

5.5 OUT-OF-BAND EMISSION LIMITS

Standard FCC Part §2.1051, §27.53

The test was performed according to:

ANSI C63.26, KDB 935210 D05 v01r03: 3.6

5.5.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band emission limit for industrial signal boosters. The limits itself come from the applicable rule part for each operating band.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster - Test Setup; Out-of-band emissions

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

5.5.2 TEST REQUIREMENTS / LIMITS

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 – Emission limits

Band 30

(a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:

(1) For base and fixed stations' operations in the 2305-2320 MHz band and the 2345-2360 MHz band:

(i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;

(ii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2300 and 2305 MHz, 70 + 10 log (P) dB on all frequencies between 2287.5 and 300 MHz, 72 + 10 log (P) dB on all frequencies between 2285 and 2287.5 MHz, and 75 + 10 log (P) dB below 2285 MHz;

(iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 mHz, 72 + 10 log (P) dB on all frequencies between 2367.5 mHz, and 75 + 10 log (P) dB above 2370 MHz.

(2) For fixed customer premises equipment (CPE) stations operating in the 2305-2320 MHz band and the 2345-2360 MHz band transmitting with more than 2 watts per 5 megahertz average EIRP:

(i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;

(ii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2300 and 2305 MHz, 70 + 10 log (P) dB on all frequencies between 2287.5 and 2300 MHz, 72 + 10 log (P) dB on all frequencies between 2285 and 2287.5 MHz, and 75 + 10 log (P) dB below 2285 MHz;

(iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.

(3) For fixed CPE stations operating in the 2305-2320 MHz and 2345-2360 MHz bands transmitting with 2 watts per 5 megahertz average EIRP or less:

(i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;

(iii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2360 and 2365 MHz, and not less than $70 + 10 \log (P) dB$ above 2365 MHz.

(4) For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(i) By a factor of not less than: $43 + 10 \log (P) dB$ on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;

(iii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2360 and 2365 MHz, and not less than $70 + 10 \log (P) dB$ above 2365 MHz.

(5) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the channel blocks at 2305, 2310, 2315, 2320, 2345, 2350, 2355, and 2360 MHz, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e., 1 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(6) [Reserved]

(7) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power;

(8) Waiver requests of any of the out-of-band emission limits in paragraphs (a)(1) through (a)(7) of this section shall be entertained only if interference protection equivalent to that afforded by the limits is shown;

(9) [Reserved]

(10) The out-of-band emissions limits in paragraphs (a)(1) through (a)(3) of this section may be modified by the private contractual agreement of all affected licensees, who must maintain a copy of the agreement in their station files and disclose it to prospective assignees, transferees, or spectrum lessees and, upon request, to the Commission.

Band 41 BRS (LBS/MBS/UBS)

(m) For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels.

(1) Prior to the transition, and thereafter, solely within the MBS, for analog operations with an EIRP in excess of -9 dBW, the signal shall be attenuated at the channel edges by at least 38 dB relative to the peak visual carrier, then linearly sloping from that level to at least 60 dB of attenuation at 1 MHz below the lower band edge and 0.5 MHz above the upper band edge, and attenuated at least 60 dB at all other frequencies.

(2) For digital base stations, the attenuation shall be not less than 43 + 10 log (P) dB, unless a documented interference complaint is received from an adjacent channel licensee with an overlapping Geographic Service Area. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS No. 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

5.5.3 TEST PROTOCOL

Band 41 BRS ((LBS), downlink	, Number	of input sign	als = 1			
Signal Type	Input Power	Band Edge	Signal Frequency [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
Narrowband	0.3 dB < AGC	lower	2496.2	-1.6	-22.2	-13.0	9.2
Narrowband	3 dB > AGC	lower	2496.2	1.7	-21-6	-13.0	8.6
Wideband	0.3 dB < AGC	lower	2498.5	-1.4	-22.0	-13.0	9.0
Wideband	3 dB > AGC	lower	2498.5	1.9	-22.1	-13.0	9.1
Narrowband	0.3 dB < AGC	upper	2567.8	-1.6	-21.4	-13.0	8.4
Narrowband	3 dB > AGC	upper	2567.8	1.8	-22.0	-13.0	9.0
Wideband	0.3 dB < AGC	upper	2565.5	-1.3	-19.7	-13.0	6.7
Wideband	3 dB > AGC	upper	2565.5	1.9	-19.7	-13.0	6.7

