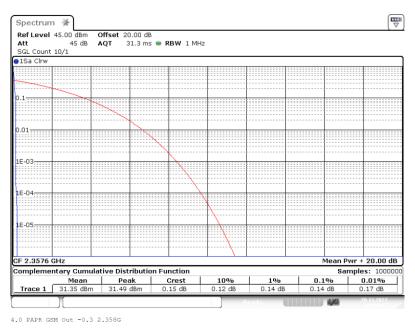

Band 30 WCS		1				
Signal Type	Input Power	Frequency [MHz]	Input Power [dBm]	PAPR [dB]	Limit PAPR [dB]	Margin to Fictive Limit [dB]
Wideband	0.3 dB < AGC	2357.5	-5.0	8.4	13.0	4.6
Wideband	3 dB > AGC	2357.5	-1.6	8.4	13.0	4.7
Narrowband	0.3 dB < AGC	2357.6	-4.8	0.1	13.0	12.9
Narrowband	3 dB > AGC	2357.6	-1.4	0.1	13.0	12.9
Wideband 5G	0.3 dB < AGC	2355.0	-4.7	8.4	13.0	4.6
Wideband 5G	3 dB > AGC	2355.0	-1.4	8.4	13.0	4.6

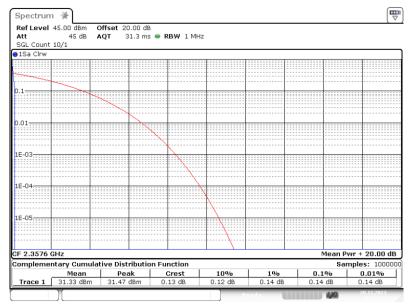
Remark: Please see next sub-clause for the measurement plot.

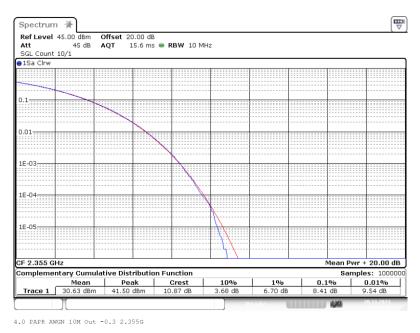


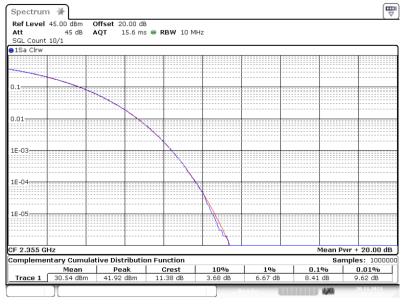
4.2.4 MEASUREMENT PLOT (SHOWING VALUE)

Band: .WCS 2300; ANT 2; Frequency: 2.3575 GHz; Band Edge: f0; Mod: AWGN; PAPR 0.3 dB < AGC


Band: .WCS 2300; ANT 2; Frequency: 2.3575 GHz; Band Edge: f0; Mod: AWGN; PAPR 3 dB > AGC


4.0 PAPR AWGN Out +3 2.358G


Band: .WCS 2300; ANT 2; Frequency: 2.3576 GHz; Band Edge: f0; Mod: GSM; PAPR 3 dB > AGC


4.0 PAPR GSM Out +3 2.358G

Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN 10M; PAPR 0.3 dB < AGC

Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN 10M; PAPR 3 dB > AGC

4.0 PAPR AWGN 10M Out +3 2.355G

4.2.5 TEST EQUIPMENT USED

- Conducted

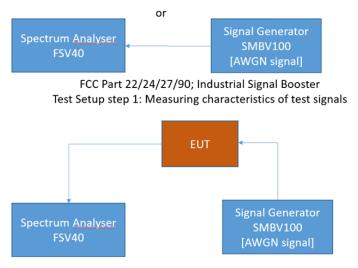
4.3 OCCUPIED BANDWIDTH/INPUT-VERSUS-OUTPUT SPECTRUM

Standard FCC Part 2.1049; Occupied Bandwidth

The test was performed according to:

ANSI C63.26, KDB 935210 D05 v01r04: 3.4

Test date: 2023-11-20


Environmental conditions: 23 °C ± 5 K; 40 % r. F. ± 20 % r. F.

Test engineer: Thomas Hufnagel

4.3.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission limits.

The EUT was connected to the test setups according to the following diagram:

FCC Part 22/24/27/90; Industrial Signal Booster Test Setup step 2; Occupied Bandwidth/Input-versus-output spectrum

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.3.2 TEST REQUIREMENTS/LIMITS

Abstract § 2.1049 from FCC:

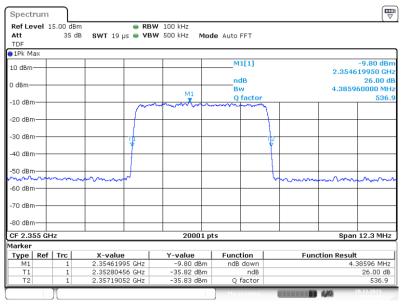
FCC Part 2.1049; Occupied Bandwidth:

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.3 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

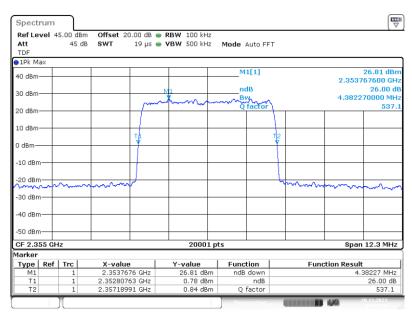
(h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

(i) Transmitters designed for other types of modulation—when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

4.3.3 TEST PROTOCOL

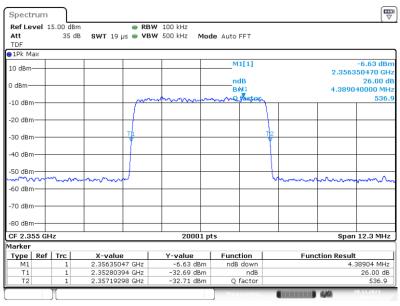

Band 30 WCS							
Signal Type	Input Power	Signal Frequen Cy [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Limit Delta Occupied Bandwidth [kHz]	Margin to Limit [kHz]
Wideband	0.3 dB < AGC	2355.0	4386.0	4382.3	3.7	205.0	201.3
Wideband	3 dB > AGC	2355.0	4389.0	4387.2	1.9	205.0	203.1
Narrowband	0.3 dB < AGC	2356.0	314.9	318.8	3.9	10.0	6.1
Narrowband	3 dB > AGC	2356.0	324.1	315.7	8.4	10.0	1.6
Wideband 5G	0.3 dB < AGC	2355.0	9949.0	9944.5	4.5	470.0	465.5
Wideband 5G	3 dB > AGC	2355.0	9950.5	9943.0	7.5	470.0	462.5

Remark: Please see next sub-clause for the measurement plot.


