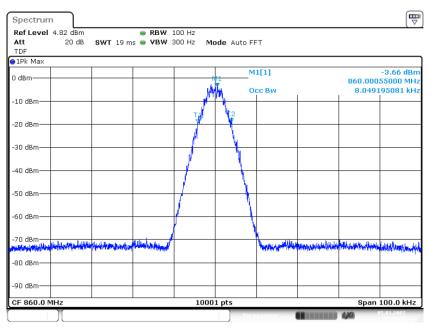


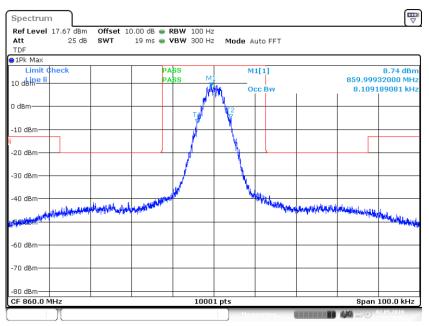
$\begin{array}{l} \mbox{Output SignalFrequency Band = Band 851 MHz - 861 MHz, Direction = RF Downlink, Input \\ \mbox{Power = 0.3 dB < AGC, Emission Designator = 8K10F1D at f_{customer}} \end{array}$

8K10F1D-0.3;860.0000000M _99



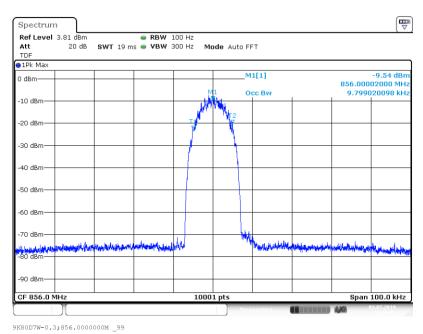
8K10F1D-0.3;860.000000M _99

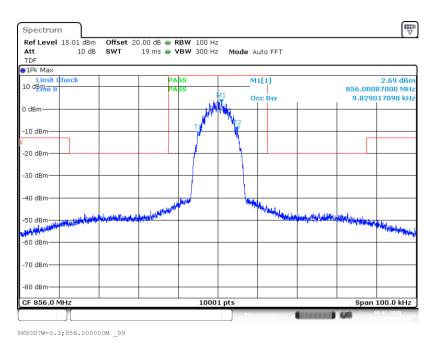
Output Signal



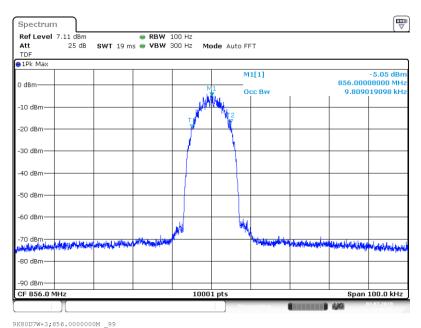
$\begin{array}{l} \mbox{Frequency Band} = \mbox{Band 851 MHz} - 861 \mbox{ MHz}, \mbox{Direction} = \mbox{RF downlink}, \mbox{Input Power} = 3 \mbox{ dB} > \\ \mbox{AGC, Emission Designator} = 8 \mbox{K10F1D at } f_{\mbox{customer}} \end{array}$

⁸K10F1D+3;860.0000000M _99

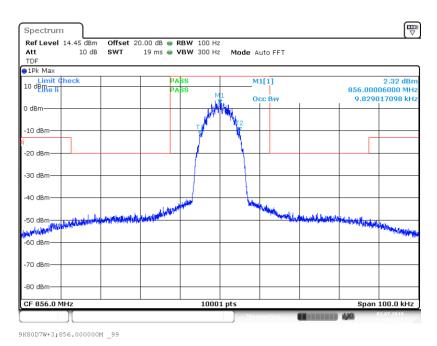



8K10F1D+3;860.000000M _99

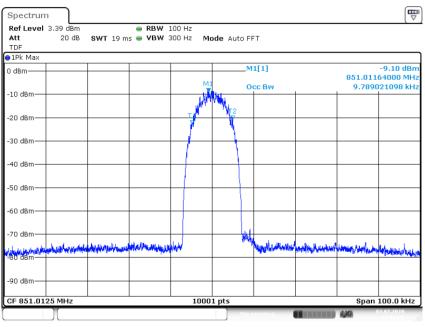
Frequency Band = Band 851 MHz – 861 MHz, Direction = RF Downlink, Input Power = 0.3 dB < AGC, Emission Designator = 9K80D7W at fm



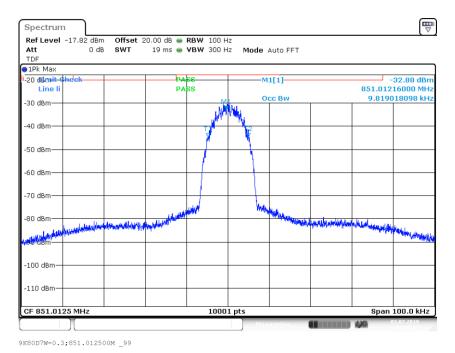
Output Signal



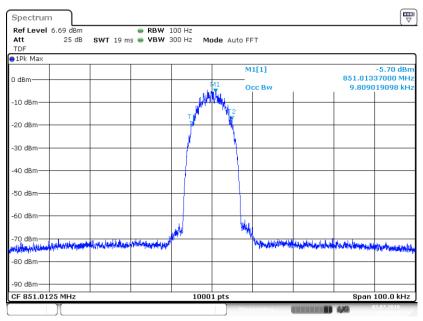
Frequency Band = Band 851 MHz - 861 MHz, Direction = RF downlink, Input Power = 3 dB > AGC, Emission Designator = 9K80D7W at f_m

