

ECL-EMC Test Report No.: 17-142

Equipment under test: FCC ID:	ION-E CAP L 17E/17E/23/23 C-PE-F1 1700MHz Path XS5-CAPL17E23	
Type of test:	FCC 47 CFR Part 27 Subpart C: 2017 Miscellaneous Wireless Communication Services	
Measurement Procedures:	47 CFR Parts 2 (<i>Frequency Allocations and Radio Treaty Matters; General Rules and Regulations</i>), Part 27:2017 (Miscellaneous Wireless Communication Services), ANSI/TIA-603-D (2010), <i>Land Mobile FM or PM Communications Equipment Measurement and Performance Standards</i>	

Test result: Passed

Date of issue:	25.07.17		Signature:
Issue-No.:	02	Author:	
Date of delivery:	04.05.17	Checked:	
Test dates:	21.03. – 05.05.17		
Pages:	46		

Manufacturer: ANDREW Wireless Systems GmbH Industriering 10

D-86675 Buchdorf

Tel.: +49 (0)9099 69 0 Fax: +49 (0)9099 69 140

Test Location:	Bureau Veritas Consumer Products Services
	Germany GmbH
	European Compliance Laboratory (ECL)
	Thurn-und-Taxis-Straße 18
	D-90411 Nürnberg
	Tel.: +49 40 74041 0
	Fax: +49 40 74041-2755

General:

The purpose of this report is to show compliance to the FCC regulations for devices operating under Part N°27 of the Code of Federal Regulations title 47.

This report informs about the results of the EMC tests, it only refers to the equipment under test. No part of this report may be reproduced in any form, without written permission.

Table of contents

1	TEST RESULTS SUMMARY	5
2	EQUIPMENT UNDER TEST (E.U.T.)	6
	2.1 DESCRIPTION	6 6 7 8
3	TEST SITE (ANDREW BUCHDORF)	
;	3.1 TEST ENVIRONMENT	9
	3.2 TEST EQUIPMENT	
	3.3 INPUT AND OUTPUT LOSSES	
	3.4 MEASUREMENT UNCERTAINTY	10
4	TEST SITE (BUREAU VERITAS CONSUMER PRODUCTS SERVICES)	10
5	RF POWER OUT: §27.50, §2.1046	11
ę	5.1 LIMIT	11
į	5.2 Test метнор	11
	5.3 TEST RESULTS	12 14 14 15
6	OCCUPIED BANDWIDTH: §2.1049	16
(6.1 LIMIT	16
(6.2 Test method	
	6.3 TEST RESULTS	16 18 19 20 20 21 23
(6.4 SUMMARY TEST RESULT	23
7	SPURIOUS EMISSIONS AT ANTENNA TERMINALS: §27.53, §2.1051	
	7.1 LIMIT	
	7.2 TEST METHOD	
	7.3 TEST RESULTS 7.3.1 DOWNLINK 7.3.1.1 W-CDMA	25

The test report shall not be reproduced except $\underline{in full}$ without the written approval of the testing laboratory. ECL-EMC-TR-17-142-V01.00

VERITAS
7.3.1.2 LTE
7.4 SUMMARY TEST RESULT
8 INTERMODULATION: §27.53, §2.1051
8.1 LIMIT
8.2 TEST METHOD
8.3 TEST RESULTS
8.3.1.1 WCDMA
8.3.1.2 LTE
8.3.2 UPLINK
8.4 SUMMARY TEST RESULT
9 OUT OF BAND REJECTION
9.1 LIMIT
9.2 TEST METHOD
9.3 Test results
9.3.1 DOWNLINK
9.3.2 UPLINK
9.4 SUMMARY TEST RESULT
10 FIELD STRENGTH OF SPURIOUS EMISSIONS: §27.53, §2.1053
10.1 METHOD OF MEASUREMENT
10.2 Limit §27.53 (н)
10.3 CLIMATIC VALUES IN THE LAB
10.4 Test results
10.4.1 30 MHz то 1 GHz Downlink (<u>В</u> оттом – <u>М</u> іddle – <u>Т</u> ор) 40
10.4.2 30 MHz to 1 GHz DOWNLINK (MIDDLE OF BOTH PATHS)
10.4.3 1 GHz – 18 GHz Downlink (Воттом – Middle – Тор)
10.4.4 1 GHz – 18 GHz DOWNLINK (MIDDLE OF BOTH PATHS)
10.4.6 18 GHz – 26 GHz DOWNLINK (MIDDLE OF BOTH PATHS)
11 HISTORY

Name of Test	FCC Para. No.	FCC Method	FCC Spec.	Result
RF Power Output	27.50(d)	2.1046	1640 Watts/MHz	Complies
Occupied Bandwidth	KDB 935210 D02 v03r02	2.1049	Input/Output	Complies
Spurious Emissions at Antenna Terminals	27.53(h)	2.1051	-13dBm	Complies
Field Strength of Spurious Emissions	27.53(m)	2.1053 TIA/EA-603	-13dBm E.I.R.P	Complies
Intermodulation	KDB 935210 D02 v03r02	KDB 935210 D02 v03r02	KDB 935210 D02 v03r02	Complies
Frequency Stability	27.54	2.1055	Must stay in band	NA
Out of Band Rejection	KDB 935210 D02 v03r02	KDB 935210 D03 v04	KDB 935210 D03 v04	Complies

1 Test Results Summary

Frequency stability is given by: The system gets an electrical analog signal from the BSS which is converted into an analog optical signal, transmitted by the optical links and then reconverted in the Remote Unit into an analog electrical signal. During this process happens no frequency change/modification, so input and output have same frequency what can be seen under clause "Occupied Bandwidth".

2 Equipment under test (E.U.T.)

2.1 Description

(Remote Unit) 7770203-0001 M002E1-R7506E2
M002E1-R7506E2
00
n. a.
W-CDMA (F9W)
LTE (G7D)
F1-F1 🛛
F1-F2
N/A
Software
Duplexer 🛛
Full band

2.1.1 Downlink

Pass band	2110 MHz – 2180 MHz
Max. composite output power based on one carrier per path (rated)	21 dBm = 0.13 W
MIMO max. composite output power based on one carrier per path (rated)	24 dBm = 0.26 W
System Gain*	26 dB @ Pout BTS of 21 dBm

*see 2.1.5

2.1.2 Uplink

Pass band	1710 MHz – 1780 MHz
Maximum rated output power	n. a.
System Gain*	n.a.

*see 2.1.5

Note: The EUT does not transmit over the air in the uplink direction.