4.3.4 MEASUREMENT PLOT

Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN; Input OCBw 0.3 dB < AGC

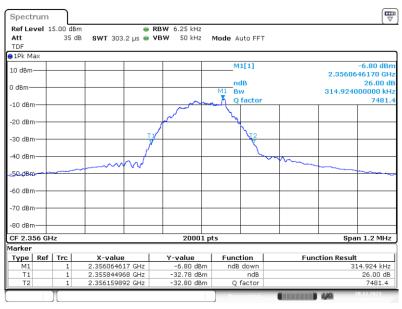
3.4 OCBw AWGN In-0.3 2.3550G _26dB


Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN; Output OCBw 0.3 dB < AGC

3.4 OCBw AWGN Out -0.3 2.3550G _26dB

Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN; Input OCBw 3 dB > AGC

3.4 OCBw AWGN In+3 2.3550G _26dB


Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN; Output OCBw 3 dB > AGC

Ref Le Att TDF	vel 4	5.00 dBr 45 d			RBW 100 VBW 500		Mode	Auto FF	г			
1Pk M	ах											
40 dBm							M	1[1]				26.92 dB
							n	10			2.353	3774980 GH 26.00 d
30 dBm	-		-			_	B				4.387	190000 MH
20 dBm				~~~	m	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	factor	1			536
20 aBM												
10 dBm	_		_		_	_			4			
				т					12			
) dBm–	-			1		_			Ť			
10 dBm				1								
то авп	1								1			
20 dBr	<u>ا</u> ــــ			}	_				_{			_
~~~~	$\sim$	som	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~						how	-	mm
30 dBn			+ +			_						
40 dBn												
40 000	'											
-50 dBrr	<b>-</b>					_						
CF 2.3	55 GH	Iz			200	)01 pt	s				Spa	in 12.3 MH
larker												
Туре	Ref		X-value		Y-value		Func			Fun	ction Resu	
M1		1	2.3537749		26.92		ndB	down			4	4.38719 MH
T1 T2		1	2.3528076		0.90		0	ndB factor				26.00 di 536.5

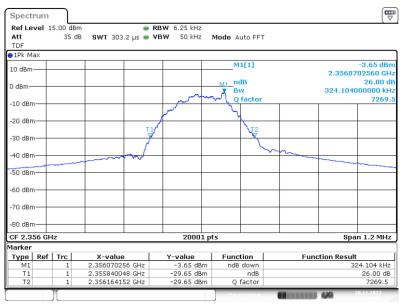
3.4 OCBw AWGN Out +3 2.3550G _26dB



# Band: .WCS 2300; ANT 2; Frequency: 2.3560 GHz; Band Edge: mid; Mod: GSM; Input OCBw 0.3 dB < AGC



3.4 OCBw GSM In-0.3 2.3560G _26dB


# Band: .WCS 2300; ANT 2; Frequency: 2.3560 GHz; Band Edge: mid; Mod: GSM; Output OCBw $0.3~\rm dB < AGC$

Ref Level 4 Att	45.00 dBn 45 di			Mode Auto FF	т	
TDF 1Pk Max						
40 dBm				M1[1]		29.12 dB 2.3560656370 GI
30 dBm				M1 ndB		26.00 ( 318.824000000 ki
20 dBm				Q factor		7389
10 dBm		LT LT	<u>کم</u>			
D dBm		<del>/</del>		X		
-10 dBm		m			m	
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
CF 2.356 GH	Ηz		20001 pt	ts		Span 1.2 MH
larker Type   Ref	Trc	X-value	Y-value	Function	Eun	ction Result
M1	1	2.356065637 GHz	29.12 dBm	ndB down	Fun	318.824 kH
T1	1	2.355843948 GHz	3.13 dBm	ndB		26.00 d
T2	1	2.356162772 GHz	3.12 dBm	Q factor		7389.9

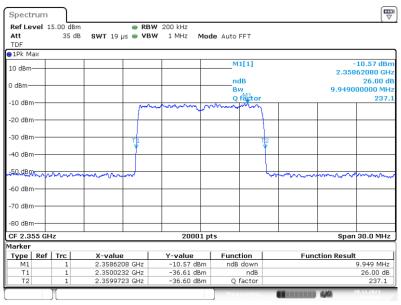
3.4 OCBw GSM Out -0.3 2.3560G _26dB



# Band: .WCS 2300; ANT 2; Frequency: 2.3560 GHz; Band Edge: mid; Mod: GSM; Input OCBw 3 dB > AGC



^{3.4} OCBw GSM In+3 2.3560G _26dB


# Band: .WCS 2300; ANT 2; Frequency: 2.3560 GHz; Band Edge: mid; Mod: GSM; Output OCBw 3 dB > AGC

Ref Le	vel 4	5.00 dBr	m Offset 20.00 dB	● RBW 6.25 k	Hz			
Att		45 d	В <b>SWT</b> 303.2 µs	VBW 50 k	Hz Mode	e Auto F	FT	
TDF 1Pk M	24							
					1	M1[1]		29.39 di
40 dBm								2.3560703760 G
30 dBm·						ndB		26.00
50 abiii				~~~	and the second	Bw		315.704000000 k
20 dBm	_				<u> </u>	Q factor		7463
				P		V.		
10 dBm	-			TI		12		
				7		N V		
0 dBm—							2.0	
-10 dBm			m				advent	
-10 UBII		~~~~						
-20 dBm								
-30 dBm						_		
-40 dBm	-							
-50 dBm								
CF 2.3	56 GH	z		2000	)1 pts			Span 1.2 M⊦
1arker								
Type M1	Ref		2.356070376 GHz	29.39 d		iction IB down	Fun	iction Result 315.704 kH
M1 T1		1	2.355070376 GHz 2.355841908 GHz	29.39 d 3.38 d		ndB		315.704 KH 26.00 d
T2		1	2.356157612 GHz	3.34 d		) factor		7462.9

3.4 OCBw GSM Out +3 2.3560G _26dB



## Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN 10M; Input OCBw 0.3 dB < AGC

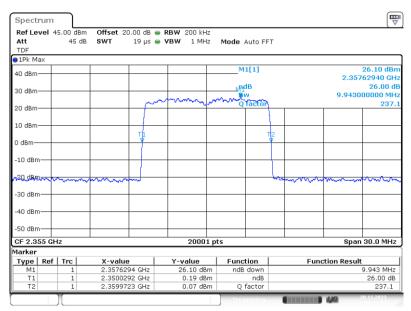


^{3.4} OCBw AWGN 10M In-0.3 2.3550G _26dB

Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN 10M; Output OCBw 0.3 dB < AGC



3.4 OCBw AWGN 10M Out -0.3 2.3550G _26dB




### Band: .WCS 2300; ANT 2; Frequency: 2.3550 GHz; Band Edge: mid; Mod: AWGN 10M; Input OCBw 3 dB > AGC



3.4 OCBw AWGN 10M In+3 2.3550G _26dB





3.4 OCBw AWGN 10M Out +3 2.3550G _26dB

#### 4.3.5 TEST EQUIPMENT USED

- Conducted



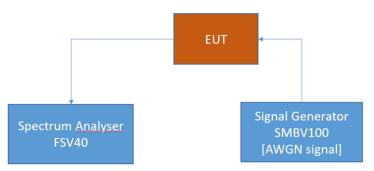
#### 4.4 CONDUCTED SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Standard FCC Part § 2.1051, § 27.53

#### The test was performed according to:

ANSI C63.26, KDB 935210 D05 v01r04: 3.6

**Test date**: 2023-12-14


**Environmental conditions**: 23 °C ± 5 K; 40 % r. F. ± 20 % r. F.

Test engineer: Thomas Hufnagel

#### 4.4.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:



FCC Part 22/24/27/90 Industrial signal booster – Test Setup; RF Output Power / Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.



### 4.4.2 TEST REQUIREMENTS/LIMITS

Abstract § 2.1051 from FCC:

#### FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in § 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

#### Part 27; Miscellaneous Wireless Communication Services

#### Subpart C – Technical standards

#### §27.53 – Emission limits

#### Abstract § 27.53 FCC:

(a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:

(1) For base and fixed stations' operations in the 2305-2320 MHz band and the 2345-2360 MHz band:

(i) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $70 + 10 \log (P) dB$  on all frequencies between 2287.5 and 2300 MHz,  $72 + 10 \log (P) dB$  on all frequencies between 2285 and 2287.5 MHz, and  $75 + 10 \log (P) dB$  below 2285 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz

and 75 + 10 log (P) dB above 2370 MHz.



(2) For fixed customer premises equipment (CPE) stations operating in the 2305-2320 MHz band and the 2345-2360 MHz band transmitting with more than 2 watts per 5 megahertz average EIRP:

(i) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $70 + 10 \log (P) dB$  on all frequencies between 2287.5 and 2300 MHz,  $72 + 10 \log (P) dB$  on all frequencies between 2285 and 2287.5 MHz, and  $75 + 10 \log (P) dB$  below 2285 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.

(3) For fixed CPE stations operating in the 2305-2320 MHz and 2345-2360 MHz bands transmitting with 2 watts per 5 megahertz average EIRP or less:

(i) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $55 + 10 \log (P) dB$  on all frequencies between 2296 and 2300 MHz,  $61 + 10 \log (P) dB$  on all frequencies between 2292 and 2296 MHz,  $67 + 10 \log (P) dB$  on all frequencies between 2288 and 2292 MHz, and  $70 + 10 \log (P) dB$  below 2288 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2365 MHz, and not less than  $70 + 10 \log (P) dB$  above 2365 MHz.