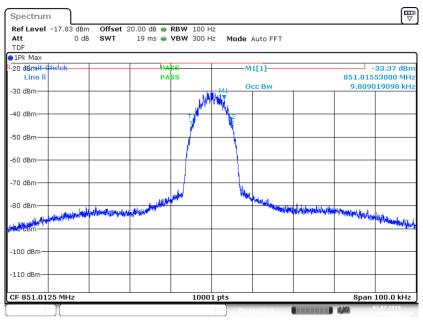


Output Signal



Frequency Band = Band 851 MHz – 861 MHz, Direction = RF Downlink, Input Power = 0.3 dB < AGC, Emission Designator = 9K80D7W at flow


9K80D7W-0.3;851.0125000M _99

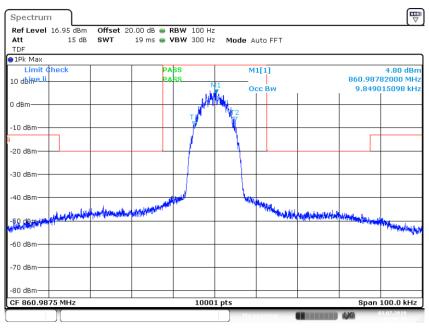


Frequency Band = Band 851 MHz – 861 MHz, Direction = RF downlink, Input Power = 3 dB > AGC, Emission Designator = 9K80D7W at f_{low}

⁹K80D7W+3;851.0125000M _99

9K80D7W+3;851.012500M _99

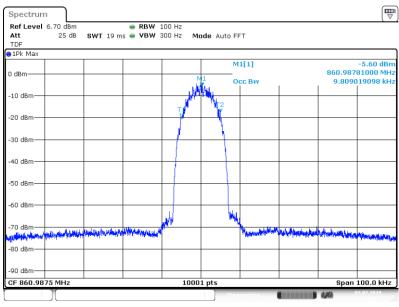
Output Signal



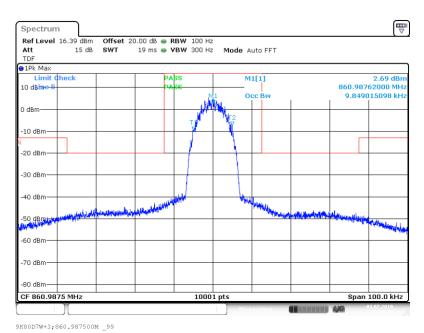
Spectrum ₽ RBW 100 Hz SWT 19 ms VBW 300 Hz Ref Level 3.41 dBm 20 dB Att Mode Auto FFT TDF 1Pk Max M1[1] 9.84 dB 0 dBm 9.84 dBn 860.98761000 MH 9.799020098 kH Occ Bw -10 dBm -20 dBrr -30 dBm 40 dBm -50 dBr 60 dBrr -70 dBrr Jul الارواب المساور والمساور والمساور والمتعاد والمتعاد والمتعاد والمعاد والمعجلين أرورا Aland attended a stand with all فالانكانا -90 dBm CF 860.9875 MHz 10001 pts Span 100.0 kHz LX

Output SignalFrequency Band = Band 851 MHz – 861 MHz, Direction = RF Downlink, Input Power = 0.3 dB < AGC, Emission Designator = 9K80D7W at f_{high}

9K80D7W-0.3;860.9875000M _99

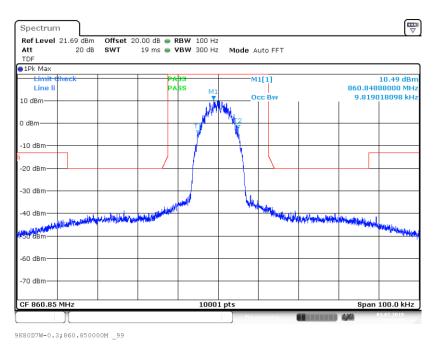


9K80D7W-0.3;860.987500M _99



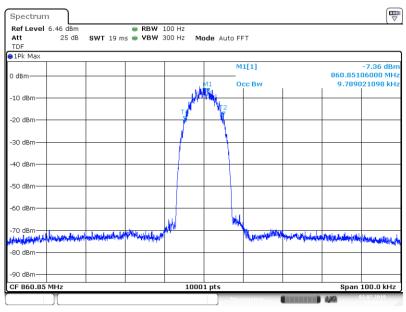
$\label{eq:Frequency Band = Band 851 MHz - 861 MHz, Direction = RF downlink, Input Power = 3 dB > AGC, Emission Designator = 9K80D7W at f_{high}$

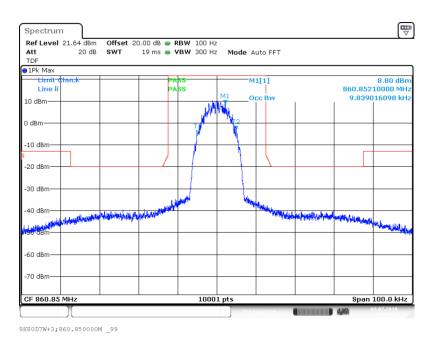
9K80D7W+3;860.9875000M _99

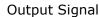


Spectrum ₽ Ref Level 3.21 dBm ● RBW 100 Hz SWT 19 ms ● VBW 300 Hz Att 20 dB Mode Auto FFT TDF ●1Pk Max -8.06 dBm 860.84888000 MHz 9.799020098 kHz M1[1] 0 dBm M Occ Bw -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm فسألده and the state of t 90 dB -90 dBm CF 860.85 MHz 10001 pts Span 100.0 kHz