2.1.3 Description of EUT

CommScope's ION-E CAP L 17E/17E/23/23 is a multi-band, multi-operator Remote Unit. It is used in conjunction with a Master Unit (CAN) with poe. This system transports up to four frequency bands simultaneously, providing a cost-effective solution for distributing capacity from one or more base stations. The ION-E CAP L system can be used for MIMO application in all RF paths.

This Test Report describes only the approval of the 1700/2100 MHz Path. The ION-E CAP L 17E/17E/23/23 Repeater system consists of one (or two in MIMO operation) 1700/2100 AWS-E MHz path and one/two 2300 MHz path with the intended use of simultaneous transmission.

The antenna(s) used with device must be fixed-mounted on permanent structures.

2.1.4 Block diagram of measurement reference points

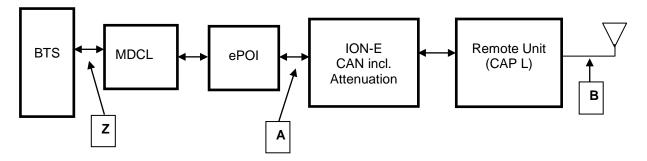


figure 2.1.4-#1 Block diagram of measurement reference points

Remote Unit (CAP L) is the DUT

MU	Master Unit = ePOI and CAN
RU	Remote Unit = CAP L
CAP L	Carrier Access Point Low Power
CAN	Central Area Node
CAN att	Attenuation of Central Access Node
MDCL	Minimum Donor Coupling Loss

Reference point A, CAN UL output, DL input Reference point B, Remote Unit DL output, UL input Reference point Z, BTS DL input, BTS UL output

2.1.5 Levels @ reference points (DL)

System optimized for BTS power	MDCL + ePOI Attenuation	Maximum rated input power at the CAN	RU (CAP L) Gain	Maximum rated output power at CAP L Antenna port
Z		A	A to B	В
+33 dBm @ 1 carrier	38 dB	-5 dBm	26 dB	+21 dBm @ 1 carrier
System Gain		-12 dB		
Z to B				
2x (+33 dBm)	41 dB	-8 dBm / carrier @ 2 carrier	26 dB	+18 dBm / carrier @ 2 carrier
System Gain		-15 dB		
Z to B				
+43 dBm	48 dB	-5 dBm	26 dB	+21 dBm @ 1 carrier
System Gain		-12 dB		
Z to B				

table 2.1.5-#1 Equipment under test (E.U.T.) Description Levels @ reference points (DL)

3 Test site (Andrew Buchdorf)

3.1 Test environment

All tests were performed under the following environmental conditions:

Condition	Minimum value	Maximum value	
Barometric pressure	86 kPa	106 kPa	
Temperature	15°C	30°C	
Relative Humidity	20 %	75 %	
Power supply range	±5% of rated voltages		

3.2 Test equipment

ANDREW Inv. No.	Test equipment	Туре	Manufacturer	Serial No.	Next Calibration Date
9126	Spectrum Analyzer	FSV 30	R&S	101237	08/2017
9069	Generator	SMBV100A	R&S	256275	08/2017
9046	Generator	SMBV100A	R&S	255090	05/2017
8542	Power Meter	E4418A	Agilent	GB38273230	01/2018
8544	Power Sensor	E8481H	Agilent	3318A19208	01/2018
7583	RF-Cable	Testpro 4.2	Radiall		CIU
7584	RF-Cable	Testpro 4.2	Radiall		CIU
7585	RF-Cable	Testpro 4.2	Radiall		CIU
7586	RF-Cable	Testpro 4.2	Radiall		CIU
7537	RF-Cable	Testpro 4.2 + Projack	Radiall		CIU
7542	RF-Cable	Testpro 4.2 + Projack	Radiall		CIU
7531	Notch-Filter	WRCTG12 2110- 2180	Wainwright	1	CIU
7406	Matrix		COMMSCOPE		weekly

CIU = Calibrate in use

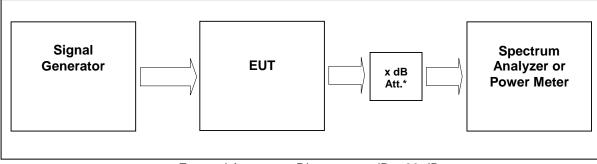
3.3 Input and output losses

All recorded power levels should be referenced to the input and output connectors of the repeater, unless explicitly stated otherwise.

The test equipment used in this test has to be calibrated, so that the functionality is also checked. All cables, attenuators, splitter, isolator, circulator and combiner etc. must be measured before testing and used for compensation during testing.

3.4 Measurement uncertainty

The extended measurement uncertainty corresponds to the measurement results from the standard measurement uncertainty multiplied by the coverage factor k=2. The true value is located in the corresponding interval with a probability of 95 %.


4 Test site (Bureau Veritas Consumer Products Services)

FCC Test site: 96997

See relevant dates under section 10 of this test report.

5 RF Power Out: §27.50, §2.1046

External Attenuator DL x dB = 20 dB

figure 5-#1 Test setup: RF Power Out: §27.50, §2.1046

Measurement uncertainty	± 0,32 dB		
Test equipment used	9046, 9126, 7406, 7157, 7158, 7289, 7290, 7385		

5.1 Limit

Minimum standard:

Para. No.27.50(d)

(d) The following power and antenna height requirements apply to stations transmitting in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz and 2180-2200 MHz bands:

(2) The power of each fixed or base station transmitting in the 1995-2000 MHz, the 2110-2155 MHz 2155-2180 MHz band, or 2180-2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

5.2 Test method

§ 2.1046 Measurements required: RF power output.

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

(c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the testconditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations

5.3 Test results

Detector RMS.

Test signal WCDMA

Signal waveform according to Test Model 1 of standard specification 3GPP TS25.141. Signal modulated with a combination of PCCPCH, SCCPCH and Dedicated Physical Channels specified as test model 1 64 DPCH.

Test signal LTE:

Signal waveform according to Test Model 1.1, E-TM1.1, clause 6.1.1.1-1, table 6.1.1.1-1 of standard specification 3GPP TS 36.141 V9.3.0 (2010-03).