### 4.4.3 TEST PROTOCOL

General considerations concerning the limits:

The measuring bandwidth of 1 MHz was chosen according the test requirements exept at the band edges: At the band edges reducing of measurement bandwidth was necessary to prevent overlaying the RF-signal over the spurious emissions.

Also outside the Downlink frequency band at lower frequencies the measurement bandwidths were reduced to have the possibility to record the spurious emissions at these lower frequencies.

At frequencies were measuring bandwidths were reduced also the limit lines were reduced acoording the given formula:

$$p \ RBW reduced \ [dBm] = 10 * \log \left( RBW reduced \ [kHz] - 1000 \ kHz \right) + pRBW \ 1000 \ kHz [dBm]$$

Hereby "p" are the limit lines' values.



Test	o: 1 =	Spurious Freq.	Spurious Level		RBW	Limit	Margin to Limit
Frequency	Signal Type	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dB]
low	Wideband	0.00905	-90.6	RMS	1	-75.0	15.6
low	Wideband	0.14749	-75.4	RMS	10	-65.0	10.4
low	Wideband	949.4	-63.6	RMS	100	-55.0	8.6
low	Wideband	2248.8	-47.3	RMS	1000	-45.0	2.3
low	Wideband	2285.3	-48.7	RMS	1000	-42.0	6.7
low	Wideband	2291.1	-55.2	RMS	100	-50.0	5.2
low	Wideband	2302.2	-48.2	RMS	100	-42.0	6.2
low	Wideband	2305.9	-47.1	RMS	100	-23.0	24.1
low	Wideband	2326.4	-65.8	RMS	100	-45.0	20.8
low	Wideband	2341.5	-56.9	RMS	100	-55.0	1.9
low	Wideband	2360.1	-44.7	RMS	100	-23.0	21.7
low	Wideband	2360.2	-47.4	RMS	100	-23.0	24.4
low	Wideband	2366.7	-56.6	RMS	100	-50.0	6.6
low	Wideband	2366.1	-57.4	RMS	100	-50.0	7.4
low	Wideband	2366.7	-56.6	RMS	100	-50.0	6.6
low	Wideband	2546.7	-52.1	RMS	1000	-45.0	7.1
low	Wideband	6973.0	-51.0	RMS	1000	-45.0	6.0
low	Wideband	19548.3	-51.0	RMS	1000	-45.0	6.0
low	Wideband	20296.2	-50.8	RMS	1000	-45.0	5.8
mid	Wideband	0.02650	-91.3	RMS	1	-75.0	16.3
mid	Wideband	0.15749	-75.7	RMS	10	-65.0	10.7
mid	Wideband	952.1	-62.9	RMS	100	-55.0	7.9
mid	Wideband	2111.3	-46.8	RMS	1000	-45.0	1.8
mid	Wideband	2287.1	-49.2	RMS	1000	-42.0	7.2
mid	Wideband	2288.6	-55.5	RMS	100	-50.0	5.5
mid	Wideband	2301.6	-48.2	RMS	100	-42.0	6.2
mid	Wideband	2311.9	-47.3	RMS	100	-23.0	24.3
mid	Wideband	2321.0	-66.4	RMS	100	-45.0	21.4
mid	Wideband	2334.4	-56.6	RMS	100	-55.0	1.6
mid	Wideband	2360.0	-43.1	RMS	100	-23.0	20.1
mid	Wideband	2361.7	-47.9	RMS	100	-23.0	24.9
mid	Wideband	2366.1	-56.4	RMS	100	-50.0	6.4
mid	Wideband	2366.1	-56.9	RMS	100	-50.0	6.9
mid	Wideband	2366.1	-56.9	RMS	100	-50.0	6.9
mid	Wideband	2538.7	-52.1	RMS	1000	-45.0	7.1
mid	Wideband	6835.5	-51.1	RMS	1000	-45.0	6.1
mid	Wideband	19521.8	-50.6	RMS	1000	-45.0	5.6
mid	Wideband	20293.2	-50.7	RMS	1000	-45.0	5.7



	WCS 2300, d			1			T
Test		Spurious Freq.	Spurious Level	Detector	RBW	Limit	Margin to Limit
Frequency	Signal Type	[MHz]	[dBm]		[kHz]	[dBm]	[dB]
high	Wideband	0.00905	-90.4	RMS	1	-75.0	15.4
high	Wideband	0.15249	-75.8	RMS	10	-65.0	10.8
high	Wideband	949.6	-64.1	RMS	100	-55.0	9.1
high	Wideband	1740.5	-47.2	RMS	1000	-45.0	2.2
high	Wideband	2285.5	-49.2	RMS	1000	-42.0	7.2
high	Wideband	2292.9	-55.3	RMS	100	-50.0	5.3
high	Wideband	2282.8	-48.4	RMS	100	-42.0	6.4
high	Wideband	2310.0	-47.3	RMS	100	-23.0	24.3
high	Wideband	2320.9	-66.2	RMS	100	-45.0	21.2
high	Wideband	2333.0	-56.6	RMS	100	-55.0	1.6
high	Wideband	2360.0	-40.3	RMS	100	-23.0	17.3
high	Wideband	2360.0	-40.5	RMS	100	-23.0	17.5
high	Wideband	2365.0	-57.3	RMS	100	-50.0	7.3
high	Wideband	2367.9	-56.1	RMS	100	-50.0	6.1
high	Wideband	2367.9	-56.4	RMS	100	-50.0	6.4
high	Wideband	2546.2	-52.0	RMS	1000	-45.0	7.0
high	Wideband	6868.0	-51.2	RMS	1000	-45.0	6.2
high	Wideband	19559.8	-50.4	RMS	1000	-45.0	5.4
high	Wideband	20302.2	-50.8	RMS	1000	-45.0	5.8

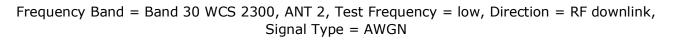


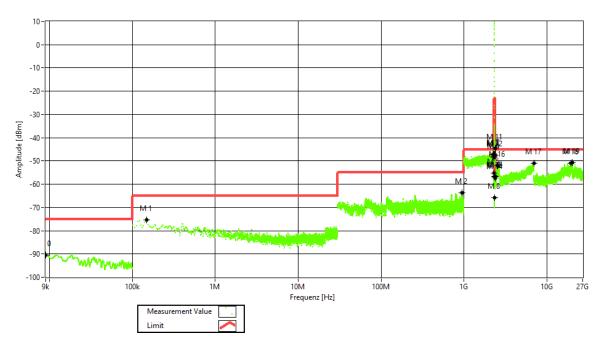
Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
	Signal Type Narrowband		-90.2	RMS	1	-75.0	15.2
low low	Narrowband	0.00996 0.14749	-75.3	RMS	10	-65.0	10.3
low	Narrowband	811.0	-64.3	RMS	100	-55.0	9.3
low	Narrowband	2243.3	-47.4	RMS	1000	-45.0	2.4
low	Narrowband	2243.3	-49.1	RMS	1000	-42.0	7.1
low	Narrowband	2287.7	-54.5	RMS	1000	-42.0	4.5
low	Narrowband	2302.4	-47.4	RMS	100	-42.0	5.4
low	Narrowband	2302.4	-47.1	RMS	100	-23.0	24.1
low	Narrowband	2329.7	-65.7	RMS	100	-45.0	20.7
low	Narrowband	2329.7	-56.4	RMS	100	-55.0	1.4
low	Narrowband	2362.1	-46.9	RMS	100	-23.0	23.9
low	Narrowband	2360.0	-47.9	RMS	100	-23.0	24.9
low	Narrowband	2367.0	-58.2	RMS	100	-50.0	8.2
low	Narrowband	2368.3	-56.9	RMS	100	-50.0	6.9
low	Narrowband	2368.3	-57.4	RMS	100	-50.0	7.4
low	Narrowband	2546.2	-51.9	RMS	1000	-45.0	6.9
low	Narrowband	6944.0	-51.5	RMS	1000	-45.0	6.5
low	Narrowband	19887.8	-51.0	RMS	1000	-45.0	6.0
low	Narrowband	20324.7	-50.3	RMS	1000	-45.0	5.3
mid	Narrowband	0.01850	-90.1	RMS	1000	-75.0	15.1
mid	Narrowband	0.10250	-76.1	RMS	10	-65.0	11.1
mid	Narrowband	950.9	-64.2	RMS	100	-55.0	9.2
mid	Narrowband	2184.3	-47.0	RMS	1000	-45.0	2.0
mid	Narrowband	2281.8	-49.0	RMS	1000	-42.0	7.0
mid	Narrowband	2289.1	-55.3	RMS	1000	-50.0	5.3
mid	Narrowband	2300.6	-43.7	RMS	100	-42.0	1.7
mid	Narrowband	2300.6	-47.5	RMS	100	-23.0	24.5
mid	Narrowband	2300.0	-65.7	RMS	100	-45.0	20.7
mid	Narrowband	2327.4	-56.8	RMS	100	-55.0	1.8
mid	Narrowband	2360.0	-44.5	RMS	100	-23.0	21.5
mid	Narrowband	2360.0	-48.0	RMS	100	-23.0	25.0
mid	Narrowband	2365.9	-40.0	RMS	100	-50.0	7.2
mid	Narrowband	2369.5	-55.6	RMS	100	-50.0	5.6
mid	Narrowband	2369.0	-56.7	RMS	100	-50.0	6.7
mid	Narrowband	2546.2	-49.8	RMS RMS	1000	-30.0	4.8
mid	Narrowband	6850.5	-49.8	RMS	1000	-45.0	6.4
	Narrowband	19538.3	-51.4	RMS	1000	-45.0	6.4
mid mid	Narrowband	20280.7	-51.4	RMS	1000	-45.0	6.1



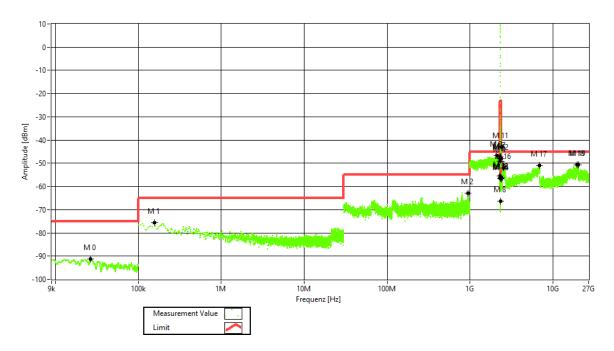
Band 30,	WCS 2300, d	lownlink					
Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
high	Narrowband	0.01141	-90.3	RMS	1	-75.0	15.3
high	Narrowband	0.10250	-75.2	RMS	10	-65.0	10.2
high	Narrowband	950.6	-63.8	RMS	100	-55.0	8.8
high	Narrowband	2180.3	-46.7	RMS	1000	-45.0	1.7
high	Narrowband	2280.8	-49.4	RMS	1000	-42.0	7.4
high	Narrowband	2290.1	-55.3	RMS	100	-50.0	5.3
high	Narrowband	2300.0	-47.6	RMS	100	-42.0	5.6
high	Narrowband	2316.6	-46.0	RMS	100	-23.0	23.0
high	Narrowband	2325.3	-65.9	RMS	100	-45.0	20.9