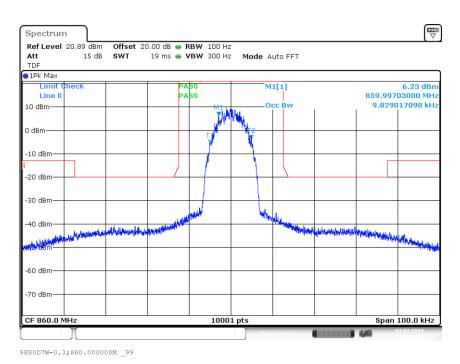
$\begin{array}{l} \mbox{Output SignalFrequency Band = Band 851 MHz - 861 MHz, Direction = RF Downlink, Input \\ \mbox{Power = 0.3 dB < AGC, Emission Designator = 9K80D7W at } f_0 \end{array}$


9K80D7W-0.3;860.8500000M _99



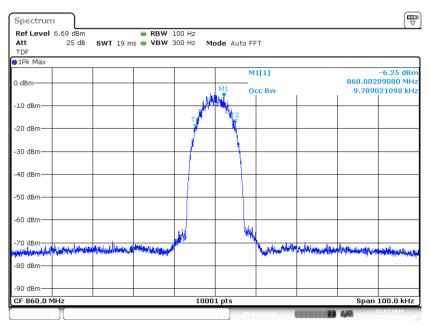

Frequency Band = Band 851 MHz – 861 MHz, Direction = RF downlink, Input Power = 3 dB > AGC, Emission Designator = 9K80D7W at f_0

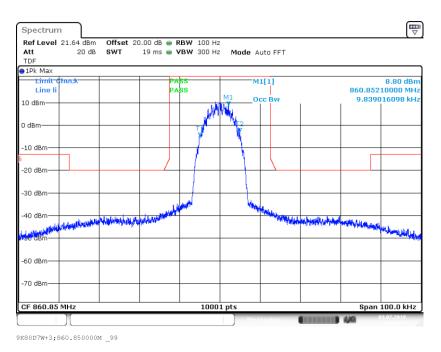
⁹K80D7W+3;860.8500000M _99



Spectrum ₽ Ref Level 3.36 dBm RBW 100 Hz
 SWT 19 ms
 VBW 300 Hz 20 dB Mode Auto FFT Att TDF ●1Pk Max _M1[1] 9.17 dB 0 dBrr 859.99915000 MH M 9.809019098 kHz Occ Bw -10 dBm J.M. -20 dBm -30 dBm -40 dBm -50 dBn -60 dBm -70 dBn وريدارهم www.windowene when a property in the second second n Her -90 dBm CF 860.0 MHz 10001 pts Span 100.0 kHz

Output SignalFrequency Band = Band 851 MHz – 861 MHz, Direction = RF Downlink, Input Power = 0.3 dB < AGC, Emission Designator = 9K80D7W at f_{customer}


9K80D7W-0.3;860.0000000M _99



$\begin{array}{l} \mbox{Frequency Band} = \mbox{Band 851 MHz} - 861 \mbox{ MHz}, \mbox{Direction} = \mbox{RF downlink, Input Power} = 3 \mbox{ dB} > \\ \mbox{AGC, Emission Designator} = 9\mbox{K80D7W at } f_{\mbox{customer}} \end{array}$

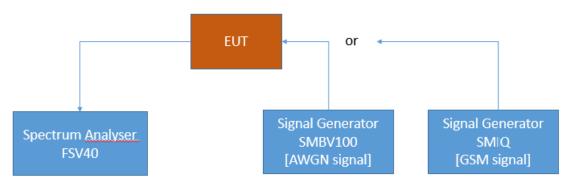
⁹K80D7W+3;860.0000000M _99

Output Signal

4.3.5 TEST EQUIPMENT USED

FCC Conducted Base Station / Repeater

4.4 CONDUCTED SPURIOUS EMISSIONS AT ANTENNA TERMINALS


Standard FCC Part 2.1051, FCC Part 90: §90.219

The test was performed according to: ANSI C63.26

4.4.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission limits per § 2.1051. The limit comes from the applicable rule part for the operating band

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster – Test Setup; Conducted Spurious Emissions

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

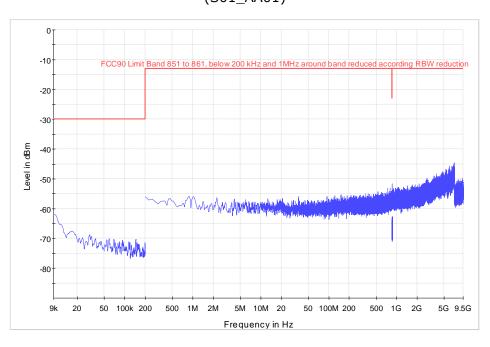
4.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

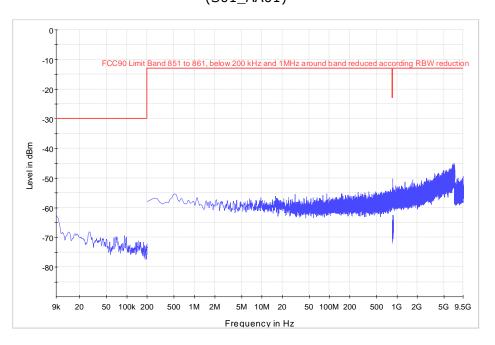
The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