5.3.1 **Downlink**

Modulation	Measured at	Path	RBW VBW Span	RF Power (dBm)	RF Power (W)	MIMO* RF Power (W)	Plot -
WCDMA	Middle	2145 MHz	10MHz 10MHz 50MHz	21.0	0.13	0.25	5.3.1.1 #1
LTE	Middle	2145 MHz	3MHz 10MHz 15MHz	21.0	0.13	0.25	5.3.1.2 #1
Maximum output power = 21 dBm = 0.13 W							
		Limit Maximum o	output pow	/er (erp) = 10	000 W		

table 5.3.1-#1 RF Power Out: §27.50, §2.1046 Test results Downlink

SISO:

The max RF Power out is 21 dBm, so the maximum antenna gain (x) can be calculated as follow:

Limit = 1000W (erp) = 60 dBm

Info: 1000W (erp) = 1640W (eirp)

60 dBm > 21 dBm + x -----> x = 60 dBm - 21 dBm = <u>39 dBd</u> x dBi = 39 dBd + 2.15 = <u>41.15 dBi</u>

=> The antenna that will be used for the complete system have to have a gain lower than 41.15 dBi, relative to a dipol.

MIMO:

If the DUT used in MIMO configuration according to KDB 662911, the MIMO Max RF Power is the sum of the RF power from the SISO path and MIMO path.

MIMO Max RF Power = SISO path RF Power + MIMO path RF Power

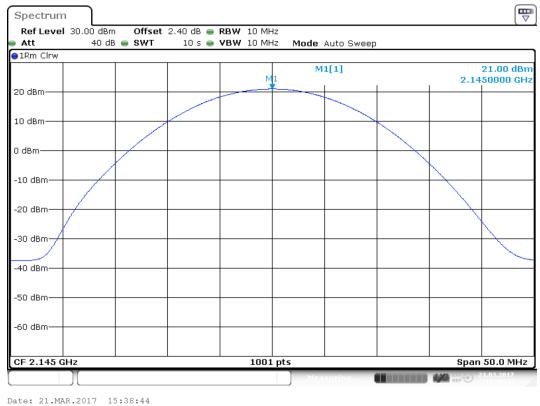
MIMO Max RF Power = 0.13 W + 0.13 W = 0.26 W = 24 dBm

The MIMO max RF Power out is 24 dBm, so the maximum antenna gain (x) can be calculated as follow:

Limit = 1000W (erp) = 60 dBm

Info: 1000W (erp) = 1640W (eirp)

60 dBm > 24 dBm + x -----> x = 60 dBm - 24 dBm = <u>36 dBd</u> x dBi = 36 dBd + 2.15 = <u>38.15 dBi</u>


=> The antenna that will be used for the complete system have to have a gain lower than 38.15 dBi, relative to a dipol.

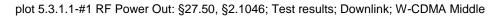
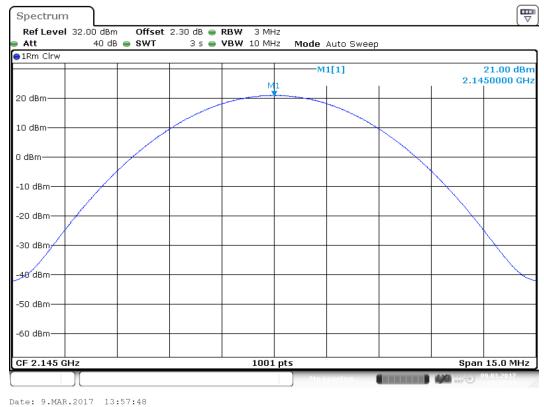

Modulation	Pin / dBm
	(Ref. point B)
WCDMA	-5.1
LTE	-5.0

table 5.3.1-#2 RF Power Out: §27.50, §2.1046 Test results Downlink Input power



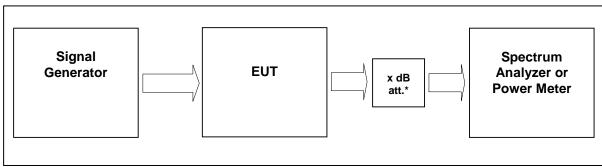
5.3.1.1 W-CDMA

5.3.1.2 LTE

plot 5.3.1.2-#1 RF Power Out: §27.50, §2.1046; Test results; Downlink; LTE Middle

5.3.2 Uplink

n.a.


Note: The EUT does not transmit over the air in the uplink direction.

5.4 Summary test result

Test result	complies, according the plots above
Tested by:	F. Bengesser
Date:	09.03.2017 / 21.03.2017

6 Occupied Bandwidth: §2.1049

External Attenuator DL x dB = 20 dB figure 6-#1 Test setup: Occupied Bandwidth: §2.1049

Measurement uncertainty	± 0,33 dB		
Test equipment used	9046, 9126, 7406, 7157, 7158, 7289, 7290, 7385		

6.1 Limit

The spectral shape of the output should look similar to input for all modulations.

6.2 Test method

Para. No.2.1049

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

(h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

6.3 Test results

6.3.1 Downlink

Detector PK.

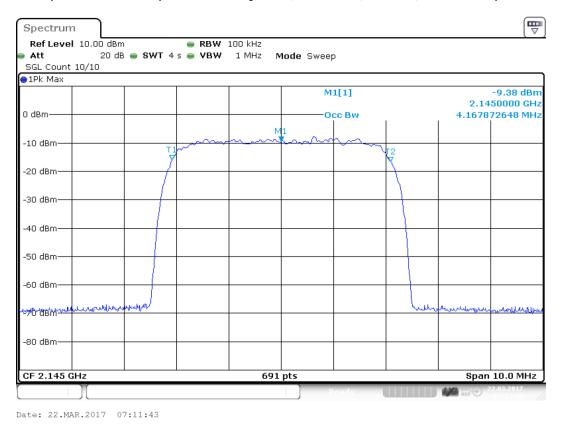
Modulation	Measured at	Fcenter / MHz	RBW VBW Span	Occupied Bandwidth / MHz	Plot #
WCDMA	Middle	2145	100kHz 1MHz 10MHz	4.04	6.3.1.1 #1, #2
LTE	Middle	2145	30 kHz 300 kHz 5 MHz	1.14	6.3.1.2 #1,#2

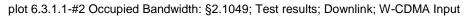
Test Report No.: 17-142

FCC ID: XS5-CAPL17E23

Modulation	Measured at	Fcenter / MHz	RBW VBW Span	26dB Bandwidth / MHz	Plot #
WCDMA	Middle	2145	100kHz 1MHz 10MHz	4.40	6.3.2.1 #1, #2
LTE	Middle	2145	30 kHz 300 kHz 5 MHz	1.32	6.3.2.2 #1,#2

