

ECL-TA Test Report No.: 2022-0016-EMC-TR-22-0028-V02_Andrew_CAP H 23/23/25T/25T F-AC-F1_FCC

Designation:	CAP H 23/23/25T/25T F-AC-F1
Manufacturer:	Andrew
Serial No(s):	BGCHFF2136003
ID No.	7835476-0006 Rev: 00
Test Specification(s):	ANSI 63.26:2015
	FCC Rules and Regulations al listed in 47 CFR, Part 20 and Part 27:2022-01-31
Test Plan:	Measurement of Band 41 (BRS) and Band 30 (WCS 2300) downlink.
Test Pesult:	Passed
	r asseu

Date of issue:	2022-03-07		
Version:	02	Technical	
Date of delivery:	2022-01	Reviewer:	
Performance date:	2022-01-27 - 2021-01-31	Report Reviewer:	

The test results relates only to the tested item. The sample has been provided by the client. Without the written consent of Burau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

Bureau Veritas Consumer Products Services Germany GmbH www.bureauveritas.de/cps Phone: +49 (0)40 – 740 41 – 0

Schwerin Wilhelm-Hennemann-Str. 8, 19061 Schwerin cps-schwerin@de.bureauveritas.com

Managing Director: Sebastian Doose/Stefan Kischka

Reg.No.: Schwerin HRB 3564

Hamburg Oehleckerring 40, 22419 Hamburg cps-hamburg@de.bureauveritas.com Tuerkheim Businesspark A96, 86842 Tuerkheim cps-tuerkheim@de.bureauveritas.com

Nuremberg Thurn-und-Taxis-Str. 18, 90411 Nuremberg cps-nuernberg@de.bureauveritas.com

Table of Contents

1	App	blied Standards and Test Summary	3
	1.1	CFR Applied Standards	3
	1.2	FCC-IC Correlation Table	4
	1.3	Measurement Summary / Signatures	5
2	Adr	ninistrative Data	7
	2.1	Testing Laboratory	7
	2.2	Project Data	7
	2.3	Applicant Data	7
	2.4	Manufacturer Data	8
3	Tes	t Object Data	9
	3.1	General EUT Description	9
	3.2	EUT Main components	.10
	3.3	Ancillary Equipment	.10
	3.4	Auxiliary Equipment	.10
	3.5	EUT Setups	.11
	3.6	Operating Modes	.11
4	Ger	neral Remarks	.12
5	Tes	t Results	.13
	5.1	Conducted spurious emissions at antenna terminals	.13
	5.2	Product labelling	.42
	5.3	Field strength of spurious radiation	.44
6	Tes	t Equipment	.60
7	Ant	enna Factors, Cable Loss and Sample Calculations	.61
	7.1	Antenna ANTENNA CHASE CBL 6111C (30 MHZ - 1 GHZ)	.61
	7.2	Antenna Rohde & Schwarz HI 025 (1 GHz – 18 GHz)	.62
	7.3	Antenna ARA Inc. MWH-1826-B (18 GHz – 26. GHz) partially in conjunction	
	with _l	pre-amplifier MITEQ JS43-1800-4000: the use of the pre-amplifier is	
	depei	ndent from the field strength	.63
8	Mea	asurement Uncertainties	.64
9	Pho	to Report	.65

- 1 Applied Standards and Test Summary
 - 1.1 CFR Applied Standards

Type of Authorization

Certification for an Industrial Signal Booster.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 20, 27, (01/31/2022 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 20, Commercial Mobiles Services

§ 20.21 Signal Boosters

Part 27; Miscellaneous Wireless Communications Services Subpart C – Technical standards

§ 27.50 – Power and duty cycle limits

§ 27.53 – Emission limits

The tests were selected and performed with reference to:

- FCC Public Notice 935210 applying "Signal Boosters Basic Certification Requirements" 935210 D02 v04r02, 2019-04-15.
- FCC Public Notice 935210 applying "Measurement guidance for industrial and nonconsumer signal booster, repeater and amplifier devices" 935210 D05 v01r04, 2020-04-03.
- FCC Public Notice 971168 applying "Measurement guidance for certification of licensed digital transmitters" 971168 D01 v03r01,2018-04-09
- ANSI C63.26:2015
- ANSI C63.4:2014

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC Correlation Table

Correlation of measurement requirements for Industrial Signal Booster from FCC

Measurement	FCC Reference
Conducted spurious Emission at Antenna Terminal	§2.1051 §27.53
Field strength of spurious radiation	§2.1053 §27.53

1.3 Measurement Summary / Signatures

47 CFR CHAPTER I FCC PART 27 Subpart C [Base §2.1051, §27.53 Stations/Repeater]

Conducted spurious emissions at antenna terminals The measurement was performed according to ANSI C63.26 Final Result

OP-Mode

Frequency Band, Test Frequency, Direction, Signal Type Band 41 BRS (LBS), high, RF downlink, Narrowband Passed Band 41 BRS (LBS), high, RF downlink, Wideband Passed Band 41 BRS (LBS), low, RF downlink, Narrowband Passed Band 41 BRS (LBS), low, RF downlink, Wideband Passed Band 41 BRS (LBS), mid, RF downlink, Narrowband Passed Band 41 BRS (LBS), mid, RF downlink, Wideband Passed Band 41 BRS (MBS), high, RF downlink, Narrowband Passed Passed Band 41 BRS (MBS), high, RF downlink, Wideband Band 41 BRS (MBS), low, RF downlink, Narrowband Passed Band 41 BRS (MBS), low, RF downlink, Wideband Passed Band 41 BRS (MBS), mid, RF downlink, Narrowband Passed Band 41 BRS (MBS), mid, RF downlink, Wideband Passed Passed Band 41 BRS (UBS), high, RF downlink, Narrowband Band 41 BRS (UBS), high, RF downlink, Wideband Passed Band 41 BRS (UBS), low, RF downlink, Narrowband Passed Band 41 BRS (UBS), low, RF downlink, Wideband Passed Band 41 BRS (UBS), mid, RF downlink, Narrowband Passed Band 41 BRS (UBS), mid, RF downlink, Wideband Passed Band 30 WCS 2300, high, RF downlink, Narrowband Passed Band 30 WCS 2300, high, RF downlink, Wideband Passed Band 30 WCS 2300, low, RF downlink, Narrowband Passed Band 30 WCS 2300, low, RF downlink, Wideband Passed Band 30 WCS 2300, mid, RF downlink, Narrowband Passed Band 30 WCS 2300, mid, RF downlink, Wideband Passed

47 CFR CHAPTER I FCC PART 27 Subpart C [Base §2.1053, §27.53 Stations/Repeater]

Field strength of spurious radiationFinal ResultThe measurement was performed according to ANSI C63.26 and
ANSI C63.4Final ResultOP-ModeFrequency Band, Test Frequency, DirectionBand 41 BRS (MBS), high, RF downlinkPassedBand 41 BRS (MBS), low, RF downlinkPassedBand 41 BRS (MBS), mid, RF downlinkPassed

Band 30 WCS, high, RF downlink Band 30 WCS, low, RF downlink Band 30 WCS, mid, RF downlink Passed Passed Passed Passed Passed Passed

The test case frequency stability was not performed, since the EUT is not equipped with signal processing capabilities.