Part 90, §90.219 (e)

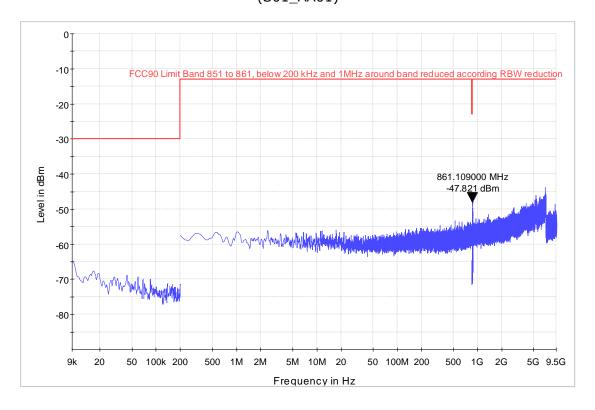
(3) Spurious emissions from a signal booster must not exceed -13 dBm within any 100 kHz measurement bandwidth.


4.4.3 TEST PROTOCOL

Band 851	Band 851 MHz – 861 MHz, downlink										
Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]				
low	CW	6989.2	-44.6	Peak	100	-13.0	31.6				
mid	CW	6982.2	-45.1	Peak	100	-13.0	32.1				
high	CW	861.1	-47.8	Peak	10	-23.0	24.8				


Remark: Please see next sub-clause for the measurement plot.

4.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Frequency Band = Band 851 MHz - 861 MHz, Test Frequency = low, Direction = RF downlink, Signal Type = CW (S01_AA01)



Frequency Band = Band 851 MHz - 861 MHz, Test Frequency = mid, Direction = RF downlink, Signal Type = CW (S01_AA01)

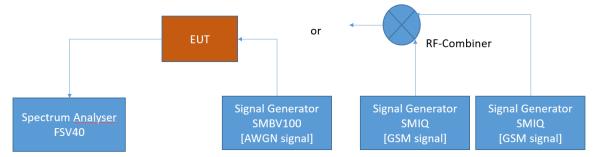
Frequency Band = Band 851 MHz - 861 MHz, Test Frequency = high, Direction = RF downlink, Signal Type = CW (S01_AA01)

4.4.5 TEST EQUIPMENT USED

- R&S TS8997

4.5 OUT-OF-BAND EMISSION LIMITS

Standard FCC Part 90; §90.213, §90.691


The test was performed according to:

ANSI C63.26, KDB 935210 D05 v01r02: 3.6

4.5.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band emission limit for industrial signal boosters. The limits itself come from the applicable rule part for each operating band.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster – Test Setup; Out-of-band emissions

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.5.2 TEST REQUIREMENTS / LIMITS

Part 90, Subpart I/S

Band 851 MHz – 861 MHz

§90.219 – Use of signal boosters

(e)(3) Spurious emissions from a signal booster must not exceed -13 dBm within any 100 kHz measurement bandwidth.

(d)(6)(i) In general, the ERP of intermodulation products should not exceed -30 dBm in 10 kHz measurement bandwidth.

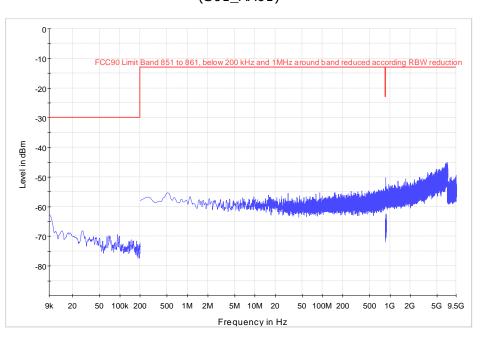
Part 90, Subpart I/R

Band 851 MHz – 861 MHz

§90.691 - Emission mask requirements for EA-based systems.

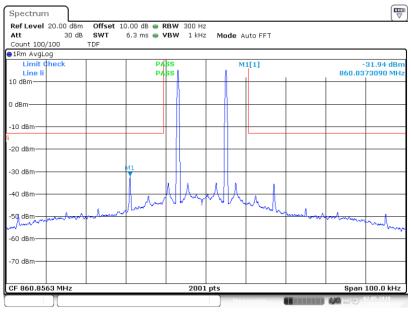
(a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

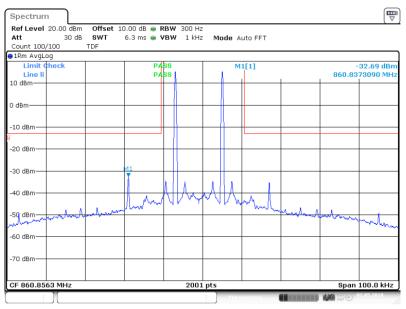

4.5.3 TEST PROTOCOL

Band 851 MHz	Band 851 MHz – 861 MHz, Downlink, Number of Input Signals = 1									
Emission Designator	Input Power	Signal Frequency [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]				
CW	0.3 dB < AGC	856.0000	0.7	-45.1	-13.0	32.1				

Band 851 MHz – 861 MHz, Downlink, Number of Input Signals = 2											
Emission Designator with Channel Bandwidth [kHz]	Input Power	Signal Frequency f1 [MHz]	Signal Frequency f2 [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]				
CW at 12.5	0.3 dB < AGC	860.8500	860.8625	1.3	-31.9	-13.0	18.9				
CW at 12.5	3 dB > AGC	860.8500	860.8625	4.6	-32.7	-13.0	19.7				
CW at 25	0.3 dB < AGC	860.8500	860.8750	1.3	-32.9	-13.0	19.9				
CW at 25	3 dB > AGC	860.8500	860.8750	4.6	-32.5	-13.0	19.5				

