RF Exposure Info / MPE Sample Calculation

Model: CAP H 80-85/17E/19/26
FCC-ID: XS5-CAPH8171926

INTRODUCTION

The ERA product is a digital distribution system with focus on flexibility, easy installing, commissioning, and reliable operation. The system is designed in a way to satisfy all of today's needs as well as unknown future standards and requirements.

The ERA system comprises of two main parts. A base station interface (Master or Head End Unit) that takes RF signals as well as digital signals from the base stations, conditions the signals for the given application and assigns them to the ezones.

The coverage side is built of one or more Remote Units. The "Remote Unit" (hereinafter referred to as "RU") is connected via a 10GBASE SFP+ fiber optical link to the ERA Master Unit. This link gives a total RF bandwidth of up to 320 MHz . For higher bandwidth requirements, a secondary 10 G link can be used in parallel.

RF signals between Master Unit and Remote Units are sent digitally over the fiber optical link. At the receiver side these signals are converted back to analog and amplified up to appropriate transmit levels.

The ERA high power RU is primarily intended for outdoor use, but can also be used indoors, while the master unit mainly operates in indoor environments. Although this is not a rule especially in cases where master unit components are used together with air-conditioned outdoor racks.

The specific device generally will be professionally installed.
Hereby the gain of the finally installed antenna(s), cable attenuation and antenna height will be defined site specific at the time of licensing with the appropriate FCC Bureau(s).

The maximum permissible exposure limit is defined in 47 CFR 1.1310 (B).
$\mathrm{S}=$ power density limit [W/m]
$\mathrm{P}=$ power [W]
$\mathrm{R}=$ distance $[\mathrm{m}]$
$S_{n}=\frac{P_{n} G_{n}}{4 \pi R_{n}{ }^{2}} \Rightarrow R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}}$ (to calculate the distance at one frequency)
If we have more bands, than we have to calculated as a percentage:
The additional of the terms have to be lower than 1.
$\frac{S_{c a l 1}}{S_{1}}+\frac{S_{c a l 2}}{S_{2}}+\frac{S_{c a l 3}}{S_{3}}+\ldots .+\frac{S_{\text {caln }}}{S_{n}}<1$
$\frac{\frac{P_{1} G_{1}}{4 \pi R_{1}{ }^{2}}}{S_{1}}+\frac{\frac{P_{2} G_{2}}{4 \pi R_{2}{ }^{2}}}{S_{2}}+\frac{\frac{P_{3} G_{3}}{4 \pi R_{3}{ }^{2}}}{S_{3}}+\ldots .+\frac{\frac{P_{n} G_{n}}{4 \pi R_{n}{ }^{2}}}{S_{n}}<1$

We are looking for a distance of ensures that the formula is satisfied.
$R_{1}=R_{2}=R_{3}=\ldots=R_{n}$
$\frac{P_{1} G_{1}}{4 \pi R^{2} S_{1}}+\frac{P_{2} G_{2}}{4 \pi R^{2} S_{2}}+\frac{P_{3} G_{3}}{4 \pi R^{2} S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi R^{2} S_{n}}<1$
$\frac{P_{1} G_{1}}{4 \pi S_{1}}+\frac{P_{2} G_{2}}{4 \pi S_{2}}+\frac{P_{3} G_{3}}{4 \pi S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi S_{n}}<R^{2}$
$\sqrt{\frac{P_{1} G_{1}}{4 \pi S_{1}}+\frac{P_{2} G_{2}}{4 \pi S_{2}}+\frac{P_{3} G_{3}}{4 \pi S_{3}}+\ldots+\frac{P_{n} G_{n}}{4 \pi S_{n}}}<R$
$\sqrt{R_{1}{ }^{2}+R_{2}{ }^{2}+R_{3}{ }^{2}+\ldots+R_{n}{ }^{2}}<R$

What you have to do for calculate the minimum distance were the power density limit is met:

1) If you have one path, you have to put your special values in the following formula.
$R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}} \quad$ (Distance for one carrier)
Limits for General Population / Uncontrolled Exposures

Frequency Range (MHz)

$$
\begin{aligned}
& \text { Power Density }\left(\mathrm{mW} / \mathrm{cm}^{2}\right) \\
& \mathrm{S}=\mathrm{f} / 1500 \\
& \mathrm{~S}=1
\end{aligned}
$$

2) If you have more than one path, you must add the individual terms quadratic.
$R_{n}=\sqrt{\frac{P_{n} G_{n}}{4 \pi S_{n}}} \quad \quad$ (Distance for individual carrier)
$\sqrt{R_{1}{ }^{2}+R_{2}{ }^{2}+R_{3}{ }^{2}+\ldots+R_{n}{ }^{2}}<R \quad$ (See previous page)

For example:

The EUT operates in $\mathbf{4}$ frequency bands:
DL Frequency Bands are:

Band	Freq. DL
$\mathbf{8 0}$	$862-869 \mathrm{MHz}$
$\mathbf{8 5}$	$869-894 \mathrm{MHz}$
$\mathbf{1 7 E}$	$2110-2180 \mathrm{MHz}$
$\mathbf{1 9}$	$1930-1995 \mathrm{MHz}$
$\mathbf{2 6}$	$2620-2690 \mathrm{MHz}$

The max conducted output power of a single frequency band is $42.5 \mathrm{dBm}(17.8 \mathrm{~W})$ per antenna port.

Calculation for every path with maximum allowed antenna gain and without cable loss:

| Frequency
 [MHz] | Output Power [dBm] |
| ---: | ---: | ---: | ---: |\quad Antenna Gain [dBi] | Calculated Distance [m] |
| :--- |
| 862 |

The worst case would be if all bands were active:
$\sqrt{R_{1}{ }^{2}+R_{2}{ }^{2}+R_{3}{ }^{2}+\ldots+R_{n}{ }^{2}}<R$
$\underline{R}_{\text {all }}>2.267 \mathrm{~m} \rightarrow \sim 2.3 \mathrm{~m}=90.55$ inches \quad (see previous page for derivation)

For more accurate calculation, the cable loss and actual antenna gain have to be included in the final system.
The antennas) used with device must be fixed-mounted on permanent structures with a distance to any human body to comply with the RF Exposure limit.