Report version control								
Version	Release date	Change Description	Version validity					
Initial (V01)	2022-02-11		unvalid					
V02	2022-03-07	Supplement of note for using 10 m distance at the measurement "Field strength of spurious radiation" in the frequency range of 30 MHz up to 1 GHz.	valid					

2 Administrative Data

2.1 Testing Laboratory

Company Name:	Bureau Veritas CPS Germany GmbH
Address:	Thurn-und-Taxis-Straße 18 90411 Nürnberg Germany
The test facility is accredited by the fol	lowing accreditation organisation:
Laboratory accreditation no:	DAkkS D-PL-12024-06-03,
	DAkkS D-PL-12024-06-04
	BNetz-CAB-19/21-20
FCC Designation Number:	DE0023
FCC Test Firm Registration:	366481
ISED CAB identifier:	DE0016
Responsible for accreditation scope:	Mr. Florian Mosandl
2.2 Project Data	
Responsible for testing and report:	Mr. Thomas Hufnagel; Mr. Thomas Gerngroß
Employees who performed the tests:	Mr. Thomas Hufnagel
2.3 Applicant Data	
Company Name:	Commscope Andrew Wireless Systems GmbH
Address:	Industriering 10 86675 Buchdorf Germany
Contact Person:	Mr. Frank Futter

2.4 Manufacturer Data

Company Name:

Please see applicant data.

3 Test Object Data

3.1 General EUT Description

Kind of Device product description	Cellular Repeater
Product name	Cellular Repeater
Туре	ION-E System CAP H 23/23/25T/25T F-AC-F1-APE
Declared EUT data by	the supplier
General Product Description	The EUT is an industrial signal booster supporting the following: Band 30 (WCS-2300): 2350 – 2360 MHz Band 41 (BRS-2500), Broadband Radio Service: • Lower Band Segment (LBS): 2496- 2568 MHz • Middle Band Segment (MBS): 2572 – 2614 MHz • Upper Band Segment (UBS): 2618 – 2690 MHz
	A RF operation is only supported for the downlink.
Booster Type	Industrial Signal Booster
Voltage Type	AC
Voltage Level	100 to 240 V
Maximum Output Donor Port [Uplink]	-
Maximum Output Server Port [Downlink] (measured)	Band 41 (BRS-2500), Broadband Radio Service: • Lower Band Segment (LBS): 2496- 2568 MHz • Middle Band Segment (MBS): 2572 – 2614 MHz • Upper Band Segment (UBS): 2618 – 2690 MHz Band 30 (WCS-2300):
Maximum Gain [Uplink]	-
Maximum Gain [Downlink] (measured)	Band 41 (BRS-2500), Broadband Radio Service: • Lower Band Segment (LBS): 2496- 2568 MHz • Middle Band Segment (MBS): 2572 – 2614 MHz • Upper Band Segment (UBS): 2618 – 2690 MHz Band 30 (WCS-2300):

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT Main components

Sample Parameter	Value
Serial Number	BGCHFF2136003
HW Version	7835476-0006 Rev: 00; CAP H 23/23/25T/25T F-AC-F1
SW Version	4.10.0.10
Comment	-

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

DeviceDetails
(Manufacturer, S/N)DescriptionAUX1GE Energy, 14CS12226993;
Cherokee International, psu_12-1_0_1
and psu_1_0Power SupplyAUX2Commscope, SZAEAJ1819A0001Subrack

Explanations of abbreviations:

LBS: lower band segment: This is the BRS band with the customer's definition "BRS Low"

MBS: middle band segment: This is the BRS band with the customer's definition "BRS Mid"

UBS: upper band segment: This is the BRS band with the customer's definition "BRS High"

3.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

3.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

3.6.1 Test Channels

		Lower Frequency Band Edge	Upper Frequency Band Edge	Center Frequency	
Band	Direction	[MHz]	[MHz]	[MHz]	Port
41 (BRS (UBS)	downlink	2618	2690	2654	Donor
41 (BRS (MBS)	downlink	2572	2614	2593	Donor
41 (BRS (LBS)	downlink	2496	2568	2532	Donor
30 (WCS)	downlink	2350	2360	2355	Donor

4 General Remarks

This DUT version has only changes in the hardware control but not to the RF paths. Therefore only repeating of the tests "Conducted spurious emissions at antenna terminals" and "Field strength of spurious radiation" are necessary and done. This test report supplements the main report "ECL-TA Test Report No.: 19-001" with the DUT type FCC number "FCC ID XS5-CAPH2325".

Unless otherwise noted the tests are done with antenna output port ANT 1 except at determining the output level of the output ports ANT 1 and ANT 2 together (MIMO) at the point "Effective Radiated Power, mean output power and zone enhancer gain".

At the measuring point "Field strength of spurious radiation" the two output ports ANT 1 and ANT 2 are together in function according KDB 935210 D02 v04r02 chapter II (o) (2).

Explanations of abbreviations for the BRS frequency bands:

LBS: lower band segment: This is the BRS band with the customer's definition "BRS Low"

MBS: middle band segment: This is the BRS band with the customer's definition "BRS Mid"

UBS: upper band segment: This is the BRS band with the customer's definition "BRS High"

5 Test Results

5.1 Conducted spurious emissions at antenna terminals

Standard FCC Part §2.1051, §27.53

The test was performed according to: ANSI C63.26

Test date: 2022-01-27

Environmental conditions: 23 ° C; 33% r. F.