Band 4	1 BRS (LBS), do	wnlink,	Number of in	put signals :	= 2			
Signal Type	Input Power	Band Edge	Signal Frequency f1 [MHz]	Signal Frequency f2 [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
NB	0.3 dB < AGC	lower	2496.2	2496.4	-1.6	-25.7	-13.0	12.7
NB	3 dB > AGC	lower	2496.2	2496.4	1.7	-24.4	-13.0	11.4
WB	0.3 dB < AGC	lower	2498.5	2501.0	-1.4	-22.3	-13.0	9.3
WB	3 dB > AGC	lower	2498.5	2501.0	1.9	-22.1	-13.0	9.1
NB	0.3 dB < AGC	upper	2567.8	2567.6	-1.6	-24.8	-13.0	11.8
NB	3 dB > AGC	upper	2567.8	2567.6	1.8	-23.8	-13.0	10.8
WB	0.3 dB < AGC	upper	2565.5	2563.0	-1.3	-20.0	-13.0	7.0
WB	3 dB > AGC	upper	2565.5	2563.0	1.9	-19.6	-13.0	6.6

Band 41 BRS	(MBS), downlink	, Number	of input sigr	als = 1			
Signal Type	Input Power	Band Edge	Signal Frequency [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
Narrowband	0.3 dB < AGC	lower	2572.2	-3.0	-14.2	-13.0	1.2
Narrowband	3 dB > AGC	lower	2572.2	0.2	-13.9	-13.0	0.9
Wideband	0.3 dB < AGC	lower	2574.5	-2.3	-20.1	-13.0	7.1
Wideband	3 dB > AGC	lower	2574.5	1.0	-20.4	-13.0	7.4
Narrowband	0.3 dB < AGC	upper	2613.8	-2.8	-13.5	-13.0	0.5
Narrowband	3 dB > AGC	upper	2613.8	0.6	-13.8	-13.0	0.8
Wideband	0.3 dB < AGC	upper	2611.5	-2.0	-20.1	-13.0	7.1
Wideband	3 dB > AGC	upper	2611.5	1.4	-20.6	-13.0	7.6

Band 41 BRS (MBS), downlink, Number of input signals = 2

Signal Type	Input Power	Band Edge	Signal Frequency f1 [MHz]	Signal Frequency f2 [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
NB	0.3 dB < AGC	lower	2572.2	2572.4	-3.0	-17.8	-13.0	4.8
NB	3 dB > AGC	lower	2572.2	2572.4	0.2	-16.8	-13.0	3.8
WB	0.3 dB < AGC	lower	2574.5	2577.0	-2.3	-20.6	-13.0	7.6
WB	3 dB > AGC	lower	2574.5	2577.0	1.0	-20.9	-13.0	7.9
NB	0.3 dB < AGC	upper	2613.8	2613.6	-2.8	-16.7	-13.0	3.7
NB	3 dB > AGC	upper	2613.8	2613.6	0.6	-15.2	-13.0	2.2
WB	0.3 dB < AGC	upper	2611.5	2609.0	-2.0	-20.9	-13.0	7.9
WB	3 dB > AGC	upper	2611.5	2609.0	1.4	-21.1	-13.0	8.1

Band 41 BRS ((UBS), downlink	, Number	of input sign	als = 1]
Signal Type	Input Power	Band Edge	Signal Frequency [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
Narrowband	0.3 dB < AGC	lower	2618.2	-2.3	-20.3	-13.0	7.3
Narrowband	3 dB > AGC	lower	2618.2	0.9	-20.2	-13.0	7.2
Wideband	0.3 dB < AGC	lower	2620.5	-1.9	-19.8	-13.0	6.8
Wideband	3 dB > AGC	lower	2620.5	1.4	-20.2	-13.0	7.2
Narrowband	0.3 dB < AGC	upper	2589.8	-0.8	-21.4	-13.0	8.4
Narrowband	3 dB > AGC	upper	2589.8	2.5	-20.6	-13.0	7.6
Wideband	0.3 dB < AGC	upper	2687.5	-0.7	-20.2	-13.0	7.2
Wideband	3 dB > AGC	upper	2687.5	2.7	-19.9	-13.0	6.9

Band 41 BRS (UBS), downlink, Number of input signals = 2

Signal Type	Input Power	Band Edge	Signal Frequency f1 [MHz]	Signal Frequency f2 [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
NB	0.3 dB < AGC	lower	2618.2	2618.4	-2.3	-23.0	-13.0	10.0
NB	3 dB > AGC	lower	2618.2	2618.4	0.9	-23.1	-13.0	10.1
WB	0.3 dB < AGC	lower	2620.5	2623.0	-1.9	-19.8	-13.0	6.8
WB	3 dB > AGC	lower	2620.5	2623.0	1.4	-20.2	-13.0	7.2
NB	0.3 dB < AGC	upper	2589.8	2589.6	-0.8	-22.6	-13.0	9.6
NB	3 dB > AGC	upper	2589.8	2589.6	2.5	-23.3	-13.0	10.3
WB	0.3 dB < AGC	upper	2687.5	2685.0	-0.7	-20.6	-13.0	7.6
WB	3 dB > AGC	upper	2687.5	2685.0	2.7	-20.9	-13.0	7.9