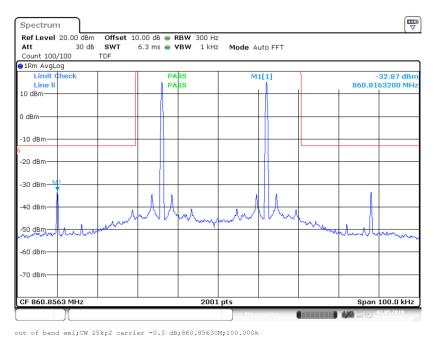


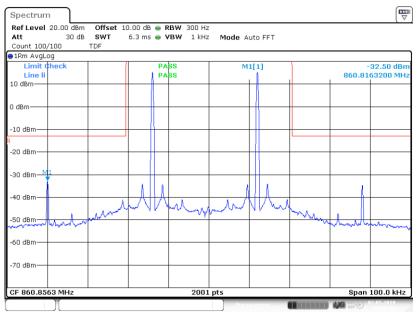
4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Frequency Band = 851 MHz - 861 MHz, Number of signals = 1, Direction = RF downlink, Input Power = 3 dB < AGC, Signal Type = CW (S01_AA01)



Frequency Band = 851 MHz – 861 MHz, Channel Bandwidth = 12.5 kHz, Number of Signals = 2, Direction = RF Downlink, Input Power = = 0.3 dB < AGC, Emission Designator = CW

out of band emi;CW;2 carrier -0.3 dB;860.85630M;100.000k


Frequency Band = 851 MHz – 861 MHz, Channel Bandwidth = 12.5 kHz, Number of Signals = 2, Direction = RF Downlink, downlink, Input Power = 3 dB > AGC, Emission Designator = CW


out of band emi;CW;2 carrier +3 dB;860.85630M;100.000k

Frequency Band = 851 MHz – 861 MHz, Channel Bandwidth = 25 kHz, Number of Signals = 2, Direction = RF Downlink, Input Power = = 0.3 dB < AGC, Emission Designator = CW

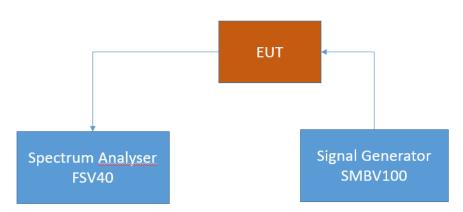
Frequency Band = 851 MHz – 861 MHz, Channel Bandwidth = 25 kHz, Number of Signals = 2, Direction = RF Downlink, downlink, Input Power = 3 dB > AGC, Emission Designator = CW

out of band emi;CW 25k;2 carrier +3 dB;860.85630M;100.000k

4.5.5 TEST EQUIPMENT USED

- FCC Conducted Base Station / Repeater

4.6 OUT-OF-BAND REJECTION


Standard FCC Part 90

The test was performed according to: ANSI C63.26

4.6.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band rejection test case for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster – Test Setup; Out-of-band rejection

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

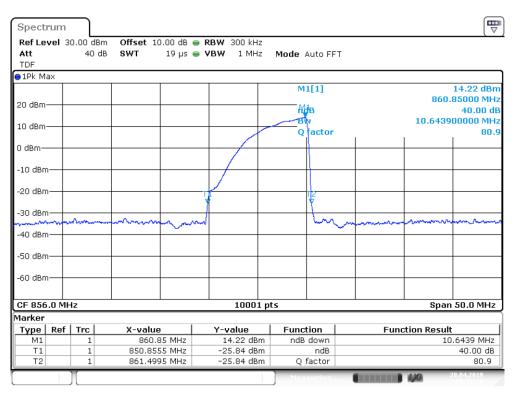
The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.6.2 TEST REQUIREMENTS / LIMITS

§90.219 – Use of signal boosters

(d)(7) Signal booster passbands are limited to the service band or bands for which the operator is authorized. In general, signal boosters should utilize the minimum passband that is sufficient to accomplish the purpose. Except for distributed antenna systems (DAS) installed in buildings, the passband of a Class B booster should not encompass both commercial services (such as ESMR and Cellular Radiotelephone) and part 90 Land Mobile and Public Safety Services.

For this test case exists no applicable limit



4.6.3 TEST PROTOCOL

Band 851 MHz - 8				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -40 dB Frequency [MHz]	Upper Highest Power -40 dB Frequency [MHz]	40 dB Bandwidth [kHz]
860.8500	14.22	850.8555	861.4995	10644.0

Remark: Please see next sub-clause for the measurement plot.

4.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Frequency Band = Band 851 MHz - 861 MHz, Direction = RF Downlink

Out of band rejection 856.00000M _20dB

4.6.5 TEST EQUIPMENT USED

- FCC Conducted Base Station / Repeater

4.7 NOISE

Standard FCC Part 90, §90.219

The test was performed according to: ANSI C63.26

4.7.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to noise limit for industrial signal boosters. The limits itself come from the applicable rule part for each operating band.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster - Test Setup; Noise

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.7.2 TEST REQUIREMENTS / LIMITS

Part 90, Subpart I/S

§90.219 – Use of signal boosters

(e)(2) The noise figure of a signal booster must not exceed 9 dB in either direction.