high	Narrowband	2337.7	-57.2	RMS	100	-55.0	2.2
high	Narrowband	2361.5	-46.6	RMS	100	-23.0	23.6
high	Narrowband	2366.5	-56.9	RMS	100	-50.0	6.9
high	Narrowband	2368.0	-56.6	RMS	100	-50.0	6.6
high	Narrowband	2377.9	-55.3	RMS	100	-50.0	5.3
high	Narrowband	2546.2	-51.0	RMS	1000	-45.0	6.0
high	Narrowband	6855.0	-51.1	RMS	1000	-45.0	6.1
high	Narrowband	19976.3	-51.0	RMS	1000	-45.0	6.0
high	Narrowband	20298.2	-50.7	RMS	1000	-45.0	5.7



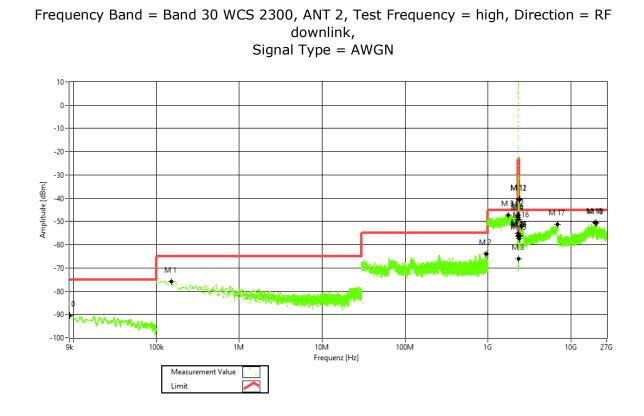

Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Wideband 5G	0.00905	-91.3	RMS	1	-75.0	16.3
low	Wideband 5G	0.14749	-75.6	RMS	10	-65.0	10.6
low	Wideband 5G	950.1	-64.0	RMS	100	-55.0	9.0
low	Wideband 5G	1828.9	-47.1	RMS	1000	-45.0	2.1
low	Wideband 5G	2287.1	-47.9	RMS	1000	-42.0	5.9
low	Wideband 5G	2290.0	-55.5	RMS	100	-50.0	5.5
low	Wideband 5G	2287.1	-47.9	RMS	100	-42.0	5.9
low	Wideband 5G	2312.8	-47.6	RMS	100	-23.0	24.6
low	Wideband 5G	2328.3	-65.7	RMS	100	-45.0	20.7
low	Wideband 5G	2331.0	-56.6	RMS	100	-55.0	1.6
low	Wideband 5G	2360.0	-36.7	RMS	100	-23.0	13.7
low	Wideband 5G	2361.5	-43.7	RMS	100	-23.0	20.7
low	Wideband 5G	2366.9	-56.1	RMS	100	-50.0	6.1
low	Wideband 5G	2365.9	-56.9	RMS	100	-50.0	6.9
low	Wideband 5G	2365.9	-57.1	RMS	100	-50.0	7.1
low	Wideband 5G	2546.2	-51.1	RMS	1000	-45.0	6.1
low	Wideband 5G	6839.5	-50.6	RMS	1000	-45.0	5.6
low	Wideband 5G	19970.3	-51.4	RMS	1000	-45.0	6.4
low	Wideband 5G	20295.2	-50.9	RMS	1000	-45.0	5.9
mid	Wideband 5G	0.01550	-90.6	RMS	1	-75.0	15.6
mid	Wideband 5G	0.15749	-75.9	RMS	10	-65.0	10.9
mid	Wideband 5G	951.4	-64.3	RMS	100	-55.0	9.3
mid	Wideband 5G	1681.0	-47.2	RMS	1000	-45.0	2.2
mid	Wideband 5G	2286.7	-49.2	RMS	1000	-42.0	7.2
mid	Wideband 5G	2290.1	-55.3	RMS	100	-50.0	5.3
mid	Wideband 5G	2302.9	-47.9	RMS	100	-42.0	5.9
mid	Wideband 5G	2309.3	-47.4	RMS	100	-23.0	24.4
mid	Wideband 5G	2320.4	-66.1	RMS	100	-45.0	21.1
mid	Wideband 5G	2331.0	-56.7	RMS	100	-55.0	1.7
mid	Wideband 5G	2360.0	-36.7	RMS	100	-23.0	13.7
mid	Wideband 5G	2362.0	-41.3	RMS	100	-23.0	18.3
mid	Wideband 5G	2365.3	-57.2	RMS	100	-50.0	7.2
mid	Wideband 5G	2368.1	-56.9	RMS	100	-50.0	6.9
mid	Wideband 5G	2365.3	-57.2	RMS	100	-50.0	7.2
mid	Wideband 5G	2546.2	-51.0	RMS	1000	-45.0	6.0
mid	Wideband 5G	6999.0	-51.2	RMS	1000	-45.0	6.2
mid	Wideband 5G	19546.3	-51.2	RMS	1000	-45.0	6.2
mid	Wideband 5G	20022.2	-51.4	RMS	1000	-45.0	6.4



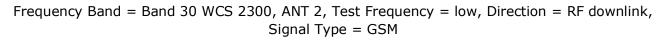

Band 30,	WCS 2300, d	lownlink					
Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
high	Wideband 5G	0.01550	-90.0	RMS	1	-75.0	15.0
high	Wideband 5G	0.12749	-76.3	RMS	10	-65.0	11.3
high	Wideband 5G	949.3	-63.9	RMS	100	-55.0	8.9
high	Wideband 5G	2161.3	-47.2	RMS	1000	-45.0	2.2
high	Wideband 5G	2284.3	-49.3	RMS	1000	-42.0	7.3
high	Wideband 5G	2290.6	-55.1	RMS	100	-50.0	5.1
high	Wideband 5G	2303.0	-47.9	RMS	100	-42.0	5.9
high	Wideband 5G	2316.3	-47.1	RMS	100	-23.0	24.1
high	Wideband 5G	2321.5	-65.9	RMS	100	-45.0	20.9
high	Wideband 5G	2330.5	-56.0	RMS	100	-55.0	1.0
high	Wideband 5G	2360.0	-37.4	RMS	100	-23.0	14.4
high	Wideband 5G	2361.8	-45.3	RMS	100	-23.0	22.3
high	Wideband 5G	2366.0	-57.7	RMS	100	-50.0	7.7
high	Wideband 5G	2367.7	-57.2	RMS	100	-50.0	7.2
high	Wideband 5G	2376.5	-56.6	RMS	100	-50.0	6.6
high	Wideband 5G	2546.2	-49.1	RMS	1000	-45.0	4.1
high	Wideband 5G	6819.5	-51.2	RMS	1000	-45.0	6.2
high	Wideband 5G	19579.8	-51.1	RMS	1000	-45.0	6.1
high	Wideband 5G	20294.2	-50.6	RMS	1000	-45.0	5.6

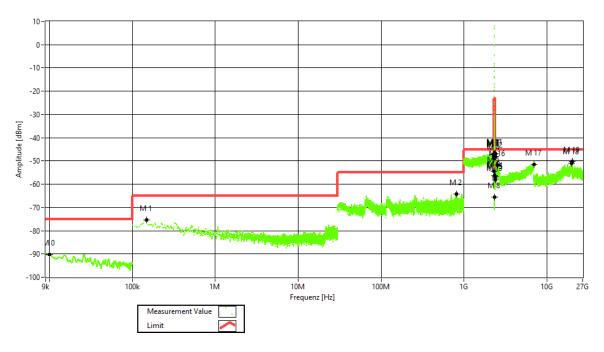

Remark: Please see next sub-clause for the measurement plot.

### 4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE. "WORST CASE")

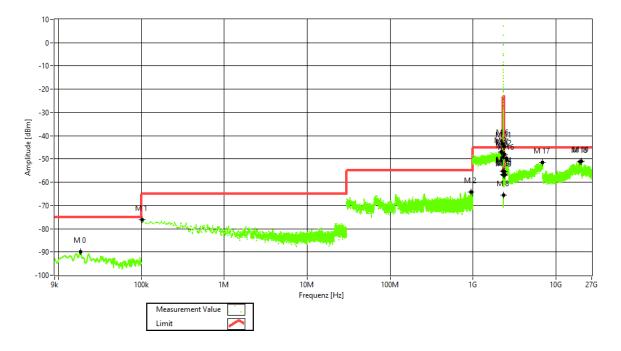




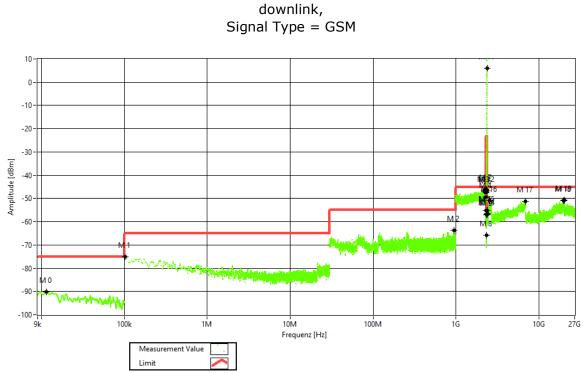


Frequency Band = Band 30 WCS 2300, ANT 2, Test Frequency = mid, Direction = RF downlink, Signal Type = AWGN



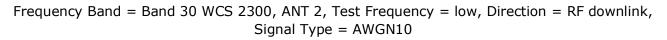


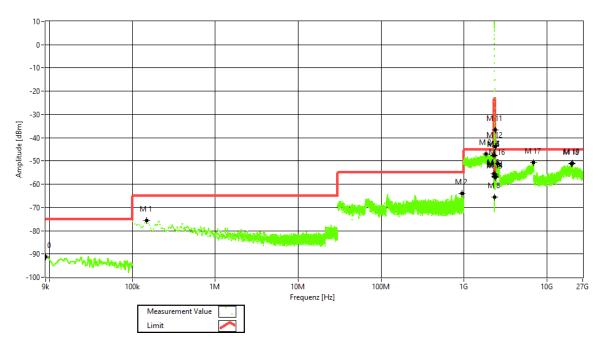





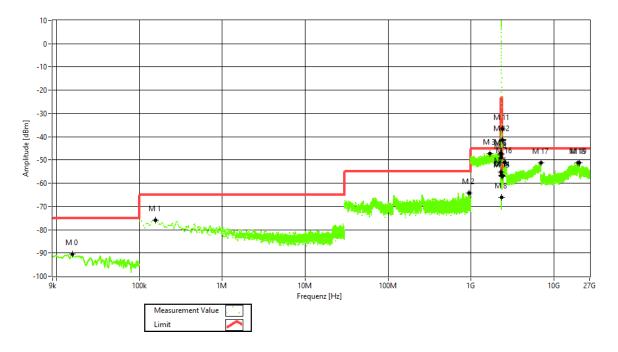





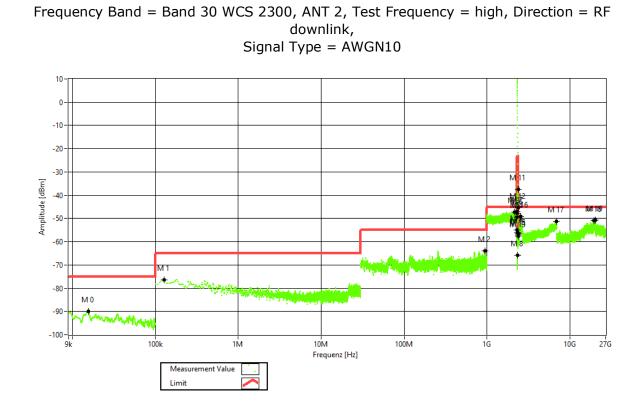


Frequency Band = Band 30 WCS 2300, ANT 2, Test Frequency = mid, Direction = RF downlink, Signal Type = GSM

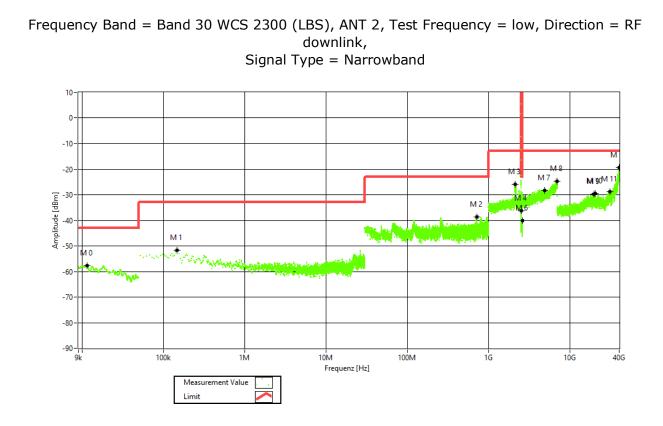






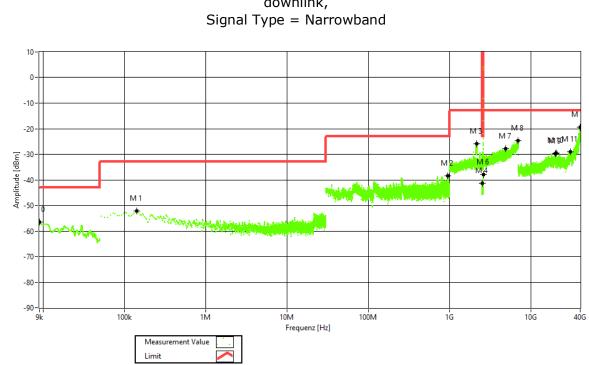




Frequency Band = Band 30 WCS 2300, ANT 2, Test Frequency = mid, Direction = RF downlink, Signal Type = AWGN10



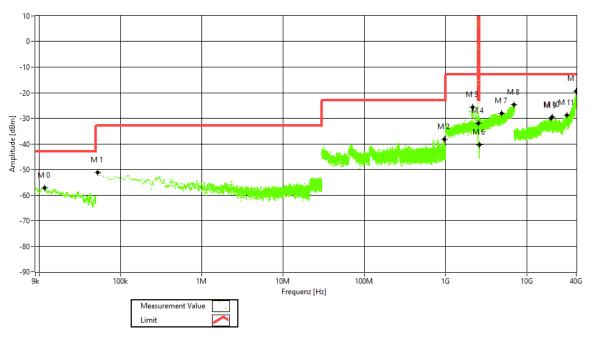


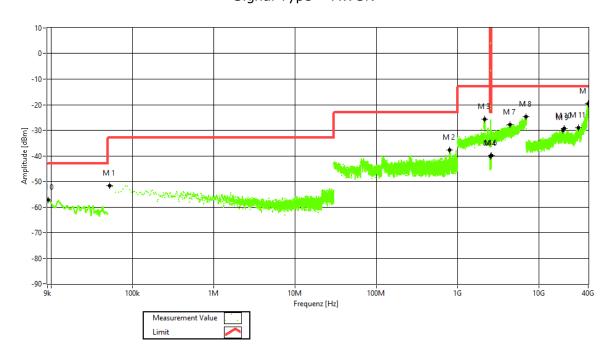



Frequency Band = Band 30 WCS 2300 (LBS), ANT 2, Test Frequency = mid, Direction = RF downlink, Signal Type = Narrowband

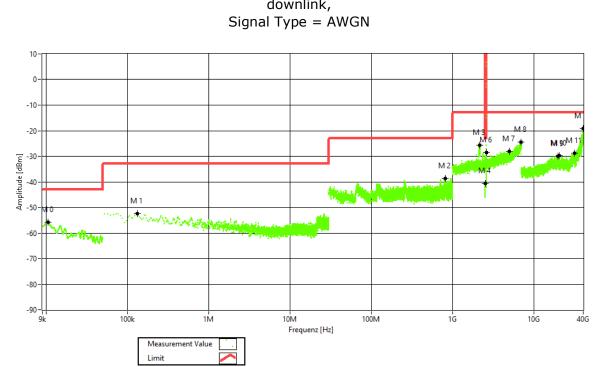






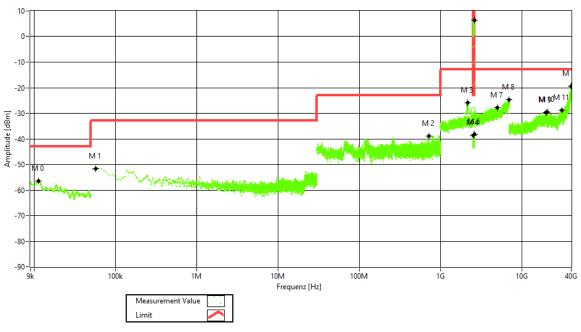


Frequency Band = Band 30 WCS 2300 (LBS), ANT 2, Test Frequency = high, Direction = RF downlink, Signal Type = Narrowband



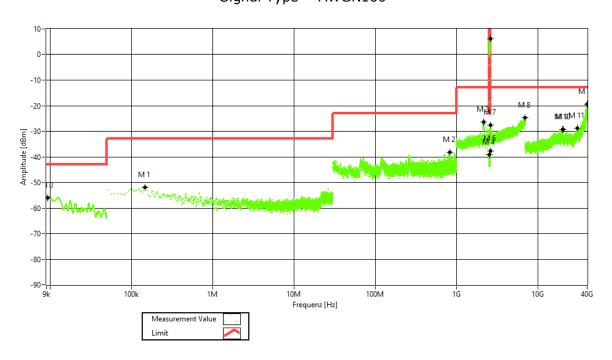

Frequency Band = Band 30 WCS 2300 (LBS), ANT 2, Test Frequency = low, Direction = RF downlink, Signal Type = AWGN



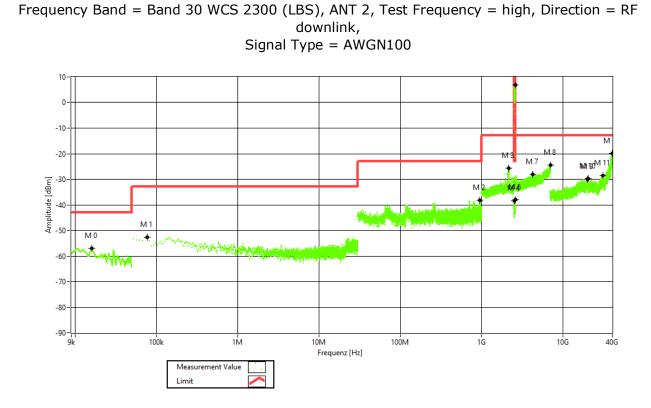
Frequency Band = Band 30 WCS 2300 (LBS), ANT 2, Test Frequency = mid, Direction = RF downlink, Signal Type = AWGN









Frequency Band = Band 30 WCS 2300 (LBS), ANT 2, Test Frequency = low, Direction = RF downlink, Signal Type = AWGN100



Frequency Band = Band 30 WCS 2300 (LBS), ANT 2, Test Frequency = mid, Direction = RF downlink, Signal Type = AWGN100









### 4.4.5 TEST EQUIPMENT USED

- Conducted



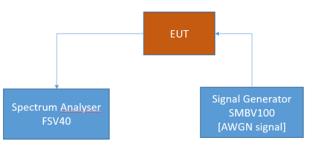
#### 4.5 OUT-OF-BAND EMISSION LIMITS

Standard FCC Part § 2.1051, § 27.53

#### The test was performed according to:

ANSI C63.26, KDB 935210 D05 v01r04: 3.6

**Test date**: 2024-01-05


**Environmental conditions**: 23 °C ± 5 K; 40 % r. F. ± 20 % r. F.

Test engineer: Thomas Hufnagel

#### 4.5.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band emission limit for industrial signal boosters. The limits itself come from the applicable rule part for each operating band.

The EUT was connected to the test setup according to the following diagram:



FCC Part 22/24/27/90 Industrial signal booster - Test Setup; Out-of-band emissions

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.



### 4.5.2 TEST REQUIREMENTS/LIMITS

Abstract § 2.1051 from FCC:

#### FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in § 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

#### Part 27; Miscellaneous Wireless Communication Services

#### Subpart C – Technical standards

#### §27.53 – Emission limits

#### Abstract § 27.53 FCC:

(a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:

(1) For base and fixed stations' operations in the 2305-2320 MHz band and the 2345-2360 MHz band:

(i) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $70 + 10 \log (P) dB$  on all frequencies between 2287.5 and 2300 MHz,  $72 + 10 \log (P) dB$  on all frequencies between 2285 and 2287.5 MHz, and  $75 + 10 \log (P) dB$  below 2285 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz

and 75 + 10 log (P) dB above 2370 MHz.



(2) For fixed customer premises equipment (CPE) stations operating in the 2305-2320 MHz band and the 2345-2360 MHz band transmitting with more than 2 watts per 5 megahertz average EIRP:

(i) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $70 + 10 \log (P) dB$  on all frequencies between 2287.5 and 2300 MHz,  $72 + 10 \log (P) dB$  on all frequencies between 2285 and 2287.5 MHz, and  $75 + 10 \log (P) dB$  below 2285 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.

(3) For fixed CPE stations operating in the 2305-2320 MHz and 2345-2360 MHz bands transmitting with 2 watts per 5 megahertz average EIRP or less:

(i) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $55 + 10 \log (P) dB$  on all frequencies between 2296 and 2300 MHz,  $61 + 10 \log (P) dB$  on all frequencies between 2292 and 2296 MHz,  $67 + 10 \log (P) dB$  on all frequencies between 2288 and 2292 MHz, and  $70 + 10 \log (P) dB$  below 2288 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2365 MHz, and not less than  $70 + 10 \log (P) dB$  above 2365 MHz.



### 4.5.3 TEST PROTOCOL

Band 30 WCS	2300, downlink,	Number of	f input signals	s = 1	1		
Signal Type	Input Power	Band Edge	Signal Frequency [MHz]	Input Power [dBm]	Maximum Out-of-band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
Wideband	0.3 dB < AGC	upper	2357.5	-4.5	-42.4	-13.0	29.4
Wideband	3 dB > AGC	upper	2357.5	-1.2	-42.6	-13.0	29.6
Wideband 5G	0.3 dB < AGC	upper	2355.0	-4.8	-38.4	-13.0	25.4
Wideband 5G	3 dB > AGC	upper	2355.0	-1.8	-38.2	-13.0	25.2
Narrowband	0.3 dB < AGC	upper	2359.8	-4.5	-28.6	-13.0	15.6
Narrowband	3 dB > AGC	upper	2359.8	-1.2	-29.0	-13.0	16.0
Wideband	0.3 dB < AGC	lower	2352.5	-4.3	-42.3	-13.0	29.3
Wideband	3 dB > AGC	lower	2352.5	-1.0	-41.7	-13.0	28.7
Wideband 5G	0.3 dB < AGC	lower	2355.0	-4.6	-38.4	-13.0	25.4
Wideband 5G	3 dB > AGC	lower	2355.0	-1.6	-38.0	-13.0	25.0
Narrowband	0.3 dB < AGC	lower	2350.2	-4.1	-28.8	-13.0	15.8
Narrowband	3 dB > AGC	lower	2350.2	-4.5	-42.4	-13.0	29.4

#### Band 30 WCS 2300, downlink, Number of input signals = 2

		,						
Signal Type	Input Power	Band Edge	Signal Frequency f1 [MHz]	Signal Frequency f2 [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out- of- band Power [dBm]	Margin to Limit [dB]
Wideband	0.3 dB < AGC	upper	2357.5	2355.0	-4.3	-43.4	-13.0	30.4
Wideband	3 dB > AGC	upper	2357.5	2355.0	-1.0	-42.4	-13.0	29.4
Narrowband	0.3 dB < AGC	upper	2359.8	2359.6	-4.7	-31.9	-13.0	18.9
Narrowband	3 dB > AGC	upper	2359.8	2359.6	-1.4	-32.3	-13.0	19.3
Wideband	0.3 dB < AGC	lower	2352.5	2355.0	-4.5	-44.0	-13.0	31.0
Wideband	3 dB > AGC	lower	2352.5	2355.0	-1.2	-44.4	-13.0	31.4
Narrowband	0.3 dB < AGC	lower	2350.2	2350.4	-4.1	-32.2	-13.0	19.2
Narrowband	3 dB > AGC	lower	2350.2	2350.4	-0.8	-32.5	-13.0	19.5

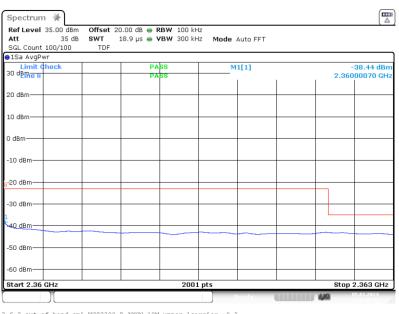
Remark: Please see next sub-clause for the measurement plot.



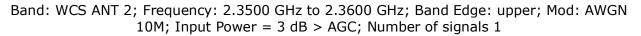
### 4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 1




Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 1

Spectrum 🔆	Offset 20	.00 dB 👄 RBW 50 H	·H7		
Att 35 di		7.9 µs 👄 VBW 200 k			
SGL Count 100/100	TDF				
1Sa AvgPwr					
Limit Check		PASS	M1[1]		-42.57 d
30 dBMen		PASS			2.36000070
20 dBm	1 1				
10 dBm	+				
) dBm	+				
-10 dBm					
-20 dBm					
20 40111				_	<b>-</b>
-30 dBm					
-50 dbm					
-40 dBm					
40 UBIII					
	++				
-50 dBm					
-60 dBm	1 1				
Start 2.36 GHz		200	)1 pts		Stop 2.363 G
1					05.01.2024

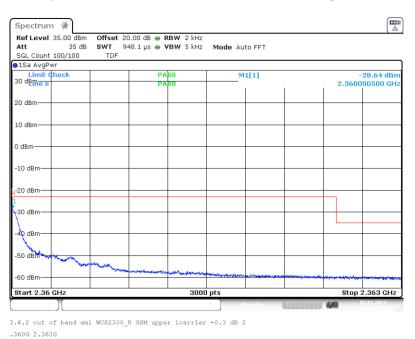

3.6.2 out of band emi WCS2300_R AWGN upper lcarrier +3.0 dB 2.360G 2.363G



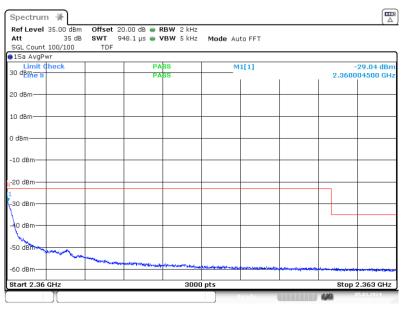
Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: AWGN 10M; Input Power = 0.3 dB < AGC; Number of signals 1



3.6.2 out of band emi WCS2300_R AWGN 10M upper lcarrier -0.3 dB 2.360G 2.363G



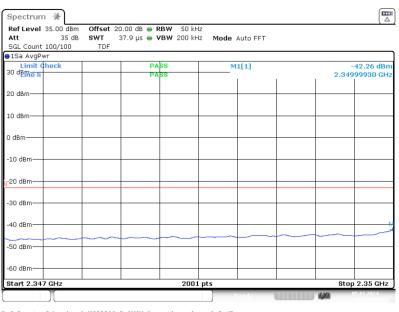




3.6.2 out of band emi WCS2300_R AWGN 10M upper lcarrier +3.0



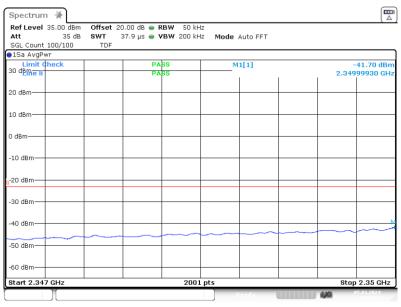
#### Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 1




Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 1



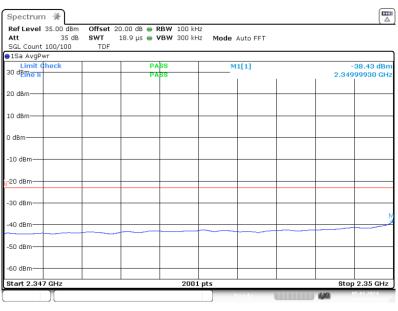
3.6.2 out of band emi WCS2300_R GSM upper lcarrier +3.0 dB 2 .360G 2.363G




#### Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 1

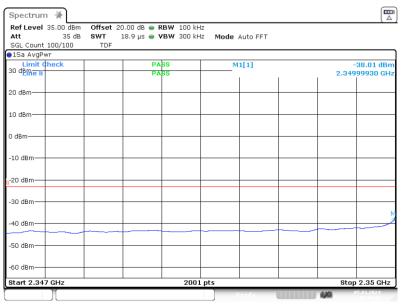


^{3.6.2} out of band emi WCS2300_R AWGN lower lcarrier -0.3 dB 2.347G 2.350G


#### Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 1



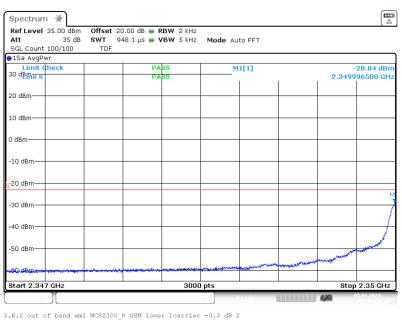
3.6.2 out of band emi WCS2300_R AWGN lower 1carrier +3.0 dB 2.347G 2.350G




Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: AWGN 10M; Input Power = 0.3 dB < AGC; Number of signals 1

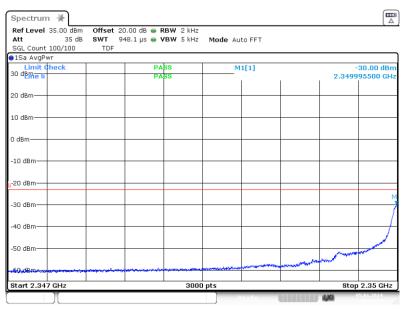


^{3.6.2} out of band emi WCS2300_R AWGN 10M lower lcarrier -0.3 dB 2.347G 2.350G


Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: AWGN 10M; Input Power = 3 dB > AGC; Number of signals 1



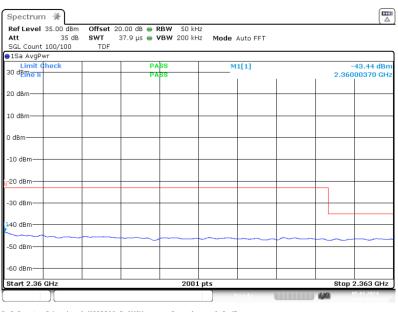
3.6.2 out of band emi WCS2300_R AWGN 10M lower 1carrier +3.0



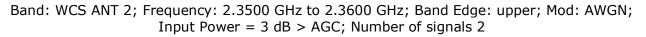

#### Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 1



.347G 2.350G


#### Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 1



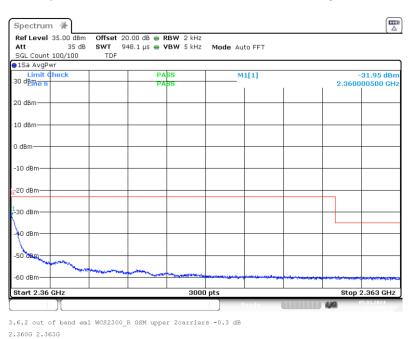

3.6.2 out of band emi WCS2300_R GSM lower 1carrier +3.0 dB 2 .347G 2.350G



#### Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 2



3.6.2 out of band emi WCS2300_R AWGN upper 2carriers -0.3 dB 2.360G 2.363G



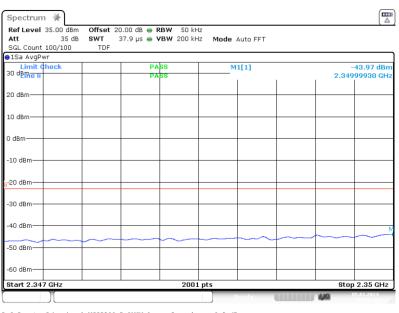



3.6.2 out of band emi WCS2300_R AWGN upper 2carriers +3.0 dB 2.360G 2.363G