Test engineer: Thomas Hufnagel

5.1.1 Test Description

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster – Test Setup; RF Output Power / Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

5.1.2 Test Requirements / Limits

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminals:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in § 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 – Emission limits

Band 30 WCS:

- (a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:
- (1) For base and fixed stations' operations in the 2305-2320 MHz band and the 2345-2360 MHz band:
 - (i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;
 - (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 70 + 10 log (P) dB on all frequencies between 2287.5 and 2300 MHz, 72 + 10 log (P) dB on all frequencies between 2285 and 2287.5 MHz, and 75 + 10 log (P) dB below 2285 MHz;
 - (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.
 - (2) For fixed customer premises equipment (CPE) stations operating in the 2305-2320 MHz band and the 2345-2360 MHz band transmitting with more than 2 watts per 5 megahertz average EIRP:

- (i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;
- (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 70 + 10 log (P) dB on all frequencies between 2287.5 and 2300 MHz, 72 + 10 log (P) dB on all frequencies between 2285 and 2287.5 MHz, and 75 + 10 log (P) dB below 2285 MHz;
- (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.
- (3) For fixed CPE stations operating in the 2305-2320 MHz and 2345-2360 MHz bands transmitting with 2 watts per 5 megahertz average EIRP or less:
 - (i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;
 - (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;
 - (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.
- (4) For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:
 - (i) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2328 and 2337 MHz;

- (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;
- (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.
- (5) **Measurement procedure.** Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the channel blocks at 2305, 2310, 2315, 2320, 2345, 2350, 2355, and 2360 MHz, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.*, 1 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (6) [Reserved]
- (7) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power;
- (8) Waiver requests of any of the out-of-band emission limits in paragraphs (a)(1) through (a)(7) of this section shall be entertained only if interference protection equivalent to that afforded by the limits is shown;
- (9) [Reserved]
- (10) The out-of-band emissions limits in paragraphs (a)(1) through (a)(3) of this section may be modified by the private contractual agreement of all affected licensees, who must maintain a copy of the agreement in their station files and disclose it to prospective assignees, transferees, or spectrum lessees and, upon request, to the Commission.

Band 41BRS (LBS/MBS/UBS):

(m) For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels.

(1) Prior to the transition, and thereafter, solely within the MBS, for analog operations with an EIRP in excess of -9 dBW, the signal shall be attenuated at the channel edges by at least 38 dB relative to the peak visual carrier, then linearly sloping from that level to at least 60 dB of attenuation at 1 MHz below the lower band edge and 0.5 MHz above the upper band edge, and attenuated at least 60 dB at all other frequencies.

(2) For digital base stations, the attenuation shall be not less than 43 + 10 log (P) dB, unless a documented interference complaint is received from an adjacent channel licensee with an overlapping Geographic Service Area. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS No. 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

5.1.3 Test Protocol

Band 41. B	Band 41. BRS (LBS). downlink							
		Spurious	Spurious				Margin	
Test	Signal	Freq.	Level		RBW	Limit	to Limit	
Frequency	Туре	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dB]	
low	Narrowband	0.01041	-51.4	RMS	1	-33	18.4	
low	Narrowband	0.15748	-44.9	RMS	10	-23	21.9	
low	Narrowband	126.3	-34.9	RMS	100	-13	21.9	
low	Narrowband	893.4	-23.9	RMS	1000	-13	10.9	
low	Narrowband	2151.9	-26.6	RMS	1000	-13	13.6	
low	Narrowband	2494.8	-34.4	RMS	100	-23	11.4	
low	Narrowband	2575.6	-35.1	RMS	100	-23	12.1	
low	Narrowband	6885.5	-21.2	RMS	1000	-13	8.2	
low	Narrowband	19980	-21.0	RMS	1000	-13	8.0	
low	Narrowband	20345	-19.9	RMS	1000	-13	6.9	
mid	Narrowband	0.00902	-51.1	RMS	1	-33	18.1	
mid	Narrowband	0.06250	-44.9	RMS	10	-23	21.9	
mid	Narrowband	70.4	-35.5	RMS	100	-13	22.5	
mid	Narrowband	899.9	-25.9	RMS	1000	-13	12.9	
mid	Narrowband	1997.9	-26.8	RMS	1000	-13	13.8	
mid	Narrowband	2487.2	-36.1	RMS	100	-13	23.1	
mid	Narrowband	2576.9	-35.9	RMS	100	-13	22.9	
mid	Narrowband	6928.5	-21.3	RMS	1000	-13	8.3	
mid	Narrowband	19525	-20.6	RMS	1000	-13	7.6	
mid	Narrowband	20150	-20.3	RMS	1000	-13	7.3	
high	Narrowband	0.00902	-50.5	RMS	1	-33	17.5	
high	Narrowband	0.05750	-45.4	RMS	10	-23	22.4	
high	Narrowband	122.6	-35.9	RMS	100	-13	22.9	
high	Narrowband	889.4	-24.8	RMS	1000	-13	11.8	
high	Narrowband	2004.9	-26.4	RMS	1000	-13	13.4	
high	Narrowband	2490.1	-34.2	RMS	100	-23	11.2	
high	Narrowband	2569.1	-32.3	RMS	100	-23	9.3	
high	Narrowband	6879.5	-21.2	RMS	1000	-13	8.2	
high	Narrowband	19545	-20.2	RMS	1000	-13	7.2	
high	Narrowband	20284	-20.2	RMS	1000	-13	7.2	

		Spurious	Spurious				Margin
Test	Signal	Freq.	Level		RBW	Limit	to Limit
Frequency	Туре	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dB]
low	Wideband	0.011519	-49.8	RMS	1	-33	16.8
low	Wideband	0.10749	-43.9	RMS	10	-23	20.9
low	Wideband	119.6	-35.6	RMS	100	-13	22.6
low	Wideband	890.9	-24.4	RMS	1000	-13	11.4
low	Wideband	2081.9	-27.0	RMS	1000	-13	14.0
low	Wideband	2494.7	-31.7	RMS	100	-23	8.7
low	Wideband	2573.6	-36.5	RMS	100	-23	13.5
low	Wideband	6861.5	-21.1	RMS	1000	-13	8.1
low	Wideband	19571	-20.9	RMS	1000	-13	7.9
low	Wideband	20318	-20.1	RMS	1000	-13	7.1
mid	Wideband	0.01058	-50.1	RMS	1	-33	17.1
mid	Wideband	0.06750	-42.4	RMS	10	-23	19.4
mid	Wideband	120.9	-35.5	RMS	100	-13	22.5
mid	Wideband	891.9	-25.1	RMS	1000	-13	12.1
mid	Wideband	2208.3	-27.0	RMS	1000	-13	14.0
mid	Wideband	2489.7	-36.0	RMS	100	-13	23.0
mid	Wideband	2573.1	-35.9	RMS	100	-13	22.9
mid	Wideband	6837.5	-21.1	RMS	1000	-13	8.1
mid	Wideband	19960	-20.7	RMS	1000	-13	7.7
mid	Wideband	20335	-20.0	RMS	1000	-13	7.0
high	Wideband	0.01164	-50.0	RMS	1	-33	17.0
high	Wideband	0.15248	-42.9	RMS	10	-23	19.9
high	Wideband	68.6	-35.3	RMS	100	-13	22.3
high	Wideband	710.5	-24.7	RMS	1000	-13	11.7
high	Wideband	1735.5	-26.7	RMS	1000	-13	13.7
high	Wideband	2493.9	-36.1	RMS	100	-23	13.1
high	Wideband	2569.0	-33.6	RMS	100	-23	10.6
high	Wideband	6923.5	-21.2	RMS	1000	-13	8.2
high	Wideband	19540	-20.8	RMS	1000	-13	7.8
high	Wideband	20314	-20.3	RMS	1000	-13	7.3