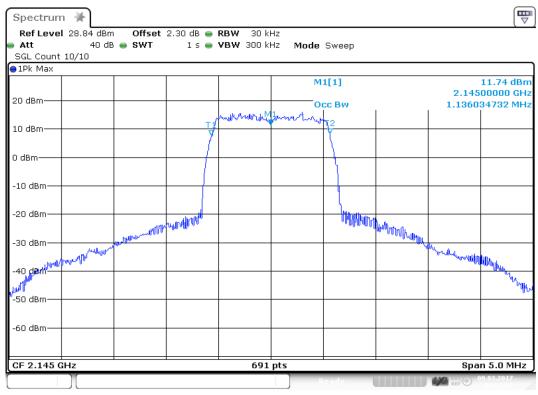
table 6.3-#1 Occupied Bandwidth: §2.1049 Test results Downlink




6.3.1.1 W-CDMA

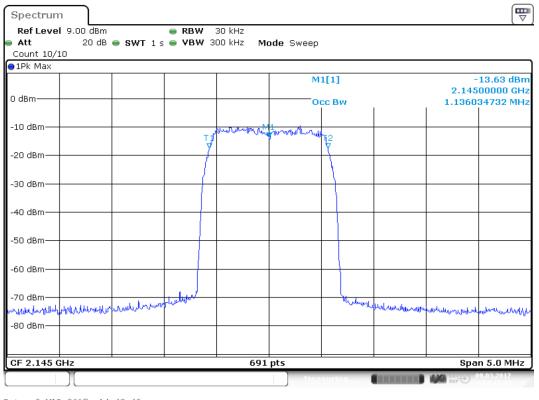
1Pk Max				M	1[1]			16.00 dBr
					1[1]			10.00 UD
20 dBm				0	cc Bw		4.0376	26628 MF
	1	· ·····	m	enn	m	∏2 *⊽		
10 dBm						1		
0 dBm	/					1		
-10 dBm								<u> </u>
-20 dBm								
~~~~~								h~~_
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-00 ubiii								

Date: 22.MAR.2017 06:45:21

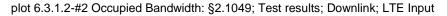

plot 6.3.1.1-#1 Occupied Bandwidth: §2.1049; Test results; Downlink; W-CDMA Output








#### 6.3.1.2 LTE




Date: 9.MAR.2017 14:22:43

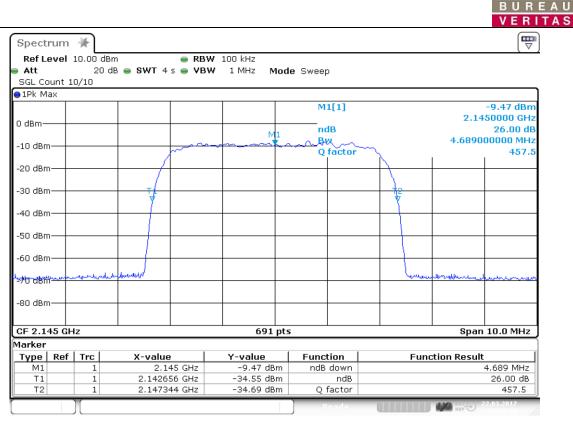




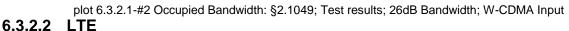
Date: 9.MAR.2017 14:42:43

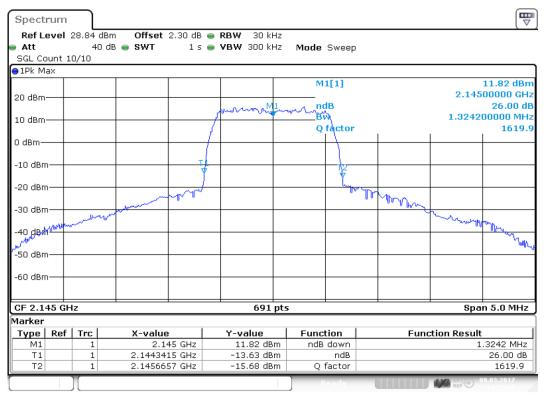




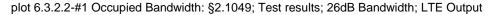

#### 6.3.2 26dB Bandwidth

#### 6.3.2.1 W-CDMA


Spectrum						
Ref Level	32.00 dBr	n Offset 2.30 dB (	RBW 100 kHz			
Att	40 d	B 🥌 SWT 4 s (	<b>VBW</b> 1 MHz	Mode Sweep		
SGL Count :	10/10					
1Pk Max						
				M1[1]		15.83 dBr
						2.1450000 GH
20 dBm			M1	ndB		26.00 d
		l	mm	men	~~~	4.399000000 MH
10 dBm		<u> </u>		Q factor	1	487.
				1	1	
0 dBm						
		т			12	
-10 dBm-+		<b>T</b>				
-20 dBm					$\rightarrow$	
-30 dBm-+						
-40 dBm						
-50 dBm-+						
-60 dBm-+						
CF 2.145 G	Hz	•	691 pts	;		Span 10.0 MHz
Marker						
Type   Ref	Trc	X-value	Y-value	Function	Fund	ction Result
M1	1	2.145 GHz	15.83 dBm	ndB down		4.399 MHz
T1	1	2.1428 GHz	-10.04 dBm	ndB		26.00 dB
T2	1	2.1472 GHz	-10.17 dBm	Q factor		487.6
				Ready		22.03.2017
				J		REF C


Date: 22.MAR.2017 07:21:32

plot 6.3.2.1-#1 Occupied Bandwidth: §2.1049; Test results; 26dB Bandwidth; W-CDMA Output




Date: 22.MAR.2017 07:19:21





Date: 9.MAR.2017 14:32:11



Spectrum



Count 10/10				
			M1[1]	-13.49 dB
0 dBm		_		2.14500000 GF
			ndB	26.00 0
-10 dBm		M1	BW	1.302500000 MH
			Tactor	1646
-20 dBm				
-30 dBm	т		т12	
-40 dBm	4		. ¥	
-40 ubiii				
-50 dBm				
-60 dBm				
-70 dBm	with the about the the the stand		bu	hunderson and the advances of the second
-80 dBm	mor fill against a second s			and a superior and a superior and and a superior of the superi
-80 UBIII				
CF 2.145 GHz Marker		691 pts		Span 5.0 MH:
Type   Ref   Trc	X-value	Y-value	Function	Function Result
M1 1	2.145 GHz	-13.49 dBm	ndB down	1.3025 MH
T1 1	2.1443488 GHz	-38.32 dBm	ndB	26.00 dE
T2 1	2.1456512 GHz	-38.38 dBm	Q factor	1646.9

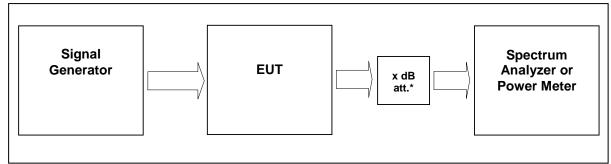
Date: 9.MAR.2017 14:38:39

plot 6.3.2.2-#2 Occupied Bandwidth: §2.1049; Test results; 26dB Bandwidth; LTE Input



### 6.3.3 **Uplink**

n.a.


Note: The EUT does not transmit over the air in the uplink direction.

### 6.4 Summary test result

Test result	complies, according the plots above
Tested by:	F. Bengesser
Date:	09.03.2017 / 22.03.2017



## 7 Spurious Emissions at Antenna Terminals: §27.53, §2.1051



External Attenuator DL x dB = 20 dB