(d)(6)(ii) In general, the ERP of noise within the passband should not exceed -43 dBm in 10 kHz measurement bandwidth.

(d)(6)(iii) In general, the ERP of noise on spectrum more than 1 MHz outside of the passband should not exceed -70 dBm in a 10 kHz measurement bandwidth.

4.7.3 TEST PROTOCOL

Band 851 MHz – 861 MHz, downlink										
Test Step	Max noise Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]					
passband	<-65	PEAK	10	-43.0	>20					
Out of passband	-71.0	PEAK	10	-70.0	1.0					

Remark: Please see next sub-clause for the measurement plot.

Customer declaration concerning the noise figure:

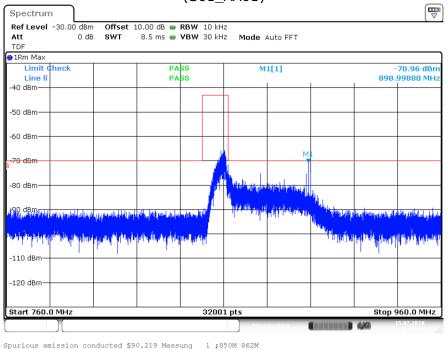
- The noise power at the output of a RF 2-port is dependent on noise figure NF and gain G; i.e. a high NF does not mean necessarily high noise power at the output;
- FCC limits the noise figure NF of a signal booster to max. 9 dB;
- FCC defines: "signal boosters" as all manners of amplifiers, repeaters, boosters, distributed antenna systems and in-building radiation that serve to amplify signals between a device and a wireless network;
- Noise figure NF is a useful and common manner for the characterization of a noisy RF 2-port;
- The DUT (DAS) uses also an optical medium (fiber) and the digital domain for signal transport (i.e. not solely RF lines / waveguides); after the DAC we clearly have a RF 2-port (output DAC to output remote unit);

 \rightarrow The DUT shows an overall attenuation up to the position right after the DAC (including balun); only from the position right after the DAC to the output of the remote unit the DUT is amplifying (this chain of RF components

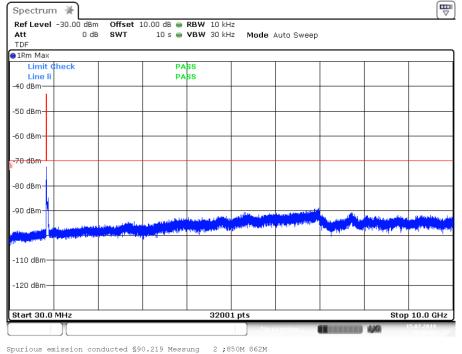
is the only complete and cohesive chain with predominantly amplifying stages (including the output port) (output port shall be included, since noise power at the output is of interest)); \rightarrow above mentioned FCC definition of signal boosters ("serve to amplify signals") + definition of "noise figure" for RF 2-ports entail to set the reference planes for determining NF of the DL at the position right after the

DAC and the output of the remote unit;

This means that NF of the DUT in DL has to be determined between these two reference planes (NF of the amplification stages between output of the DAC and output of the remote unit);


This noise figure is essentially below 9 dB!

To verify this fact, it would be necessary to carry out a second NF measurement with a reference remote unit, containing only the elements up to the DAC (DAC inclusive). Knowing both noise figures (complete DUT + reference remote), NF of the required amplification stages can be calculated.


Another way to get the NF of the required amplification stages, is to accept line up calculation. This should be acceptable, since NF of the amplification stages is essentially lower than 9 dB. In addition to that, the output noise level, which is crucial, was measured and is below the limit.

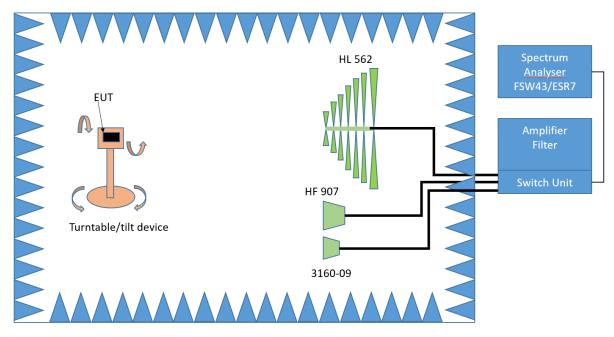
4.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Frequency Band = Band 851 MHz - 861 MHz, Direction = RF downlink, Test Step = passband (S01 AA01)

Frequency Band = Band 851 MHz - 861 MHz, Direction = RF downlink, Test Step = passband (S01_AA01)

4.7.5 TEST EQUIPMENT USED

- FCC Conducted Base Station / Repeater

4.8 FIELD STRENGTH OF SPURIOUS RADIATION


Standard FCC Part 90, §90.219

The test was performed according to: ANSI C63.26

4.8.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90; Industrial Signal Booster – Test Setup; Field Strength of Spurious Radiation

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz

- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: \pm 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$. The elevation angle will slowly vary by $\pm 45^{\circ}$ EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

- Spectrum analyser settings for step 3:
- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

4.8.2 TEST REQUIREMENTS / LIMITS

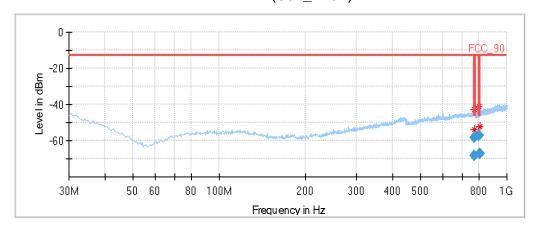
FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

Part 90, §90.219 (e)

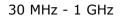
(3) Spurious emissions from a signal booster must not exceed -13 dBm within any 100 kHz measurement bandwidth.