		Spurious	Spurious				Margin
Test	Signal	Freq.	Level		RBW	Limit	to Limit
Frequency	Туре	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dB]
low	Narrowband	0.01009	-50.7	RMS	1	-33	17.7
low	Narrowband	0.08749	-45.0	RMS	10	-23	22.0
low	Narrowband	67.0	-35.2	RMS	100	-13	22.2
low	Narrowband	892.4	-25.1	RMS	1000	-13	12.1
low	Narrowband	2550.3	-24.8	RMS	1000	-13	11.8
low	Narrowband	2570.9	-32.9	RMS	100	-23	9.9
low	Narrowband	2618.6	-35.5	RMS	100	-23	12.5
low	Narrowband	6861.0	-20.9	RMS	1000	-13	7.9
low	Narrowband	19551	-21.1	RMS	1000	-13	8.1
low	Narrowband	20302	-20.2	RMS	1000	-13	7.2
mid	Narrowband	0.00955	-50.3	RMS	1	-33	17.3
mid	Narrowband	0.05250	-45.3	RMS	10	-23	22.3
mid	Narrowband	123.0	-34.3	RMS	100	-13	21.3
mid	Narrowband	895.9	-24.7	RMS	1000	-13	11.7
mid	Narrowband	2550.3	-25.3	RMS	1000	-13	12.3
mid	Narrowband	2566.7	-34.6	RMS	100	-13	21.6
mid	Narrowband	2620.7	-35.9	RMS	100	-13	22.9
mid	Narrowband	6981.0	-21.3	RMS	1000	-13	8.3
mid	Narrowband	19957	-20.6	RMS	1000	-13	7.6
mid	Narrowband	20356	-19.7	RMS	1000	-13	6.7
high	Narrowband	0.00992	-50.6	RMS	1	-33	17.6
high	Narrowband	0.05750	-44.7	RMS	10	-23	21.7
high	Narrowband	118.9	-35.9	RMS	100	-13	22.9
high	Narrowband	854.4	-24.8	RMS	1000	-13	11.8
high	Narrowband	2514.3	-24.5	RMS	1000	-13	11.5
high	Narrowband	2565.7	-34.6	RMS	100	-23	11.6
high	Narrowband	2615.1	-32.7	RMS	100	-23	9.7
high	Narrowband	6917.0	-20.7	RMS	1000	-13	7.7
high	Narrowband	19550	-20.7	RMS	1000	-13	7.7
high	Narrowband	20280	-19.8	RMS	1000	-13	6.8

Band 41. BI	Band 41. BRS (MBS). downlink										
		Spurious	Spurious				Margin				
Test	Signal	Freq.	Level		RBW	Limit	to Limit				
Frequency	Туре	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dB]				
low	Wideband	0.009266	-49.4	RMS	1	-33	16.4				
low	Wideband	0.08250	-43.4	RMS	10	-23	20.4				
low Wideband		66.8	-35.1	RMS	100	-13	22.1				
low	Wideband	850.9	-24.3	RMS	1000	-13	11.3				
low	Wideband	2550.3	-24.4	RMS	1000	-13	11.4				
low	Wideband	2570.2	-30.9	RMS	100	-23	7.9				
low	Wideband	2615.2	-34.4	RMS	100	-23	11.4				
low	Wideband	6944.5	-21.0	RMS	1000	-13	8.0				
low	Wideband	19573	-20.8	RMS	1000	-13	7.8				
low	Wideband	20301	-20.0	RMS	1000	-13	7.0				
mid	Wideband	0.00902	-48.7	RMS	1	-33	15.7				
mid	Wideband	0.14748	-43.6	RMS	10	-23	20.6				
mid	Wideband	119.2	-35.6	RMS	100	-13	22.6				
mid	Wideband	847.9	-24.6	RMS	1000	-13	11.6				
mid	Wideband	2550.8	-26.0	RMS	1000	-13	13.0				
mid	Wideband	2566.6	-35.0	RMS	100	-13	22.0				
mid	Wideband	2615.4	-35.4	RMS	100	-13	22.4				
mid	Wideband	6861.0	-20.9	RMS	1000	-13	7.9				
mid	Wideband	19542	-20.7	RMS	1000	-13	7.7				
mid	Wideband	20270	-19.9	RMS	1000	-13	6.9				
high	Wideband	0.01414	-50.7	RMS	1	-33	17.7				
high	Wideband	0.15748	-41.6	RMS	10	-23	18.6				
high	Wideband	65.9	-35.6	RMS	100	-13	22.6				
high	Wideband	709.0	-25.5	RMS	1000	-13	12.5				
high	Wideband	2550.3	-25.8	RMS	1000	-13	12.8				
high	Wideband	2564.5	-35.2	RMS	100	-23	12.2				
high	Wideband	2615.0	-32.0	RMS	100	-23	9.0				
high	Wideband	6889.5	-20.9	RMS	1000	-13	7.9				
high	Wideband	19562	-20.5	RMS	1000	-13	7.5				
high	Wideband	20272	-20.5	RMS	1000	-13	7.5				