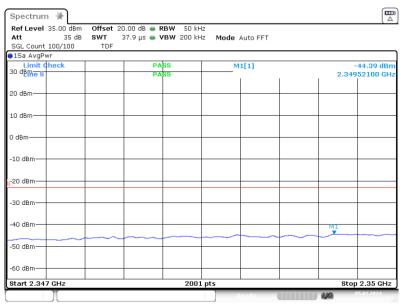
#### Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 2




Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 2



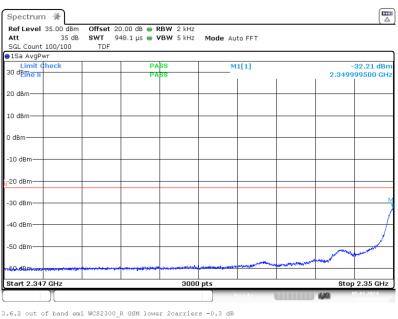
3.6.2 out of band emi WCS2300_R GSM upper 2carriers +3.0 dB 2.360G 2.363G



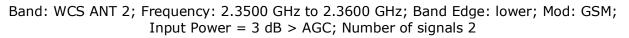

#### Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 2

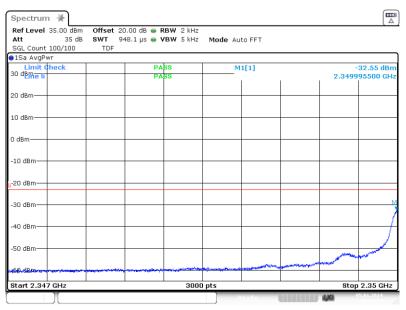


^{3.6.2} out of band emi WCS2300_R AWGN lower 2carriers -0.3 dB 2.347G 2.350G


#### Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 2




3.6.2 out of band emi WCS2300_R AWGN lower 2carriers +3.0 dB 2.347G 2.350G




#### Band: WCS ANT 2; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 2



2.347G 2.350G





3.6.2 out of band emi WCS2300_R GSM lower 2carriers +3.0 dB 2.347G 2.350G



## 4.5.5 TEST EQUIPMENT USED

- Conducted

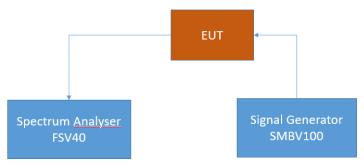
4.6 OUT-OF-BAND REJECTION

Standard KDB 935210 D05

#### The test was performed according to:

ANSI C63.26; KDB 935210 D05

**Test date**: 2023-11-20


**Environmental conditions**: 23 °C ± 5 K; 40 % r. F. ± 20 % r. F.

Test engineer: Thomas Hufnagel

### 4.6.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band rejection test case for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:



FCC Part 22/24/27/90 Industrial signal booster – Test Setup; Out-of-band rejection

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

#### 4.6.2 TEST PROTOCOL

Band 30 WCS 2300				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [MHz]
2357.60	21.13	2349.6925	2360.3125	10.620

Remark: Please see next sub-clause for the measurement plot.

## 4.6.3 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Frequency Band = WCS 2300, Direction = RF downlink

Spectrum					
Ref Level 4 Att TDF	45.00 dB 45 c			Mode Auto FFT	
∋1Pk Max					
40 dBm				M1[1]	21.13 dBr
					2.35760000 GH
30 dBm				ndB	20.00 d
				M1 BW	10.62000000 MH
20 dBm				V O factor	222.
10 dBm			_		
			тβ	12	
0 dBm			¥	¥	
-10 dBm-+					
		mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	~	hanne	
-20 dBm					
-30 dBm 🕂					
-40 dBm					
-50 dBm					
CF 2.355 G	Hz		10000 pt	s	Span 50.0 MHz
Marker					
Type   Ref	Trc	X-value	Y-value	Function	Function Result
M1	1	2.3576 GHz	21.13 dBm	ndB down	10.62 MHz
T1	1	2.3496925 GHz	0.95 dBm	ndB	20.00 dB
T2	1	2.3603125 GHz	1.22 dBm	Q factor	222.0
	][			Measuring	20.11.2023

3.3 Out of band rejection WCS2300_R 2.35500G _20dB

## 4.6.4 TEST EQUIPMENT USED

- Conducted



## 4.7 FREQUENCY STABILITY

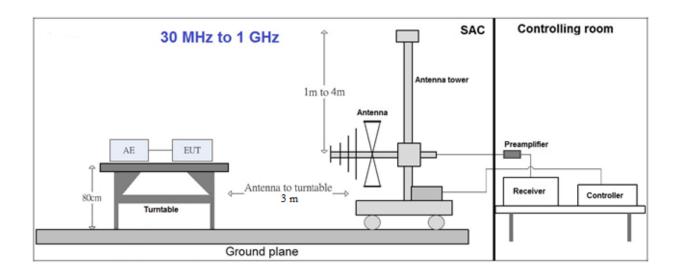
The frequency stability test case was not carried out, as any frequency errors are eliminated by the given system architecture. This is achieved by generating the LOs in the head-end station and the LOs in the remote unit with a common reference clock. This reference clock is transmitted from the head-end station to the remote unit and regenerated there. This means that the same reference frequency is used for all signal conversions (up- and down-conversion as well as analog-to-digital and digital-to-analog conversion) and any frequency error in the reference clock is compensated therefore. This is already clear from the measurement markings for the occupied bandwidth (26 dB bandwidth). It can be seen that the DUT has no influence on the frequency (comparison between input and output signal). In addition, it is operationally necessary for the frequency deviation to be significantly smaller than the spectral distance between the transmission bandwidth edge and the channel bandwidth edge in order to meet the signal quality requirement (signal purity) and such ensure that the fundamental emissions remain within the authorized bands of operation.

## 4.8 FIELD STRENGTH OF SPURIOUS RADIATION

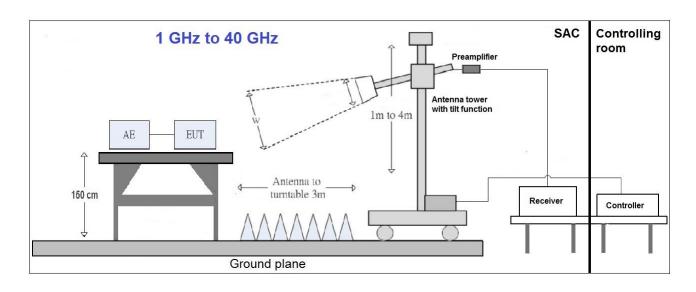
Standard FCC Part § 2.1053, § 27.53

**The test was performed according to:** ANSI C63.26

**Test date**: 2023-11-02 to 2023-11-03


**Environmental conditions**: 23 °C ± 5 K; 40 % r. F. ± 20 % r. F.

Test engineer: Thomas Hufnagel


#### 4.8.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements.

The EUT was connected to the test setup according to the following diagram:







The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table  $1.5 \times 1.5 \text{ m}^2$  in the semi-anechoic chamber, 0.8 meter above the ground or floorstanding arrangement shall be placed on the horizontal ground reference plane.. The influence of the EUT support table that is used between 30–1000 MHz was evaluated. For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions.

The measurement procedure is implemented into the EMI test software BAT EMC from NEXIO. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered by a DC power source. ?

#### 1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 10 m
- Detector: Peak-Maxhold/RMS (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time/Frequency step: 5 ms
- Turntable angle range: -180° to 180°
- Turntable step size: 30°
- Height variation range: 1 4 m
- Height variation step size: 1 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.



#### **Step 2:** Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by  $\pm$  45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by  $\pm$  100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold; RMS
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range:  $\pm$  30 ° around the determined value
- Antenna Polarisation: max. value determined in step 1

#### Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz); RMS; Peak
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

#### 3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

#### Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.5 m height in the semi-anechoic chamber. Absorbers are placed around and between the turn table and the antenna tower.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 30 °.

The turn table step size (azimuth angle) for the preliminary measurement is 15 °. **Step 2:** 

The maximum RFI field strength was determined during the measurement by rotating the turntable ( $\pm 180$  degrees) and varying the height of the receive antenna (h = 1 ... 4 m) with a additional tilt function of the antenna. The turn table azimuth will slowly vary by  $\pm 15^{\circ}$ . EMI receiver settings (for all steps):