figure 7-#1 Test setup: Spurious Emissions at Antenna Terminals: §27.53, §2.1051

Measurement uncertainty	± 0,41 dB ± 0,47 dB ± 0.94 dB ± 1.2 dB	9 kHz to 3,6 GHz 3,6 GHz to 7 GHz 7 GHz to 13,6 GHz 13,6 GHz to 30 GHz
Test equipment used	9069, 9046, 9126, 7406 7290, 7531, 7385	,

### 7.1 Limit

Minimum standard:

Para. No.27.53(h)

(h) AWS emission limits

(1) *General protection levels.* Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 33 + 10 log₁₀ (P) dB.

(3) *Measurement procedure.* (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.

(iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

### 7.2 Test method

Para. No 2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in § 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

[39 FR 5919, Feb. 15, 1974. Redesignated and amended at 63 FR 36599, July 7, 1998]



## 7.3 Test results

### 7.3.1 Downlink

Detector: RMS.

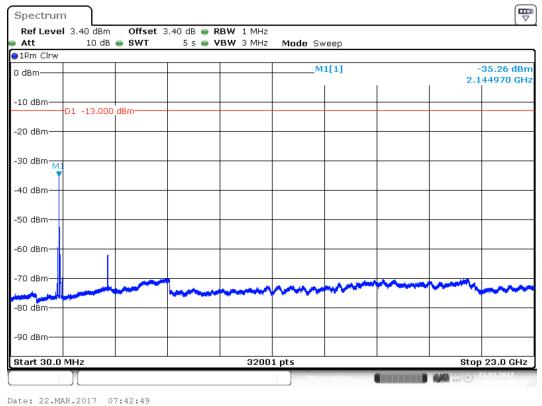
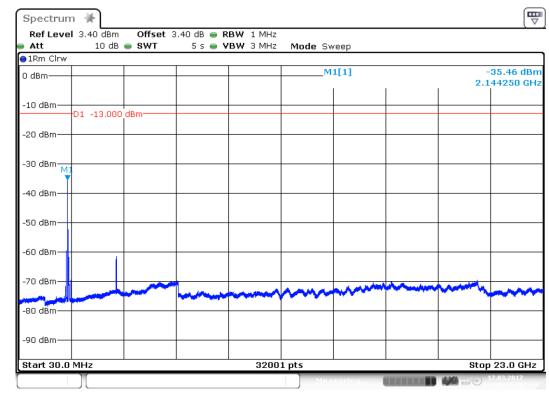

Modulation	Carrier	RBW VBW Span	Max. level (dBm)	MIMO Max. level (dBm)	Plot -
WCDMA	2145 MHz	1MHz 3MHz 30MHz – 23GHz	-35.3	-32.3	7.3.1.1 #1
LTE	2145 MHz	1MHz 3MHz 30MHz – 23GHz	-35.5	-32.5	7.3.1.2 #1

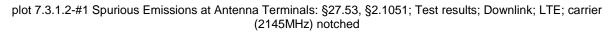
table 7.3-#1 Spurious Emissions at Antenna Terminals: §27.53, §2.1051 Test results

If the DUT used in MIMO configuration according to KDB 662911, the summed emission (MIMO Max. Level) is calculated (Max. Level) of the output port plus 10 log ( $N_{ANT}$ ). With ( $N_{ANT}$  =2) the MIMO Max. Level (dBm) equals Max. Level (dBm) plus 3dB.




#### 7.3.1.1 W-CDMA




plot 7.3.1.1-#1 Spurious Emissions at Antenna Terminals: §27.53, §2.1051; Test results; Downlink; W-CDMA; carrier (2145MHz) notched



### 7.3.1.2 LTE

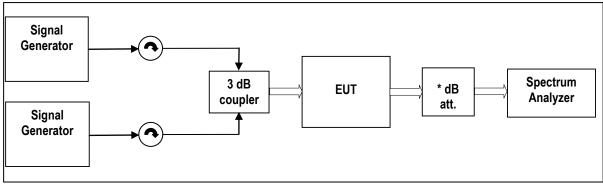


Date: 17.MAR.2017 09:41:46



#### 7.3.2 **Uplink**

n.a.


## Note: The EUT does not transmit over the air in the uplink direction.

#### 7.4 Summary test result

Test result	complies, according the plots above	
Tested by:	F. Bengesser	
Date:	17.03.2017 / 22.03.2017	



8 Intermodulation: §27.53, §2.1051



External Attenuator DL x dB = 20 dBfigure 8-#1 Test setup: Intermodulation: §27.53, §2.1051

Measurement uncertainty	± 0,41 dB ± 0,47 dB	9 kHz to 3,6 GHz 3,6 GHz to 7 GHz		
	± 0.94 dB	7 GHz to 13,6 GHz		
Test equipment used	± 1.2 dB 9069, 9046, 9126, 7400	13,6 GHz to 30 GHz 6, 7157, 7158, 7289,		
	7290, 7385			

### 8.1 Limit

Minimum standard:

Para. No.27.53(h)

(h) AWS emission limits

(1) *General protection levels.* Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 33 + 10 log₁₀ (P) dB.

(3) *Measurement procedure.* (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.

(iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

### 8.2 Test method

Para. No 2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in § 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