Band 41. BRS (UBS). downlink

Test	Signal	Spurious Freq.	Spurious Level		RBW	Limit	Margin to Limit
Frequency	Туре	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dB]
low	Narrowband	0.00972	-51.0	RMS	1	-33	18.0
low	Narrowband	0.06750	-43.3	RMS	10	-23	20.3
low	Narrowband	71.5	-35.8	RMS	100	-13	22.8
low	Narrowband	854.9	-25.5	RMS	1000	-13	12.5
low	Narrowband	2550.3	-25.2	RMS	1000	-13	12.2
low	Narrowband	2616.9	-32.5	RMS	100	-23	9.5
low	Narrowband	2691.6	-36.4	RMS	100	-23	13.4
low	Narrowband	6875.0	-20.7	RMS	1000	-13	7.7
low	Narrowband	19589	-20.3	RMS	1000	-13	7.3
low	Narrowband	20307	-19.9	RMS	1000	-13	6.9
mid	Narrowband	0.01095	-50.3	RMS	1	-33	17.3
mid	Narrowband	0.15248	-44.3	RMS	10	-23	21.3
mid	Narrowband	122.6	-35.2	RMS	100	-13	22.2
mid	Narrowband	891.4	-24.5	RMS	1000	-13	11.5
mid	Narrowband	2508.8	-25.9	RMS	1000	-13	12.9
mid	Narrowband	2611.5	-36.3	RMS	100	-13	23.3
mid	Narrowband	2695.4	-36.0	RMS	100	-13	23.0
mid	Narrowband	6853.5	-20.9	RMS	1000	-13	7.9
mid	Narrowband	19932	-20.7	RMS	1000	-13	7.7
mid	Narrowband	20272	-20.4	RMS	1000	-13	7.4
high	Narrowband	0.00992	-50.3	RMS	1	-33	17.3
high	Narrowband	0.05250	-44.8	RMS	10	-23	21.8
high	Narrowband	326.7	-35.2	RMS	100	-13	22.2
high	Narrowband	889.9	-24.3	RMS	1000	-13	11.3
high	Narrowband	2490.3	-23.8	RMS	1000	-13	10.8
high	Narrowband	2616.7	-35.3	RMS	100	-23	12.3
high	Narrowband	2691.1	-33.4	RMS	100	-23	10.4
high	Narrowband	6888.0	-20.9	RMS	1000	-13	7.9
high	Narrowband	19567	-20.0	RMS	1000	-13	7.0
high	Narrowband	20308	-20.2	RMS	1000	-13	7.2

Band 41. BI	Band 41. BRS (UBS). downlink										
		Spurious	Spurious				Margin				
Test	Signal	Freq.	Level		RBW	Limit	to Limit				
Frequency	Туре	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dB]				
low	Wideband	0.00902	-49.0	RMS	1	-33	16.0				
low	Wideband	0.05250	-42.4	RMS	10	-23	19.4				
low	low Wideband		-35.5	RMS	100	-13	22.5				
low	Wideband	710.0	-24.9	RMS	1000	-13	11.9				
low	Wideband	2530.3	-25.5	RMS	1000	-13	12.5				
low	Wideband	2616.7	-27.3	RMS	100	-23	4.3				
low	Wideband	2694.5	-35.0	RMS	100	-23	12.0				
low	Wideband	6899.0	-21.0	RMS	1000	-13	8.0				
low	Wideband	19558	-20.3	RMS	1000	-13	7.3				
low	Wideband	20307	-19.4	RMS	1000	-13	6.4				
mid	Wideband	0.00910	-49.5	RMS	1	-33	16.5				
mid	Wideband	0.13749	-42.5	RMS	10	-23	19.5				
mid	Wideband	118.9	-35.3	RMS	100	-13	22.3				
mid	Wideband	893.9	-25.5	RMS	1000	-13	12.5				
mid	Wideband	2550.3	-25.4	RMS	1000	-13	12.4				
mid	Wideband	2611.7	-35.5	RMS	100	-13	22.5				
mid	Wideband	2692.5	-35.9	RMS	100	-13	22.9				
mid	Wideband	6806.5	-21.3	RMS	1000	-13	8.3				
mid	Wideband	19579	-20.6	RMS	1000	-13	7.6				
mid	Wideband	20115	-20.0	RMS	1000	-13	7.0				
high	Wideband	0.00955	-49.5	RMS	1	-33	16.5				
high	Wideband	0.14748	-42.9	RMS	10	-23	19.9				
high	Wideband	65.9	-36.1	RMS	100	-13	23.1				
high	Wideband	850.4	-24.7	RMS	1000	-13	11.7				
high	Wideband	2587.8	-25.3	RMS	1000	-13	12.3				
high	Wideband	2609.7	-35.5	RMS	100	-23	12.5				
high	Wideband	2691.3	-28.2	RMS	100	-23	5.2				
high	Wideband	6876.0	-21.3	RMS	1000	-13	8.3				
high	Wideband	19997	-20.4	RMS	1000	-13	7.4				
high	Wideband	20291	-20.0	RMS	1000	-13	7.0				

Γ

		Spurious	Spurious				Margin
Test	Signal	Freq.	Level		RBW	Limit	to Limit
Frequency	Туре	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dB]
low	Narrowband	0.01152	-49.8	RMS	1	-33	16.8
low	Narrowband	0.06750	-44.3	RMS	10	-23	21.3
low	Narrowband	121.6	-35.9	RMS	100	-13	22.9
low	Narrowband	850.4	-24.8	RMS	1000	-13	11.8
low	Narrowband	1820.4	-27.1	RMS	1000	-13	14.1
low	Narrowband	2301.5	-34.6	RMS	100	-23	11.6
low	Narrowband	2570.7	-36.1	RMS	100	-23	13.1
low	Narrowband	6953.0	-20.6	RMS	1000	-13	7.6
low	Narrowband	19571	-20.7	RMS	1000	-13	7.7
low	Narrowband	20351	-19.5	RMS	1000	-13	6.5
mid	Narrowband	0.00910	-51.7	RMS	1	-33	18.7
mid	Narrowband	0.15248	-44.0	RMS	10	-23	21.0
mid	Narrowband	119.1	-34.8	RMS	100	-13	21.8
mid	Narrowband	852.4	-24.5	RMS	1000	-13	11.5
mid	Narrowband	2120.8	-26.6	RMS	1000	-13	13.6
mid	Narrowband	2296.7	-34.0	RMS	100	-13	21.0
mid	Narrowband	2572.5	-36.1	RMS	100	-13	23.1
mid	Narrowband	6888.0	-21.1	RMS	1000	-13	8.1
mid	Narrowband	19559	-20.6	RMS	1000	-13	7.6
mid	Narrowband	20302	-20.0	RMS	1000	-13	7.0
high	Narrowband	0.01009	-50.1	RMS	1	-33	17.1
high	Narrowband	0.15748	-45.1	RMS	10	-23	22.1
high	Narrowband	69.3	-35.9	RMS	100	-13	22.9
high	Narrowband	897.4	-25.0	RMS	1000	-13	12.0
high	Narrowband	1771.5	-26.9	RMS	1000	-13	13.9
high	Narrowband	2300.3	-37.3	RMS	100	-23	14.3
high	Narrowband	2575.4	-35.3	RMS	100	-23	12.3
high	Narrowband	6974.5	-21.0	RMS	1000	-13	8.0
high	Narrowband	19570	-20.2	RMS	1000	-13	7.2
high	Narrowband	20343	-20.2	RMS	1000	-13	7.2