- Detector: Peak, Average

- IF Bandwidth = 1 MHz



## Step 3:

- Spectrum analyser settings for step 3:
- Detector: Peak/Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

#### Remarks to the measuremtent in the frequency range between 1 GHz and 18 GHz:

In this range for noise reduction it was necessary to bring the antenna into a distance of 1 m to the test table with the DUT.

This also means that the height scan in this range is between 1.33 m for the lowest position and 2.33 m in the highest positions: This equates to the same scan range of the DUT as in 3 m antenna distance to the DUT and a height variation between 1 m and 4 m.



## 4.8.2 TEST REQUIREMENTS/LIMITS

Abstract from FCC Part § 2.1053:

#### FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of § 2.1049, as appropriate.

#### Part 27; Miscellaneous Wireless Communication Services

#### Subpart C – Technical standards

#### §27.53 – Emission limits

#### Abstract § 27.53 FCC:

(a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:

(1) For base and fixed stations' operations in the 2305-2320 MHz band and the 2345-2360 MHz band:

(i) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $70 + 10 \log (P) dB$  on all frequencies between 2287.5 and 2300 MHz,  $72 + 10 \log (P) dB$  on all frequencies between 2285 and 2287.5 MHz, and  $75 + 10 \log (P) dB$  below 2285 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.

(2) For fixed customer premises equipment (CPE) stations operating in the 2305-2320 MHz band and the 2345-2360 MHz band transmitting with more than 2 watts per 5 megahertz average EIRP:



(i) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $70 + 10 \log (P) dB$  on all frequencies between 2287.5 and 2300 MHz,  $72 + 10 \log (P) dB$  on all frequencies between 2285 and 2287.5 MHz, and  $75 + 10 \log (P) dB$  below 2285 MHz;

(iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.

(3) For fixed CPE stations operating in the 2305-2320 MHz and 2345-2360 MHz bands transmitting with 2 watts per 5 megahertz average EIRP or less:

(i) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz,  $55 + 10 \log (P) dB$  on all frequencies between 2296 and 2300 MHz,  $61 + 10 \log (P) dB$  on all frequencies between 2292 and 2296 MHz,  $67 + 10 \log (P) dB$  on all frequencies between 2288 and 2292 MHz, and  $70 + 10 \log (P) dB$  below 2288 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2365 MHz, and not less than  $70 + 10 \log (P) dB$  above 2365 MHz.



## 4.8.3 TEST PROTOCOL

General considerations concerning the limits:

The measuring bandwidth of 1 MHz was chosen according the test requirements exept at the bands from 30 MHz to 1 GHz: At these bands reducing of measurement bandwidth was done. Also outside the downlink frequency band at lower frequencies the measurement bandwidths were reduced to have the possibility to record the spurious emissions at these lower frequencies.

At frequencies were measuring bandwidths were reduced also the limit lines were reduced according the given formula:

$$p \ RBW reduced \ [dBm] = 10 * \log \left( RBW reduced \ [kHz] - 1000 \ kHz \right) + pRBW \ 1000 \ kHz [dBm]$$

Hereby "p" are the limit lines' values.

Considerations to MIMO operation:

At this test the two output ports ANT 1 and ANT 2 are together in function according KDB 935210 D02 v04r02 chapter II (o) (2).



#### Measurement tables (showing the highest value. "worst case") with one antenna

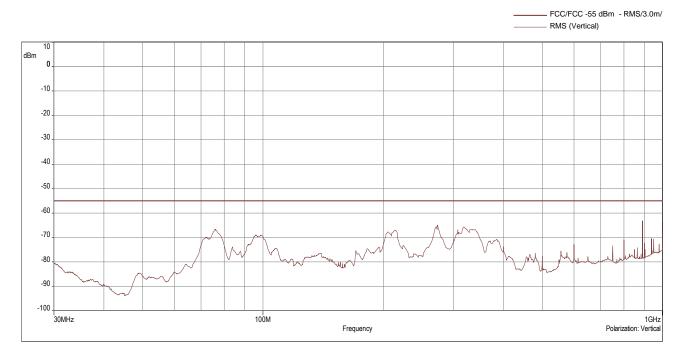
At this tables the highest peak value of spurious radiation per frequency test band is shown.

Band 30 WCS	2300, downli	nk;	]			
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
271.3/hor	-63.1	-4.3	RMS	100	-55.0	8.1
273.1/vert.	-64.9	-4.3	RMS	100	-55.0	9.9
17271.4/hor.	-53.5	-4.3	RMS	1000	-45.0	8.5
17258.1/ver.	-50.6	-4.3	RMS	1000	-45.0	5.6
26653.5/hor.	-65.9	-4.3	RMS	1000	-45.0	20.9
26633.4/vert.	-65.3	-4.3	RMS	1000	-45.0	20.3

#### Measurement tables (showing the highest value. "worst case") with two antennas (MIMO)

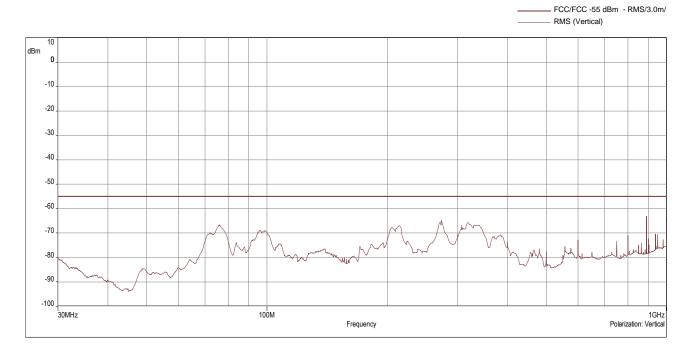
At this tables the highest peak value of spurious radiation per frequency test band is shown.

Band 30 WCS	2300, downli	nk;				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
271.6/hor	-63.6	-4.3	RMS	100	-55.0	8.6
271.0/vert.	-62.3	-4.3	RMS	100	-55.0	7.3
17240.5/hor.	-53.3	-4.3	RMS	1000	-45.0	8.3
17259.3/ver.	-53.8	-4.3	RMS	1000	-45.0	8.8
26646.0/hor.	-65.6	-4.3	RMS	1000	-45.0	20.6
26653.5/vert.	-65.2	-4.3	RMS	1000	-45.0	20.2

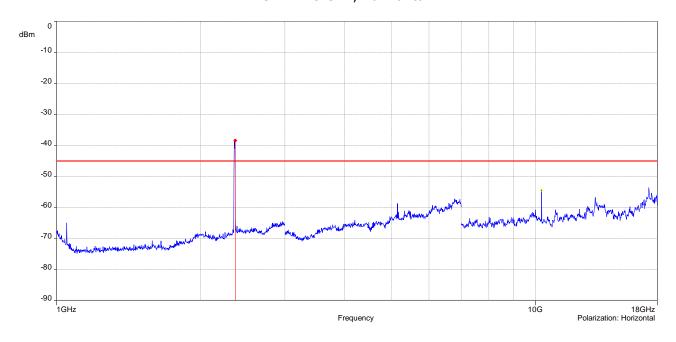

Abbreviations: Hor.: horizontal position Vert.: vertical position

Remark: Please see next sub-clause for the measurement plot.



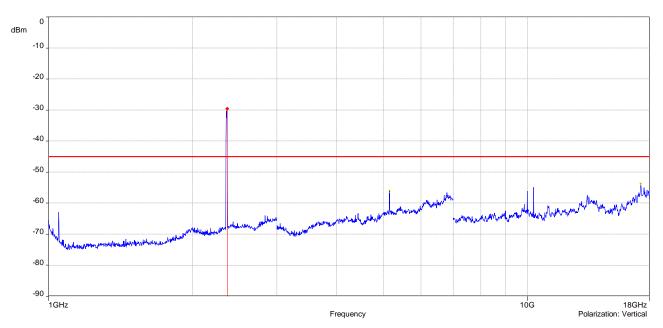

# 4.8.4 MEASUREMENT PLOTS (SHOWING THE HIGHEST VALUE. "WORST CASE") WITH ONE ANTENNA

#### 4.8.4.1 Frequency Band = Band WCS 2300, ANT 2. Direction = RF Downlink



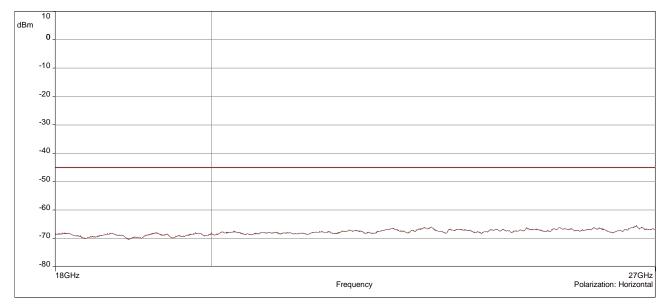

#### 30 MHz - 1 GHz, horizontal





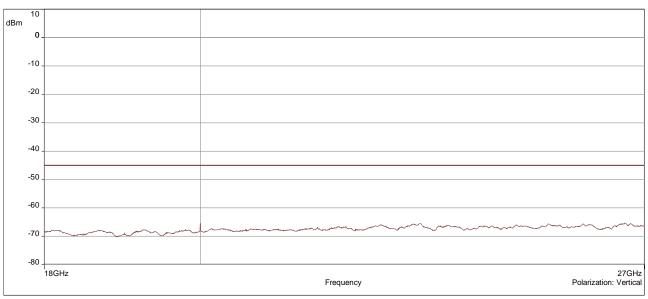






1 GHz - 18 GHz, horizontal

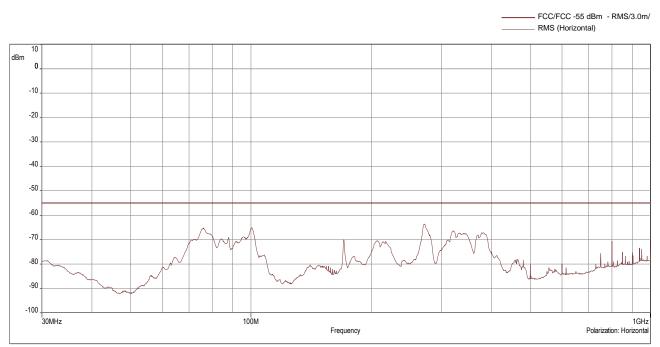




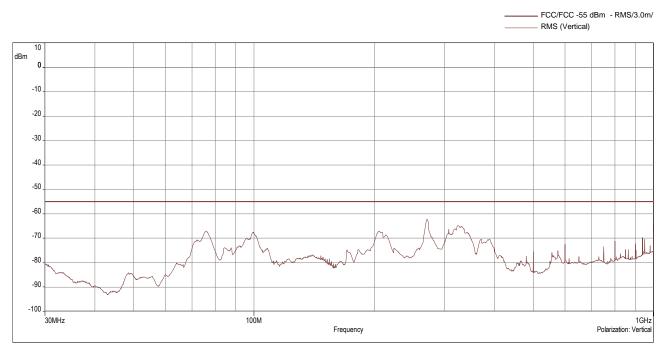

FCC/FCC -45 dBm - RMS/3.0m/ RMS (Horizontal)



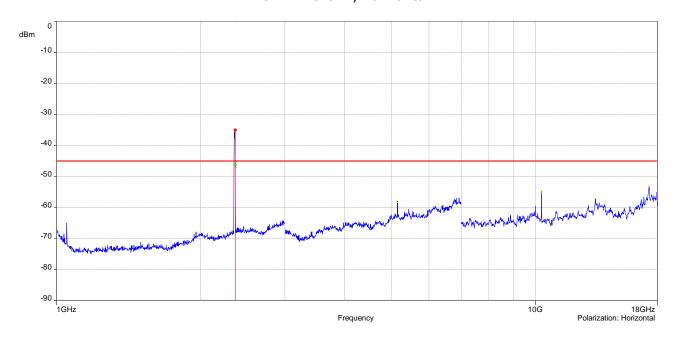



FCC/FCC -45 dBm - RMS/3.0m/ RMS (Vertical)



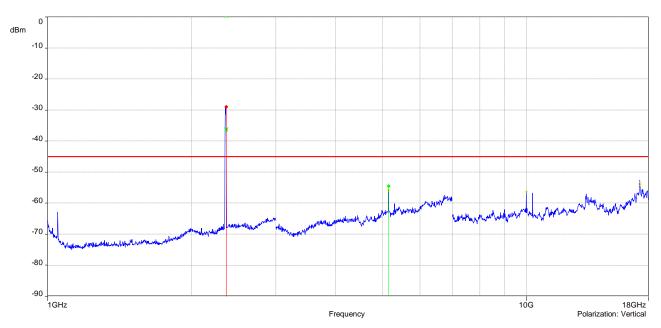



## 4.8.4.2 Frequency Band = Band WCS 2300, ANT 1and 2 (MIMO). Direction = RF Downlink



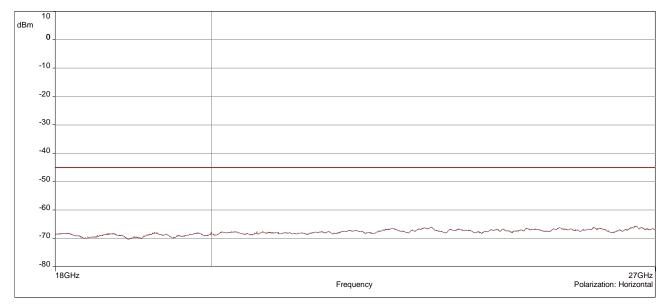

30 MHz - 1 GHz, horizontal





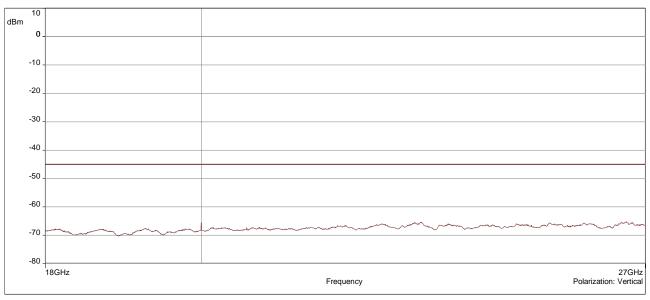






1 GHz - 18 GHz, horizontal






_____ FCC/FCC -45 dBm - RMS/3.0m/ _____ RMS (Horizontal)





FCC/FCC -45 dBm - RMS/3.0m/ RMS (Vertical)





## 4.8.5 FIELD STRENGTH CALCULATIONS

#### FS = SA + AF + CL + PA

Where as:

- **FS** = Field strength **SA** = EMC test receiver reading
- **AF** = Antenna factor
- **CL** = Cable loss
- **PA** = Preamplifier

## 4.8.6 TEST EQUIPMENT USED

- Radiated Emissions



## 5 TEST EQUIPMENT

## 5.1 CONDUCTED EMISSIONS

Ref.No.	Туре	Description	Manufacturer	Inventory no.	Last Calibration	Calibration Due