[39 FR 5919, Feb. 15, 1974. Redesignated and amended at 63 FR 36599, July 7, 1998]



#### 8.3 Test results

### 8.3.1 Downlink

Detector: RMS.

Modulation	Measured at Band Edge	Carriers	RBW VBW Span	Max. level (dBm)	MIMO Max. level (dBm)	Plot -
WCDMA	Lower Edge	2112,6 MHz 2117,6 MHz	100kHz 1MHz	-45.4	-42.4	8.3.1.1 #1
WODMA	Upper Edge	2172,4 MHz 2177.4 MHz	15MHz	-43.4	-42.4	#2
LTE	Lower Edge	2110,7 MHz 2112,1 MHz	30kHz 300kHz	-43.5	-40.5	8.3.1.2 #1
	Upper Edge	2177,9 MHz 2179,3 MHz	6MHz	-43.5	-40.5	#2

table 8.3-#1 Intermodulation: §27.53, §2.1051 Test results

If the DUT used in MIMO configuration according to KDB 662911, the summed emission (MIMO Max. Level) is calculated (Max. Level) of the output port plus 10 log ( $N_{ANT}$ ). With ( $N_{ANT}$  =2) the MIMO Max. Level (dBm) equals Max. Level (dBm) plus 3dB.



#### 8.3.1.1 WCDMA

Spectrur	n 🔆								
			1.80 dB 😑						
Att	40 d	B 👄 SWT	10 s 😑 '	VBW 1 M	Hz Mode	Sweep			
SGL									
				_					
Limit	Check		PA PA		M	1[1]			45.40 dBm .00000 GHz
	113		PA	55		I	1	2.11	00000 GHZ
10 dBm									
						L			h
0 dBm	+								
								( )	
-10 dBm—								+	
-13									
-20 dBm—								$\rightarrow$	
-30 dBm—	L								
								11	
-40 dBm—									
-40 000				M	1			$\cup$	
50 JD					~~~				
-50 dBm—									
-60 dBm—									
-70 dBm—									
CF 2.11 G	Hz	1		1001	pts	1		Span	15.0 MHz
	)(					Ready			22.03.2017
								REF	

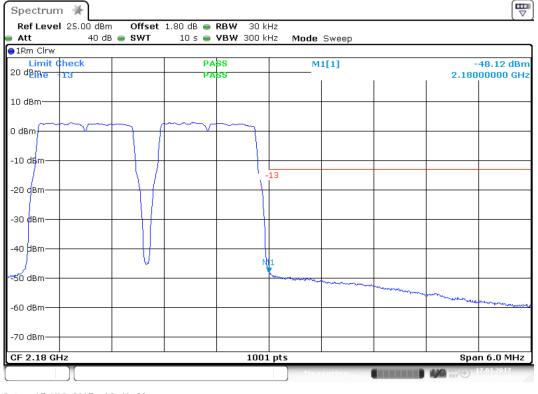
Date: 22.MAR.2017 09:05:07





Date: 22.MAR.2017 08:38:48


plot 8.3.1.1-#2 Intermodulation: §27.53, §2.1051; Test results; Downlink; WCDMA Upper Band Edge




#### 8.3.1.2 LTE



Date: 17.MAR.2017 12:13:23



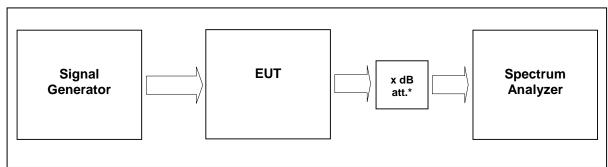


Date: 17.MAR.2017 12:41:20





## 8.3.2 Uplink


n.a. Note: The EUT does not transmit over the air in the uplink direction.

### 8.4 Summary test result

Test result	complies, according the plots above		
Tested by:	F. Bengesser		
Date:	17.03.2017 / 22.03.2017		



## 9 Out of Band Rejection



External Attenuator DL x dB = 20 dB figure 9-#1 Test setup: Out of Band Rejection

Measurement uncertainty	± 0,38 dB
Test equipment used	9046, 9126, 7406, 7157, 7158, 7289, 7290, 7385

### 9.1 Limit

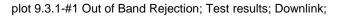
KDB 935210 D02 v03

Test for rejection of out of band signals. Filter frequency response plots are acceptable.

### 9.2 Test method

935210 D03 v03 7.1 Authorized frequency band verification test

### 9.3 Test results


Detector Peak max hold



### 9.3.1 Downlink

Ref Le	evel 🔅	32.30 d	Bm Offset 2.30 dB	) 👄 RBW 100 kHz						
Att		40	dB 😑 SWT 🛛 228 µs	; 🛑 VBW 🛛 3 MHz	Mode	Auto FF	Т			
)1Pk Ma	эх									
				M1	M	1[1]				20.96 dB
20 dBm·			M2			and	43		2.1	450000 GI
					no Bi	dB	T		70,000	26.00 ( 000000 MI
.0 dBm·						n factor	1		70.303	000000 Mil 30
) dBm—			D4				15			15.58 dB
, abiii			1₽			2[1]	₹		2.1	100000 G
·10 dBm	∩						++		1	1
-20 dBm										
-20 ubii	'									
-30 dBm	∩						++			
-40 dBm							11			