Band 30. W	Band 30. WCS 2300. downlink									
			- ·	1		l				
	<u>.</u>	Spurious	Spurious				Margin			
Test	Signal	Freq.	Level		RBW	Limit	to Limit			
Frequency	Гуре	[MHZ]	[dBm]	Detector	[KHZ]	[dBm]	[dB]			
low	Wideband	0.012543	-49.3	RMS	1	-33	16.3			
low	Wideband	0.61741	-42.2	RMS	10	-23	19.2			
low Wideband		73.4	-35.0	RMS	100	-13	22.0			
low	Wideband	892.4	-24.6	RMS	1000	-13	11.6			
low	Wideband	2083.8	-26.7	RMS	1000	-13	13.7			
low	Wideband	2299.9	-35.7	RMS	100	-23	12.7			
low	Wideband	2574.9	-36.7	RMS	100	-23	13.7			
low	Wideband	6883.5	-21.4	RMS	1000	-13	8.4			
low	Wideband	19566	-20.7	RMS	1000	-13	7.7			
low	Wideband	20360	-19.9	RMS	1000	-13	6.9			
mid	Wideband	0.00992	-49.0	RMS	1	-33	16.0			
mid	Wideband	0.47243	-41.6	RMS	10	-23	18.6			
mid	Wideband	122.7	-35.2	RMS	100	-13	22.2			
mid	Wideband	898.9	-25.4	RMS	1000	-13	12.4			
mid	Wideband	2113.8	-26.8	RMS	1000	-13	13.8			
mid	Wideband	2300.3	-37.0	RMS	100	-13	24.0			
mid	Wideband	2572.6	-37.3	RMS	100	-13	24.3			
mid	Wideband	6814.0	-21.3	RMS	1000	-13	8.3			
mid	Wideband	19969	-20.3	RMS	1000	-13	7.3			
mid	Wideband	20347	-20.0	RMS	1000	-13	7.0			
high	Wideband	0.00972	-48.6	RMS	1	-33	15.6			
high	Wideband	0.14748	-42.3	RMS	10	-23	19.3			
high	Wideband	123.0	-35.4	RMS	100	-13	22.4			
high	Wideband	852.4	-25.0	RMS	1000	-13	12.0			
high	Wideband	1955.9	-27.0	RMS	1000	-13	14.0			
high	Wideband	2299.5	-36.9	RMS	100	-23	13.9			
high	Wideband	2576.2	-36.3	RMS	100	-23	13.3			
high	Wideband	6898.0	-21.5	RMS	1000	-13	8.5			
high	Wideband	19551	-20.9	RMS	1000	-13	7.9			
high	Wideband	20325	-19.9	RMS	1000	-13	6.9			

Remark: Please see next sub-clause for the measurement plot.

General cosiderations concerning the measurement plots:

From f = 9 kHz up to f < 1 GHz a measurement RBW of f = 100 kHz is requested in general for the limit value of 43 + 10 log (P) dB. For frequencies with f \ge 1 GHz a measurement RBW of f = 1 MHz is requested in general for the limit value of 43 + 10 log (P) dB. Hereby the border lines in general are each at p = -13 dBm.

At some frequencies it was necessary to modify the requested bandwidth:

At the band edges reducing of measurement bandwidth was necessary to prevent overlaying the RF-signal over the spurious emissions.

Also outside the downlink frequency band at the lower frequencies the measurement bandwidths were reduced to have the possibility to record the spurious emissions at these lower frequencies.

At frequencies where measuring bandwidths were reduced also the border lines were reduced acoording the given formula:

Thas means for the frequencies

 $p \ RBW reduced \ [dBm] = 10 * \log(RBW reduced \ [kHz] \div RBW requested \ [kHz]) + pRBW \ RBW requested \ [dBm]$

Hereby "p" are the border lines' values.

5.1.4 Measurement Plot

Frequency Band = Band 41 BRS (LBS), Test Frequency = mid, Direction = RF downlink, Signal Type = Narrowband

Frequency Band = Band 41 BRS (LBS), Test Frequency = high, Direction = RF downlink, Signal Type = Narrowband

Frequency Band = Band 41 BRS (LBS), Test Frequency = low, Direction = RF downlink, Signal Type = Wideband

Frequency Band = Band 41 BRS (LBS), Test Frequency = mid, Direction = RF downlink, Signal Type = Wideband

Frequency Band = Band 41 BRS (LBS), Test Frequency = high, Direction = RF downlink, Signal Type = Wideband

Frequency Band = Band 41 BRS (MBS), Test Frequency = low, Direction = RF downlink, Signal Type = Narrowband

Frequency Band = Band 41 BRS (MBS), Test Frequency = mid, Direction = RF downlink, Signal Type = Narrowband

Frequency Band = Band 41 BRS (MBS), Test Frequency = low, Direction = RF downlink, Signal Type = Wideband

Frequency Band = Band 41 BRS (MBS), Test Frequency = mid, Direction = RF downlink, Signal Type = Wideband

Frequency Band = Band 41 BRS (UBS), Test Frequency = mid, Direction = RF downlink, Signal Type = Narrowband

Frequency Band = Band 41 BRS (UBS), Test Frequency = mid, Direction = RF downlink, Signal Type = Wideband

Frequency Band = Band 30 WCS 2300, Test Frequency = mid, Direction = RF downlink, Signal Type = Narrowband

Frequency Band = Band 30 WCS 2300, Test Frequency = high, Direction = RF downlink, Signal Type = Narrowband

Frequency Band = Band 30 WCS 2300, Test Frequency = mid, Direction = RF downlink, Signal Type = Wideband

Frequency Band = Band 30 WCS 2300, Test Frequency = high, Direction = RF downlink, Signal Type = Wideband

5.2 Product labelling

5.2.1 FCC ID label

Please refer to the documentation of the applicant.

5.2.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

- 5.2.3 Test Equipment used
 - Conducted

5.3 Field strength of spurious radiation

Standard FCC Part 27, §27.53; A

The test was performed according to:

ANSI C63.26 together with ANSI C63.4

Test date: 2022-01-28; 2022-01-29; 2022-01-31

Environmental conditions: 21 ° C; 35 % r. F.

Test engineer: Thomas Hufnagel

5.3.1 Test Description

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053

The EUT was connected to the test setup according to the following diagram:

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.5 \times 1.5 \text{ m}^2$ in the semi-anechoic chamber, 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane.. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions.

The measurement procedure is implemented into the EMI test software BAT EMC from NEXIO. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered by a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 10 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 180°
- Turntable step size: 15°
- Height variation range: 1 4 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Note:

This frequency range was measured with an antenna distance of s = 10 m.

The ANSI C63.26 refers to ANSI C63.4 for allowed test sites for direct field measurements and substitution measurements. The ANSI C63.4 allows in this frequency range an antenna distance of 3 m and 10 m.