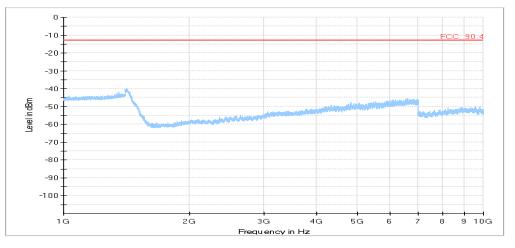
4.8.3 TEST PROTOCOL


Band 851 MH	lz – 861 MHz,	downlink;				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	

Remark: Please see next sub-clause for the measurement plot.

The three required test frequencies (low, mid, high) were injected simultaneously into the EUT.




4.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Frequency Band = Band 851 MHz - 861 MHz, Test Frequency = low/mid/high, Direction = RF downlink (S01_AA01)

Final_Result

a										
Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margi n	Meas. Time (ms)	Bandwidt h	Heigh t	Pol	Azimut h	Corr. (dB)	Comment
769.000000	-58.29	-13.00	45.29	1000.0	100.000	153.0	V	-5.0	-74.6	09:28:23 - 2019-06-06
771.002500	-68.23	-46.00	22.23	1000.0	10.000	121.0	Н	37.0	-74.6	09:25:06 - 2019-06-06
799.000000	-57.31	-13.00	44.31	1000.0	100.000	127.0	Н	-65.0	-74.1	09:21:53 - 2019-06-06
804.966250	-67.17	-46.00	21.17	1000.0	10.000	371.0	V	-168.0	-74.1	09:18:14 - 2019-06-06

Critical_Freqs

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm	Margi	Meas. Time	Bandwidt	Heigh t	Pol	Azimut	Corr. (dB)	Comment
(11112)	(ubiii)	(ubiii		TIME		Ľ			(ub)	
)	(dB)	(ms)	(kHz)	(cm)		(deg)		

Final_Result

Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Corr. (dB)	Comment

1 GHz - 10 GHz

4.8.5 TEST EQUIPMENT USED

- Radiated Emissions

5 TEST EQUIPMENT

1 R&S TS8997 EN300328/301893/FCC cond. Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
1.2	MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2018-07	2020-07
1.3	1515 / 93459	Broadband Power Divider SMA (Aux)	Weinschel Associates	LN673		
1.4	FSV30		Rohde & Schwarz	103005	2018-04	2020-04
1.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.6	VT 4002	Climatic Chamber	Vötsch	58566002150010	2018-04	2020-04
1.7	A8455-4	4 Way Power Divider (SMA)		-		
1.8	Opus10 THI (8152.00)	, ,	Lufft Mess- und Regeltechnik GmbH	7482	2019-06	2021-06
1.9	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10
1.10	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2018-05	2021-05

2 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
2.1	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005	2018-07	2019-07
2.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2018-10	2020-10
2.3	()		Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
2.4	-	EMI Test Receiver	Rohde & Schwarz	101603	2018-05	2019-11
-	Anechoic Chamber	10.38 x 6.38 x 6.00 m³	Frankonia	none	2018-06	2020-06
2.6		Ultralog new biconicals	Rohde & Schwarz	830547/003	2018-07	2021-07
2.7	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		
	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.9		8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB	2018-06	2020-06
2.10	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
2.11		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.12	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2019-02	2021-02
2.13	3160-09		EMCO Elektronic GmbH	00083069		
2.14	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
2.15	4HC1600/12750 -1.5-КК		Trilithic	9942011		
2.16	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
2.17	JS4-00102600-	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.18	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.19		Logper. Antenna	Rohde & Schwarz	100609	2019-05	2022-05
2.20	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.21	5HC3500/18000 -1.2-KK		Trilithic	200035008		
2.22	Opus10 THI (8152.00)	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	12482	2019-06	2021-06
2.23	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2019-01	2020-01
2.24	35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
2.25	AS 620 P	Antenna mast	HD GmbH	620/37		
2.26	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg		TD1.5- 10kg/024/37907 09		
2.27			Maturo GmbH	-		
2.28	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
2.29	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

3 FCC Conducted Base Station / Repeater EN300328/301893/FCC cond. Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
3.1		- 5 -	Rohde & Schwarz	100886	2018-10	2019-10
		Analyzer 10 Hz - 40 GHz				
3.2		Vector Signal Generator 9	Rohde & Schwarz	255975	2017-08	2019-08
		kHz - 6 GHz				
3.3	SMIQ	Vector Signal	Rohde & Schwarz	831389/062	2018-10	2020-10
		Generator 9				
		kHz – 3.3 GHz				

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

			LISN insertion loss ESH3-	cable loss (incl. 10 dB atten-
Frequency	Corr.		Z5	uator)
MHz	dB		dB	dB
0.15	10.1		0.1	10.0
5	10.3		0.1	10.2
7	10.5		0.2	10.3
10	10.5		0.2	10.3
12	10.7		0.3	10.4
14	10.7		0.3	10.4
16	10.8		0.4	10.4
18	10.9		0.4	10.5
20	10.9		0.4	10.5
22	11.1		0.5	10.6
24	11.1		0.5	10.6
26	11.2		0.5	10.7
28	11.2] [0.5	10.7
30	11.3		0.5	10.8