									and a stream of the	and an endered
50 dBm		Annual					-			
60 dBm										
-ou ubii	'									
Start 2	.045	GHz		9001 p	ts				Stop	2.245 GH
larker										
Туре	Ref	Trc	X-value	Y-value	Func	tion		Fund	ction Resu	lt
M1		1	2.145 GHz	20.96 dBm		down				70.303 MH
Τ1		1	2.109848 GHz	-6.84 dBm		ndB				26.00 d
T2		1	2.180152 GHz	-6.45 dBm		factor				30.5
M2		1	2.11 GHz	15.58 dBm						
M3		1	2.18 GHz	16.56 dBm						
D4	M1	1	-35.138 MHz	-22.69 dB						
	M1	1	35.138 MHz	-22.13 dB	1					

Date: 10.MAR.2017 12:06:53



### 9.3.2 Uplink

n.a.

Note: The EUT does not transmit over the air in the uplink direction.

### 9.4 Summary test result

Test result	complies, according the plots above	
Tested by:	F. Bengesserr	
Date:	10.03.2017	

Test Report No.: 17-142

FCC ID: XS5-CAPL17E23



## 10 Field Strength of Spurious Emissions: §27.53, §2.1053



picture 8.1: auxiliary euipment



picture 8.2: Test setup: Field Strength Emission <1 GHz @10m in the SAC

Test Report No.: 17-142

FCC ID: XS5-CAPL17E23





picture 8.3: Test setup: Field Strength Emission 1 - 18 GHz @3m in the SAC



picture 8.4: Test setup: Field Strength Emission 18 - 26,5 GHz @3m in the SAC

Remark: The worst results were measured during the MIMO configuration (both antenna ports were active) and were reported at chapter 10.4 Test results.



#### This clause specifies requirements for the measurement of radiated emission.

Frequency range	Distance: EUT <-> antenna / location	Limit	Test method	
	2 motros / EAC	FCC 47 CFR Part 27.53	TIA/EIA-603-C:2004	
30 MHz – 26,5 GHz	3 metres / FAC	IC RSS-131 sec. 4.4	TIA/EIA-603-C.2004	

#### Test equipment used:

Designation	Туре	Manufacturer	Inventno.	Caldate	due Cal date	used
EMI test receiver	ESU40	Rohde & Schwarz	E2025	18.10.2016	18.10.2017	Х
Antenna	CBL 6111	Chase	K1026	26.05.2017	26.05.2018	Х
Antenna	HL 025	R&S	K1114	24.05.2017	24.05.2018	Х
Preamplifier	AFS4-00102000	Miteq	K838	10.05.2017	10.05.2018	Х
RF Cable	Sucoflex 100	Suhner	K1760	04.08.2015	04.08.2017	Х
Antenna	JXTXLB-42-25- C-KF	A-Info	K1175	09.03.2015	09.03.2018	х

The REMI version 2.135 has been used to maximize radiated emission from the EUT with regards to ANSI C63.4:2009.

#### Test set-up:

Test location:	FAC
	Both, the Fully Anechoic Chamber (FAC) and the Semi Anechoic Chamber
	(SAC) fulfil the requirements of ANSI C63.4 and CISPR 16-1-4 with regards to
	NSA and SVSWR.
Test Voltage:	110 V / 60 Hz
Type of EUT:	Wall mounted

#### Measurement uncertainty:

Measurement uncertainty expanded	± 4,7 dB for ANSI C63.4 measurement
(95% or K=2)	± 0,5 dB for TIA-603 measurement



### **10.1 Method of Measurement**

#### Measurement procedure. TIA-603-C

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to a dipole. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic dipole (see Figure 7.2).

From KDB (AMPLIFIER, BOOSTER, AND REPEATER REMINDER SHEET): Radiated spurs (enclosure) – Use of CW signal (low, mid. and high freq.) is acceptable rather than all modulations.