The used EMC hall is validated for an antenna distance of s = 10 m and the substitution measurement was performed at the same distance. Therefore this distance was chosen for this frequency measurement range.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: \pm 30 ° around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with PEAK detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Peak / Quasipeak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.5 m height in the semi-anechoic chamber. Absorbers are placed around and between the turn table and the antenna tower.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 30 °.

The turn table step size (azimuth angle) for the preliminary measurement is 15 °.

Step 2:

The maximum RFI field strength was determined during the measurement by rotating the turntable (± 180 degrees) and varying the height of the receive antenna (h = 1 ... 4 m) with a additional tilt function of the antenna. The turn table azimuth will slowly vary by $\pm 15^{\circ}$. EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

5.3.2 Test Requirements / Limits

FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 – Emission limits

Band 30 WCS:

- (a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:
- (1) For base and fixed stations' operations in the 2305-2320 MHz band and the 2345-2360 MHz band:
 - (i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;
 - (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 70 + 10 log (P) dB on all frequencies between 2287.5 and 2300 MHz, 72 + 10 log (P) dB on all frequencies between 2285 and 2287.5 MHz, and 75 + 10 log (P) dB below 2285 MHz;
 - (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.

- (2) For fixed customer premises equipment (CPE) stations operating in the 2305-2320 MHz band and the 2345-2360 MHz band transmitting with more than 2 watts per 5 megahertz average EIRP:
 - (i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;
 - (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 70 + 10 log (P) dB on all frequencies between 2287.5 and 2300 MHz, 72 + 10 log (P) dB on all frequencies between 2285 and 2287.5 MHz, and 75 + 10 log (P) dB below 2285 MHz;
 - (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.
- (3) For fixed CPE stations operating in the 2305-2320 MHz and 2345-2360 MHz bands transmitting with 2 watts per 5 megahertz average EIRP or less:
 - (i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;
 - (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;
 - (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.
- (4) For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:
 - (i) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2328 MHz and on all frequencies between 2328 and 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

- (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;
- (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.
- (5) **Measurement procedure.** Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the channel blocks at 2305, 2310, 2315, 2320, 2345, 2350, 2355, and 2360 MHz, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.*, 1 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (6) [Reserved]
- (7) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power;
- (8) Waiver requests of any of the out-of-band emission limits in paragraphs (a)(1) through (a)(7) of this section shall be entertained only if interference protection equivalent to that afforded by the limits is shown;
- (9) [Reserved]
- (10) The out-of-band emissions limits in paragraphs (a)(1) through (a)(3) of this section may be modified by the private contractual agreement of all affected licensees, who must maintain a copy of the agreement in their station files and disclose it to prospective assignees, transferees, or spectrum lessees and, upon request, to the Commission.

Band 41BRS (LBS/MBS/UBS):

(m) For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels.

(1) Prior to the transition, and thereafter, solely within the MBS, for analog operations with an EIRP in excess of -9 dBW, the signal shall be attenuated at the channel edges by at least 38 dB relative to the peak visual carrier, then linearly sloping from that level to at least 60 dB of attenuation at 1 MHz below the lower band edge and 0.5 MHz above the upper band edge, and attenuated at least 60 dB at all other frequencies.

(2) For digital base stations, the attenuation shall be not less than 43 + 10 log (P) dB, unless a documented interference complaint is received from an adjacent channel licensee with an overlapping Geographic Service Area. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS No. 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

5.3.3 Test Protocol

At the following tables the maximum peak value in the according band from 1 GHz to 18 GHz.

Band 41 BRS	7					
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin (Sum Level) [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
2592.9	-17.9	0.2	PEAK	1000	-13.0	4.9

Band 30 WCS 2300, downlink;

Spurious Freq.	Spurious Level	purious Pin (Sum Level Level)		RBW	Limit [dBm]	Margin to Limit
[[,,,,,,,,,]]	Lapini	Lapini	Detector		Lapuil	[ub]
2359.4	-27.4	0.3	PEAK	1000	-13.0	14.4

Remark: Please see next sub-clause for the measurement plot.

5.3.4 Measurement Plot

¹ GHz - 18 GHz

18 GHz - 27 GHz

FCC/-13 dBm - Average/3.0m/ Peak (Horizontal)

30 MHz - 1 GHz

1 GHz - 18 GHz

18 GHz - 27 GHz

5.3.5 Field Strength Calculations

FS = SA + AF + CL + PA

Where as:

- **FS** = Field strength
- **SA** = EMC test receiver reading
- **AF** = Antenna factor
- **CL** = Cable loss
- **PA** = Preamplifier

5.3.6 Test Equipment used

- Radiated Emissions

6 Test Equipment

1 Conducted

Ref.No.	Туре	Description	Manufacturer	Inventory no.	Last Calibration	Calibration Due
1.1	FSV40	Signal Analyzer 10 Hz - 40 GHz	Rohde & Schwarz	E2050	2021-10	2022-10
1.2	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	G2089	2020-08	2022-08
1.3	ESH3-Z5	Line Impedance Stabilisation Network (LISN) 150 Hz – 30 MHz	Rohde & Schwarz	K794	2021-10	2022-10
1.4	KlimaLogg Pro	Thermo-/Hygrometer	TFA	X543	2021-02	2022-02
1.5	BAT-EMC	Software	Nexio	V3.21.0.15		

2 Radiated Emissions

Ref.No.	Туре	Description	Manufacturer	Inventory no.	Last Calibration	Calibration Due
2.1	ESU40	EMI test receiver 10 Hz - 40 GHz	Rohde & Schwarz	E2025	2021-10	2022-10
2.2	HFH2-Z2	Antenna 9 kHz – 30 MHz	Rohde & Schwarz	K549	2021-10	2022-10
2.3	CBL 6111C	Antenna 30 MHz – 1 GHz	Chase	K1026	2021-02	2022-02
2.4	HL 025	Antenna 1 GHz - 18 GHz	Rohde & Schwarz	K1114	2022-01	2023-01
2.5	MWH-1826/B	Antenna 18 GHz – 26.5 GHz	ARA Inc.	K1042	2020-10	2022-10
2.6	MWH-2640/B	Antenna 26 GHz - 40 GHz	ARA Inc.	K1043	2020-10	2022-10
2.7	AM1431	Pre amplifier 10 kHz – 1 GHz	Miteq	K1721	2021-10	2022-10
2.8	AFS4-00102000	Preamplifier 100 MHz - 20 GHz	Miteq	K838	2021-10	2022-10
2.9	JS43-1800-4000	Preamplifier 18 GHz - 40 GHz	Miteq	K1104	2021-07	2023-07
2.10	BAT-EMC	Software	Nexio	V3.21.0.15		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 Antenna Factors, Cable Loss and Sample Calculations