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

				•					
			cable	cable	cable	cable	distance	dLimit	dused
	. –		loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
_	AF	6	(inside	(outside	(switch	(to	(-40 dB/	distance	distance
Frequency	HFH-Z2)	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit} / d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cal los: (ins	s 1 side	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
cham		chamber) dB	unit) dB	receiver)	decade) dB	(limit)	(used)
d	0.29	0.04	0.23	dB 0.02	0.0	m 3	m 3
	0.29	0.04	0.23	0.02	0.0	3	3
-	0.59	0.09	0.32	0.08	0.0	3	3
	0.73	0.14	0.47	0.08	0.0	3	3
	0.75	0.20	0.39	0.12	0.0	3	3
	0.98	0.21	0.80	0.11	0.0	3	3
	1.04	0.24	0.80	0.15	0.0	3	3
	1.18	0.20	0.89	0.13	0.0	3	3
	1.28	0.31	1.03	0.13	0.0	3	3
	1.39	0.35	1.05	0.19	0.0	3	3
	1.44	0.38	1.11	0.22	0.0	3	3
	1.55	0.39	1.20	0.13	0.0	3	3
	1.59	0.40	1.24	0.23	0.0	3	3
	1.67	0.34	1.35	0.22	0.0	3	3
	1.67	0.42	1.35	0.22	0.0	3	3
	1.87	0.54	1.46	0.15	0.0	3	3
	1.90	0.46	1.51	0.25	0.0	3	
	1.90	0.40	1.51	0.23	0.0	3	3
	2.14	0.60	1.63	0.27	0.0	3	3
	2.14	0.60	1.66	0.29	0.0	3	3
	2.22	0.60	1.00	0.33		3	3
	2.23	0.61	1./1	0.30	0.0	3	3

 $(d_{\text{Limit}} = 10 \text{ m})$

	- /								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

			 	· ··-/				
					cable			
			cable		loss 3			
			loss 1		(switch			
			(relay +	cable	`unit,			
	AF		cable	loss 2	atten-	cable		
	R&S		inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.	chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB	dB	dB	dB	dB		
		-	-	-	-	-		
1000	24.4	-19.4	0.99	0.31	-21.51	0.79		
2000	28.5	-17.4	1.44	0.44	-20.63	1.38		
3000	31.0	-16.1	1.87	0.53	-19.85	1.33		
4000	33.1	-14.7	2.41	0.67	-19.13	1.31		
5000	34.4	-13.7	2.78	0.86	-18.71	1.40		
6000	34.7	-12.7	2.74	0.90	-17.83	1.47		
7000	35.6	-11.0	2.82	0.86	-16.19	1.46		
,000	5510	11.0	2.02	0.00	10.15	1.10		
]				cable		
						loss 4		
			cable			(switch		
			loss 1	cable	cable	unit,		used
	AF		(relay	loss 2	loss 3	atten-	cable	for
	R&S		inside		(outside			FCC
F		6		(inside	· ·	uator &	loss 5 (to	
Frequency	HF907	Corr.	chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	
3000	31.0	-23.4	0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3	0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7	0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2	0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8	0.66	2.82	0.86	-25.58	1.46	
				•			•	
			cable					
			loss 1	cable	cable	cable	cable	cable
	AF		(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S		inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.	chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	dB
7000	35.6	-57.3	0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3							
		-56.3	0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3	0.68	0.65	-60.80	3.06	1.09	1.60
10000	37.5	-56.2	0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3	0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7	0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5	0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3	0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1	0.98	0.54	-61.05	4.02	1.44	1.83
16000	41.3	-54.1	1.23		-61.51		1.44	
	41.3	-54.1		0.49	-61.51	4.17		1.85
		-5/1 /1	1.36	0.76	I -6236	4.34	1.53	2.00
17000 18000	44.2	-54.7	1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			•				
			cable	cable	cable	cable	cable
	AF		loss 1	loss 2	loss 3	loss 4	loss 5
	EMCO		(inside	(pre-	(inside	(switch	(to
Frequency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-9.6	3	1.0
27.0	43.4	-11.2	4.4				-9.6	3	1.0
28.0	43.4	-11.1	4.5				-9.6	3	1.0
29.0	43.5	-11.0	4.6				-9.6	3	1.0
30.0	43.5	-10.9	4.7				-9.6	3	1.0
31.0	43.5	-10.8	4.7				-9.6	3	1.0
32.0	43.5	-10.7	4.8				-9.6	3	1.0
33.0	43.6	-10.7	4.9				-9.6	3	1.0
34.0	43.6	-10.6	5.0				-9.6	3	1.0
35.0	43.6	-10.5	5.1				-9.6	3	1.0
36.0	43.6	-10.4	5.1				-9.6	3	1.0
37.0	43.7	-10.3	5.2				-9.6	3	1.0
38.0	43.7	-10.2	5.3				-9.6	3	1.0
39.0	43.7	-10.2	5.4				-9.6	3	1.0
40.0	43.8	-10.1	5.5				-9.6	3	1.0

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 MEASUREMENT UNCERTAINTIES

Test Case(s)	Parameter	Uncertainty
- Field strength of spurious radiation	Power	± 5.5 dB
 Out-of-band rejection Occupied Bandwidth Input versus output spectrum 	Power Frequency	± 2.9 dB ± 11.2 kHz
 Effective radiated power, mean output power and zone enhancer gain Peak to Average Ratio 	Power	± 2.2 dB
 Out-of-band emission limits Conducted Spurious Emissions at Antenna Terminal 	Power Frequency	± 2.2 dB ± 11.2 kHz

8 PHOTO REPORT

Please see separate photo report.