1.1	FSV40 *	Signal Analyzer 10 Hz - 40 GHz	Rohde & Schwarz	E-003139	2023-10	2024-10
1.2	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	E-003206	2023-01	2025-01
1.3	n. a.	Switchbox for Wireless	Bureau Veritas	E-003951	2023-10	2024-10
1.4	LabView	Software	NI	Auto Messung 1 Channel V8		

## 5.2 RADIATED EMISSIONS

Ref.No.	Туре	Description	Manufacturer	Inventory no.	Last Calibration	Calibration Due
1.5	ESU40 *	EMI test receiver 10 Hz - 40 GHz	Rohde & Schwarz	E-003138	2023-10	2024-10
1.6	CBL 6111C	Antenna 30 MHz – 1 GHz	Chase	E-003226	2021-10	2024-10
1.7	HL 025	Antenna 1 GHz - 18 GHz	Rohde & Schwarz	E-003259	2022-10	2024-10
1.8	MWH-1826/B	Antenna 18 GHz – 26.5 GHz	ARA Inc.	E-003233	2022-11	2024-11
1.9	AM1431 *	Pre amplifier 10 kHz – 1 GHz	Miteq	E-003365	2023-10	2024-10
1.10	AFS4-00102000 *	Preamplifier 100 MHz - 20 GHz	Miteq	E-003633	2022-10	2023-10
1.11	AMP-18000-40000- 60-18-2.9-F	Preamplifier 18 GHz - 40 GHz	TTE Europe	E-004003	2023-10	2024-10
1.12	CO3000	Controller SAC	Innco systems GmbH	E-003052 with Software 1.02.62		
1.13	BAT-EMC	Software	Nexio	V 2023.0.3.0		



## 6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas.

## 6.1 ANTENNA CHASE CBL 6111C (30 MHZ - 1 GHZ)

#### $(d_{\text{Limit}} = 3 \text{ m})$

			ashla	ashla	ashla	ashla	diatanaa	4	d
			cable loss 1	cable loss 2	cable loss 3	cable loss 4	distance corr.	d _{Limit} (meas.	d _{used} (meas.
			(inside	(outside	(switch	(to	(-20 dB/	distance	distance
Frequency	AF	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
30	18.6	0.6	0.29	0.04	0.23	0.02	0.0	3	3
50	6.0	0.9	0.39	0.09	0.32	0.08	0.0	3	3
100	9.7	1.2	0.56	0.14	0.47	0.08	0.0	3	3
150	7.9	1.6	0.73	0.20	0.59	0.12	0.0	3	3
200	7.6	1.9	0.84	0.21	0.70	0.11	0.0	3	3
250	9.5	2.1	0.98	0.24	0.80	0.13	0.0	3	3
300	11.0	2.3	1.04	0.26	0.89	0.15	0.0	3	3
350	12.4	2.6	1.18	0.31	0.96	0.13	0.0	3	3
400	13.6	2.9	1.28	0.35	1.03	0.19	0.0	3	3
450	14.7	3.1	1.39	0.38	1.11	0.22	0.0	3	3
500	15.6	3.2	1.44	0.39	1.20	0.19	0.0	3	3
550	16.3	3.5	1.55	0.46	1.24	0.23	0.0	3	3
600	17.2	3.5	1.59	0.43	1.29	0.23	0.0	3	3
650	18.1	3.6	1.67	0.34	1.35	0.22	0.0	3	3
700	18.5	3.6	1.67	0.42	1.41	0.15	0.0	3	3
750	19.1	4.1	1.87	0.54	1.46	0.25	0.0	3	3
800	19.6	4.1	1.90	0.46	1.51	0.25	0.0	3	3
850	20.1	4.4	1.99	0.60	1.56	0.27	0.0	3	3
900	20.8	4.7	2.14	0.60	1.63	0.29	0.0	3	3
950	21.1	4.8	2.22	0.60	1.66	0.33	0.0	3	3
1000	21.6	4.9	2.23	0.61	1.71	0.30	0.0	3	3

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction =  $-20 * LOG (d_{Limit}/d_{used})$ 

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.



				-				
					cable			
					loss 3			
			cable loss		(switch			
			1 (relay +	cable	unit.			
			cable	loss 2	atten-	cable		
			inside	(outside	uator &	loss 4 (to		
Frequency	AF	Corr.	chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB	dB	dB	dB	dB		
1000	24.4	-19.4	0.99	0.31	-21.51	0.79		
2000	28.5	-17.4	1.44	0.44	-20.63	1.38		
3000	31.0	-16.1	1.87	0.53	-19.85	1.33		
4000	33.1	-14.7	2.41	0.67	-19.13	1.31		
5000	34.4	-13.7	2.78	0.86	-18.71	1.40		
6000	34.7	-12.7	2.74	0.90	-17.83	1.47		
7000	35.6	-11.0	2.82	0.86	-16.19	1.46		
<u> </u>			<u>.</u>	•	•	-	•	
						cable		
						loss 4		
						(switch		
			cable loss	cable	cable	unit.		used
			1 (relay	loss 2	loss 3	atten-	cable	for
			inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	AF	Corr.	chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	
3000	31.0	-23.4	0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3	0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7	0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2	0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8	0.66	2.82	0.86	-25.58	1.46	
			cable loss	cable	cable	cable	cable	
			1 (relay	loss 2	loss 3	loss 4	loss 5	cable loss
			inside	(High	(pre-	(inside	(outside	6 (to
Frequency	AF	Corr.	chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	dB
7000	35.6	-57.3	0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3	0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3	0.68	0.65	-60.80	3.06	1.09	1.60
10000	37.5	-56.2	0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3	0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7	0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5	0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3	0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1	0.98	0.54	-61.05	4.02	1.44	1.83
16000	41.3	-54.1	1.23	0.49	-61.51	4.17	1.51	1.85
17000	42.8	-54.4	1.36	0.76	-62.36	4.34	1.53	2.00
18000	44.2	-54.7	1.70	0.53	-62.88	4.41	1.55	1.91
10000	1.114	51.7	1.70	0.00	02.00	1171	1.55	1.71

#### 6.2 ANTENNA ROHDE & SCHWARZ HL 025 (1 GHZ – 18 GHZ)

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables. switch unit. distance correction. amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

#### 6.3 ANTENNA ARA INC. MWH-1826-B (18 GHZ – 26.5 GHZ) PARTIALLY IN CONJUNCTION WITH PRE-AMPLIFIER MITEQ JS43-1800-4000: THE USE OF THE PRE-AMPLIFIER IS DEPENDENT FROM THE FIELD STRENGTH

			cable loss 1 (inside	cable loss 2	cable loss 3 (inside	cable loss 4 (switch	cable loss 5 (to
Frequency	AF	Corr.	chamber)	(pre-amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables. switch unit. distance correction. amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values.



## 7 MEASUREMENT UNCERTAINTIES

KDB 935210 D05	ECL
Power measurement	0,68 dB
Measuring AGC threshold level	0,90 dB
Out of band rejection	0,90 dB
Input-versus-output signal comparison	0,91 dB
Mean power output	0,90 dB
Measuring out-of-band/out-of-block (including intermodulation) emissions and spurious emissions	0,90 dB
Out-of-band/out-of-block emissions conducted measurements	0,90 dB
Spurious emissions conducted	2,18 dB
Spurious emissions radiated mesurements	5,38 dB
Total frequency uncertainty	2 x 10 ⁻⁷

Reference :

ECL-MU5.4.6.3-EMC-14-001-V03.00 MU Wireless.xlsx



## 8 PHOTO REPORT

Please see separate photo report.

## ANNEX A: ACCREDITATION CERTIFICATE (FOR INFORMATION)

The accreditation relates to competences stated on the accreditation certificate. The current certificate is available on the homepage of the DAkkS and can be downloaded under accredited bodies with the processing number:

https://www.dakks.de/en

## ANNEX B: ADDITIONAL INFORMATION PROVIDED BY CLIENT

None.

****** End of test report *****