Band 30 WCS	2300, downlink	Number	of input sign	als = 1]
Signal Type	Input Power	Band Edge	Signal Frequency [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
Narrowband	0.3 dB < AGC	lower	2350.2	-4.0	-20.6	-13.0	7.6
Narrowband	3 dB > AGC	lower	2350.2	-0.5	-21.3	-13.0	8.3
Wideband	0.3 dB < AGC	lower	2352.5	-3.7	-20.9	-13.0	7.9
Wideband	3 dB > AGC	lower	2352.5	-0.4	-20.7	-13.0	7.7
Narrowband	0.3 dB < AGC	upper	2359.8	-4.0	-21.2	-13.0	8.2
Narrowband	3 dB > AGC	upper	2359.8	-0.6	-20.9	-13.0	7.9
Wideband	0.3 dB < AGC	upper	2357.5	-3.6	-20.1	-13.0	7.1
Wideband	3 dB > AGC	upper	2357.5	-0.4	-18.9	-13.0	5.9

Band 30 WCS 2300, downlink, Number of input signals = 2

Signal Type	Input Power	Band Edge	Signal Frequency f1 [MHz]	Signal Frequency f2 [MHz]	Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
NB	0.3 dB < AGC	lower	2350.2	2350.4	-4.0	-23.1	-13.0	10.1
NB	3 dB > AGC	lower	2350.2	2350.4	-0.5	-23.9	-13.0	10.9
WB	0.3 dB < AGC	lower	2352.5	2355.0	-3.7	-21.4	-13.0	8.4
WB	3 dB > AGC	lower	2352.5	2355.0	-0.4	-21.0	-13.0	8.0
NB	0.3 dB < AGC	upper	2359.8	2359.6	-4.0	-23.2	-13.0	10.2
NB	3 dB > AGC	upper	2359.8	2359.6	-0.6	-23.4	-13.0	10.4
WB	0.3 dB < AGC	upper	2357.5	2355.0	-3.6	-21.4	-13.0	8.4
WB	3 dB > AGC	upper	2357.5	2355.0	-0.4	-21.5	-13.0	8.5

5.5.4 MEASUREMENT PLOT

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: lower; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 1

Spectrum 🔆				
Ref Level 60.00 dBm Att 50 dB SGL Count 100/100	Offset 30 SWT 94 TDF	.00 dB ● RBW 2 kHz 8.1 µs ● VBW 5 kHz	Mode Auto FFT	X
⊖1Sa AvgPwr				
Limit Check Line li		PASS Pass	M1[1]	-22.21 dBm 2.495999500 GHz
50 dBm				
40 dBm				
30 dBm				
20 dBm				
10 dBm				
0 dBm				
li-10 dBm				
-20 dBm				4
-30 dBm				
and the second state of th		,		and the second s
Start 2.493 GHz		3000	pts	Stop 2.496 GHz
			Ready	11.10.2019 10.11.00
3.6.2 out of band emi	BRS Low A	NT 1 GSM lower lcar	rier -0.3	
dB 2.493G 2.496G				

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: lower; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 1

Spectrum 🐨	Offcot 20	00 d0 👄 00 W 0 k				7
Att 50 dB	SWT 94	18.1 us 👄 VBW 5 k	Hz Mode Auto	0 FFT		
SGL Count 100/100	TDF	. –				
∋1Sa AvgPwr						
Limit Check		PASS	M1	[1]		-21.58 dB
Line li		PASS		1	2.49	5995500 GF
50 dBm						
(a. la						
40 aBm						
20. d9m						
30 UBIII						
20 dam						
20 0611						
10 d8m						
10 0011						
0 dBm						
o ubiii						
10 dBm						
-10 0011						
-20 dBm						
-30 dBm						
Provident and an and a second se		*****			In the second	
start 2.493 GHZ		3	uuu pts		Stc	p 2.496 GHz
			R €	ady	490	

3.6.2 out of band emi BRS Low ANT 1 GSM lower lcarrie: dB 2.493G 2.496G

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: lower; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 1

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: lower; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 1