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 Antenna ANTENNA CHASE CBL 6111C (30 MHZ - 1 GHZ)

$(d_{\text{Limit}} = 10 \text{ m})$

		Sum of			Pre-			
		correction	Cabl	e loss	amplifier	Cable	Cable loss	
	CBL	factors of	1 (ii	nside		loss 2	3	d _{used}
	6111C	cable losses	cham	ber to	K1721	(under	(Chamber	(meas.
		and pre-	flo	or)		chamber)	to receiver	distance
-	K1026	amplifier	K1	761		K1121	E-003973	(used)
MHz	dB (1/m)	dB	C	IB	dB	dB	dB	m
30	24.65	-37.7	0.	06	-38.2	0.37	0.05	10
50	14.26	-37.6	0.	08	-38.2	0.47	0.06	10
100	15.62	-37.5	0.	12	-38.4	0.67	0.14	10
150	16.65	-37.6	0.	14	-38.6	0.81	0.06	10
200	14,45	-37.4	0.	16	-38.6	0.94	0.14	10
250	18,11	-37.2	0.	18	-38.5	1.03	0.14	10
300	18,83	-37.1	0.	20	-38.5	1.15	0.07	10
350	20,08	-36.7	0.	22	-38.4	1.24	0.24	10
400	21,51	-36.6	0.	23	-38.3	1.34	0.10	10
450	22,43	-36.2	0.	24	-38.0	1.40	0.19	10
500	23,68	-36.0	0.	26	-37.9	1.48	0.19	10
550	24,86	-36.8	0.	27	-38.8	1.56	0.18	10
600	25,58	-35.8	0.	28	-37.9	1.64	0.23	10
650	26,25	-36.5	0.	30	-38.7	1.75	0.20	10
700	26,45	-35.7	0.	30	-38.0	1.80	0.23	10
750	28,04	-35.4	0.	32	-37.8	1.83	0.25	10
800	27,48	-35.7	0.	32	-38.1	1.90	0.19	10
850	29,07	-35.7	0.	34	-38.3	1.95	0.28	10
900	28,94	-35.8	0.	35	-38.4	2.00	0.25	10
950	30,83	-35.7	0.	36	-38.4	2.06	0.26	10
1000	30.09	-35.5	0.	37	-38.3	2.12	0.33	10

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

distance correction = $-20 * LOG (d_{Limit}/ d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

Cable loss (to

receiver) K1910

dB

2.01

2.78 3.42

3.99

4.46

4.87

5.35

5.66

6.05

6.46 6.69

7.04

7.36

7.66

7.90

8.20

8.45

8.71

7.2 Antenna Rohde & Schwarz HI 025 (1 GHz – 18 GHz)

		Sum of	
		correction	
	AF	factors of	
	R&S	cable loss	
	HL 025	and pre-	Pre-amp
Frequency	K1114	amplifier	K838
	dB		
MHz	(1/m)	dB	dB
1000	21.2	-18.7	-20.7
2000	27.2	-17.5	-20.3
3000	30.9	-16.9	-20.3
4000	33.1	-16.4	-20.4
5000	34.8	-16.5	-21.0
6000	37.0	-16.4	-21.3
7000	37.5	-15.7	-21.0
8000	39.1	-15.3	-21.0
9000	40.1	-14.4	-20.4
10000	42.4	-13.7	-20.2
11000	42.9	-14.4	-21.1
12000	43.1	-14.4	-21.4
13000	43.2	-13.8	-21.2
14000	44.6	-14.0	-21.7
15000	45.2	-14.4	-22.3
16000	45.6	-13.7	-21.9
17000	46.4	-13.5	-21.9
18000	45.5	-14.5	-23.2

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.3 Antenna ARA Inc. MWH-1826-B (18 GHz – 26. GHz) partially in conjunction with pre-amplifier MITEQ JS43-1800-4000: the use of the pre-amplifier is dependent from the field strength

		Sum of		
		correction		
	AF	factors of		Cable loss
	MWH-	cable loss		(to
	1826/B	and pre-	Pre-amp	receiver)
Frequency	K1042	amplifier	K1104	K1910
	dB			
MHz	(1/m)	dB	dB	dB
18000	32.4	-40.4	-49.1	8.71
18500	32.2	-39.9	-48.7	8.83
19000	32.5	-39.4	-48.4	9.02
19500	32.7	-38.9	-48.0	9.14
20000	32.7	-38.3	-47.6	9.26
20500	33.1	-37.9	-47.3	9.37
21000	32.9	-37.6	-47.0	9.41
21500	32.9	-37.1	-46.8	9.67
22000	33.2	-36.8	-46.6	9.79
22500	33.2	-36.8	-46.6	9.83
23000	33.3	-36.7	-46.6	9.88
23500	33.6	-36.6	-46.7	10.07
24000	33.6	-36.7	-46.9	10.17
24500	33.6	-36.5	-46.9	10.37
25000	33.7	-36.5	-47.0	10.50
25500	33.9	-36.8	-47.3	10.51
26000	34.2	-36.6	-47.2	10.60
26500	34.4	-36.9	-47.6	10.71
27000	34.4	-36.9	-47.8	10.89

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values.

8 Measurement Uncertainties

KDB 935210 D05	ECL
Power measurement	0.68 dB
Measuring AGC threshold level	0.90 dB
Out of band rejection	0.90 dB
Input-versus-output signal comparison	0.91 dB
Mean power output	0.90 dB
Measuring out-of-band/out-of-block	
(including intermodulation) emissions and	
spurious emissions	0.90 dB
Out-of-band/out-of-block emissions	
conducted measurements	0.90 dB
Spurious emissions conducted	2.18 dB
Spurious emissions radiated mesurements	5.38 dB
Total frequency uncertainty	2 x 10 ⁻⁷

Reference: ECL-MU5.4.6.3-EMC-14-001-V02.00 MU Wireless.xlsx

9 Photo Report

Labeling DUT

COMMSCOPE Era™ CAP H 23/23/251/25T F - AC - F1 ID No.:7835476-0006 CE SN: BGCHFF213 100-240 V 50 - 60 Hz NEMA IP Code: IP66/x7 П EMEA LI ke Abbey. Bray FCC

Measuring field strength of spurious radiation, Setup for 30 MHz to 1 GHz

Measuring field strength of spurious radiation, Setup for 1 GHz to 27 GHz

Annex A: Accreditation certificate (for information)

The accreditation relates to competences stated on the accreditation certificate. The current certificate is available on the homepage of the DAkkS and can be downloaded under accredited bodies with the processing number:

https://www.dakks.de

****** End of test report *****