The maximum RFI field strength was determined during the measurement by rotating the turntable ( $\pm$ 180 degrees) and varying the height of the receive antenna (h = 1 ... 4 m) as like defined in ANSI C63.4. A measurement receiver has been used with a RBW 120 kHz up to 1 GHz and 1 MHz above 1 GHz. Steps with during pre measurement was half the RBW.

Both, the Fully Anechoic Chamber (FAC) and the Semi Anechoic Chamber (SAC) fulfil the requirements of ANSI C63.4 and CISPR 16-1-4 with regards to NSA and SVSWR.

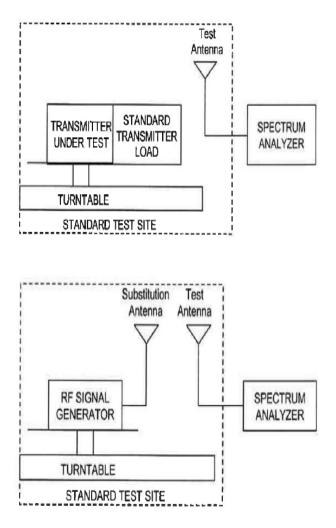



Figure #7.2 Substitution methods TIA/EIA-603-C



### 10.2 Limit §27.53 (h)

Minimum standard:

Para. No.27.53(h)

(h) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB.

(1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

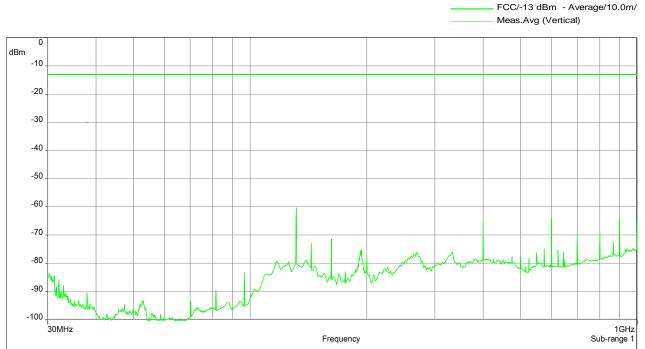
(2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.

(3) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

The Emission limit is -13dBm.

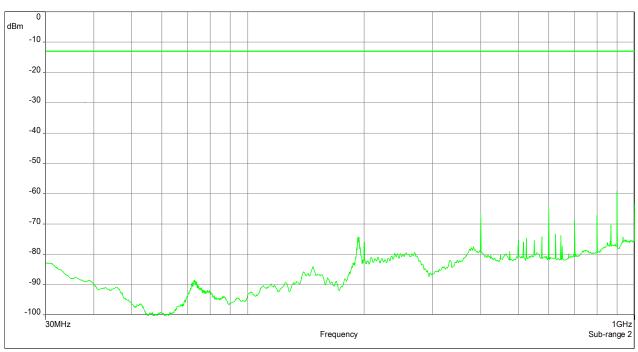
### 10.3 Climatic values in the lab

Temperature:	21°
Relative Humidity:	45%
Air-pressure:	1004 hPa




#### 10.4 Test results

### 10.4.1 30 MHz to 1 GHz Downlink (Bottom – Middle – Top)


B/M/T: 2110.7 MHz / 2145 MHz / 2179.3 MHz (Operation: maximum power and MIMO)

Vertikal

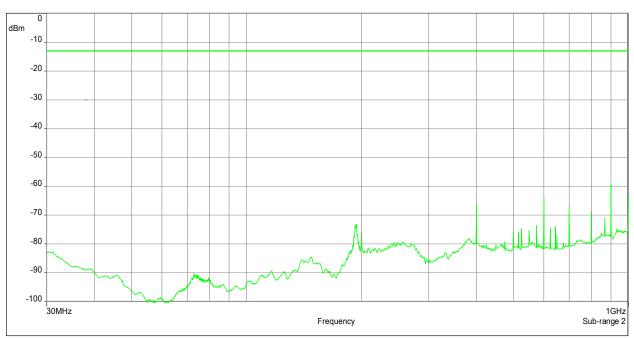


Horizontal

FCC/-13 dBm - Average/10.0m/
Meas.Avg (Horizontal)



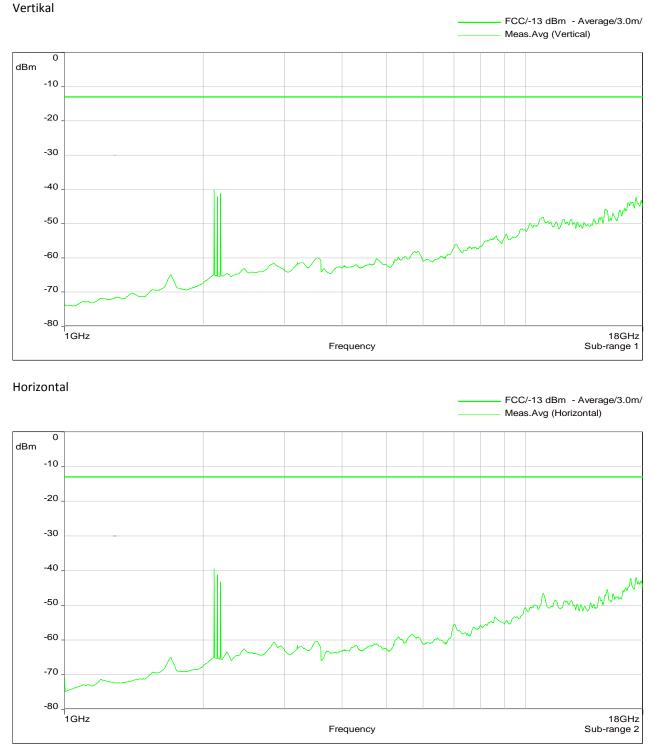



### 10.4.2 30 MHz to 1 GHz Downlink (Middle of both paths)

F1: 2145 MHz; F2: 2355 MHz (Operation: maximum power and MIMO)

### Vertikal FCC/-13 dBm - Average/10.0m/ Meas.Avg (Vertical) 0 dBm -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 30MHz 1GHz Frequency Sub-range 1

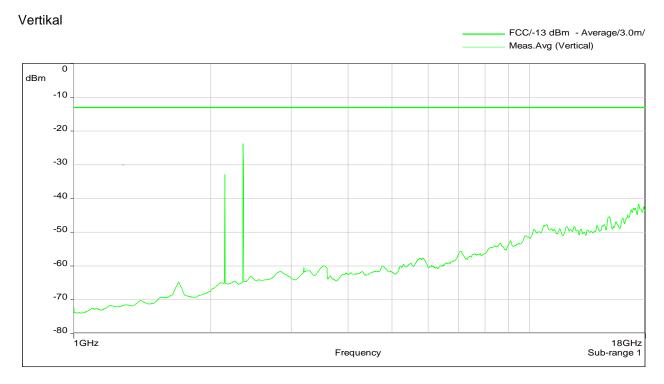
Horizontal


FCC/-13 dBm - Average/10.0m/ Meas.Avg (Horizontal)



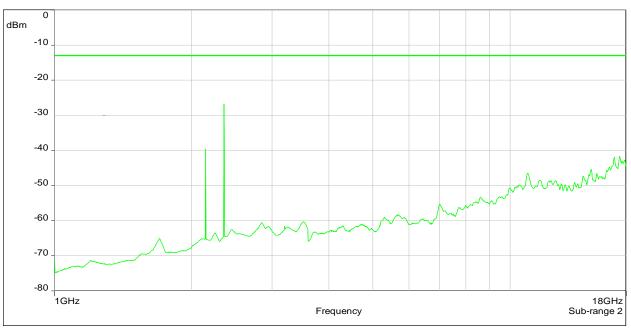


### 10.4.3 1 GHz – 18 GHz Downlink (Bottom – Middle – Top)


B/M/T: 2110.7 MHz / 2145 MHz / 2179.3 MHz (Operation: maximum power and MIMO)






### 10.4.4 1 GHz – 18 GHz Downlink (Middle of both paths)

F1: 2145 MHz; F2: 2355 MHz (Operation: maximum power and MIMO)



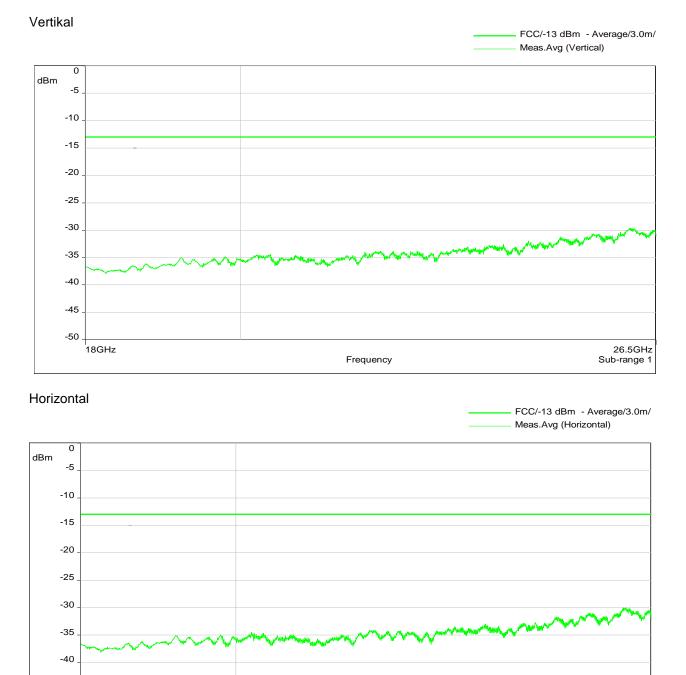
#### Horizontal

FCC/-13 dBm - Average/3.0m/ Meas.Avg (Horizontal)





#### 10.4.5 18 GHz – 26 GHz Downlink (Bottom – Middle – Top)


#### B/M/T: 2110.7 MHz / 2145 MHz / 2179.3 MHz (Operation: maximum power and MIMO)





### 10.4.6 18 GHz – 26 GHz Downlink (Middle of both paths)

#### F1: 2145 MHz; F2: 2355 MHz (Operation: maximum power and MIMO)



-45

-50

18GHz

#### Za / 05.05.2017

26.5GHz Sub-range 2

### The radiated spurious emission measurements have been passed!

Frequency



## 11 History

Revision	Modification	Date	Name
01.00	Initial Test report	05.07.2017	Tom Zahlmann
02.00	Name of the EUT an FCC-IC corrected	25.07.2017	Tom Zahlmann

# ****** End of test report *****