Spectrum 🌸					7
Ref Level 60.00 dB	m Offset 30.	00 dB 👄 RBW 50 ki	Hz		
Att 50 0	18 SWI 3	4.9 μs 🖶 ΥΒΜ 200 ki	HZ MODE AUTO FFI		
SGE COURT 100/100	101				
Limit Check		PASS	M1[1]		-22.14 dB
Line li		PASS		2.4	49559450 GH
50 dBm					
40 dBm					
30 dBm					
20 dBm					
10 dBm					
0 dBm					
-10 dBm					
-20 dBm				MI	
-30 dBm					
Start 2.493 GHz		200	1 pts	Sto	op 2.496 GH
			Ready	120	11.10.2019

3.6.2 out of band emi BRS Low ANT 1 AWGN lower lcarrier +3.0 dB 2.493G 2.496G

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: upper; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 1

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: upper; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 1

Ref Level 60.00 dBm Att 50 dB SGL Count 100/100	Offset 30.1 SWT 948 TDF	00 dB ● RBW 2 kHz 1.1 µs ● VBW 5 kHz	Mode Auto FFT		
e 1Sa AvgPwr Limit Check Line li		PASS PASS	M1[1]	-22.0 2.5680025)1 dBi 00 GH
40 dBm					
30 dBm					
20 dBm					
10 dBm					
0 dBm					
-10 dBm					
20 dBm-					
-B0 dBm					
Start 2.568 GHz			D pts	Stop 2.57	1 GH

3.6.2 out of band emi BRS Low ANT 1 GSM upper lcarrier +3.0 dB 2.568G 2.571G

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: upper; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 1

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: upper; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 1

Ref Level 60.00 dBm	Offset 30.00 dB RBW 50	kHz	(
Att 50 dB	SWT 37.9 µs 曼 VBW 200	kHz Mode Auto FFT	
SGL Count 100/100	TDF		
∋1Sa AvgPwr			
Limit Check	PASS	M1[1]	-19.74 dB
Line li	PASS		2.56914170 G
50 dBm-			
40 dBm			
30 dBm			
20 dBm			
10 dBm			
) dBm			
-10 dBm			
	M1		
-29 dBm		++	
-30 dBm			
Start 2.568 GHz	20	01 pts	Stop 2.571 GH

3.6.2 out of band emi BRS Low ANT 1 AWGN upper lcarrier +3.0 dB 2.568G 2.571G

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: lower; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 2

dB 2.493G 2.496G

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: lower; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 2

Att 50 d	m Offset 30.00 dB ● 1 B SWT 948.1 µs ● 1	RBW 2 kHz VBW 5 kHz Mo	de Auto FFT		
SGL Count 100/100	TDF				
Limit Check	P/ P/	188 188	M1[1]	2.49	-24.40 dBr 5995500 GH
50 dBm					_
40 dBm					
30 dBm					
20 dBm					
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
Start 2.493 GHz	************	3000 pts	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sto	p 2.496 GHz

3.6.2 out of band emi BRS Low ANT 1 GSM lower 2carriers +3.0 dB 2.493G 2.496G

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: lower; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 2

3 dB 2.493G 2.496G

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: lower; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 2

Ref Level 60.00	dBm Offset 3	0.00 dB 👄 RBW 50 kH	z	
Att	50 dB SWT	37.9 µs ⊜ VBW 200 kH	iz Mode Auto FFT	
SGL Count 100/	100 TDF			
∋1Sa AvgPwr				
Limit Check		PASS	M1[1]	-22.13 dB
Line II 50 dBm		PASS		2.49363490 G
30 dBill				
40 dBm				
30 dBm				
20 dBm				
10 dBm				
0 dBm				
-10 dBm				
	M1			
-2U dBm				
20 d0m				
-SU UBIII				
Start 2.493 GHz	2	2001	L pts	Stop 2.496 GH

3.6.2 out of band emi BRS Low ANT 1 AWGN lower 2carriers +3. 0 dB 2.493G 2.496G

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: upper; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 2

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: upper; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 2

Spectrum 💥			7
Ref Level 60.00 dBm	Offset 30.00 dB RBW 2	(Hz Mode Auto FFT	
SGL Count 100/100	TDF	Ma Mode Autorn	
∋1Sa AvgPwr			
Limit Check	PASS	M1[1]	-23.82 dB
Line li	PASS		2.568000500 GI
50 dBm			
40 dBm			
30 dBm			
20 dBm			
10 dBm			
0 dBm			
-10 dBm			
F20 dBm			
-20 dBm-			
Start 2.568 GHz		on the second	Stop 2.571 GH
1		Deedu	11.10.2019

3.6.2 out of band emi BRS Low ANT 1 GSM upper 2carriers +3.0 dB 2.568G 2.571G

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: upper; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 2

Band: 41 BRS (LBS); ANT 1; Frequency: 2.4960 GHz to 2.5680 GHz; Band Edge: upper; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 2

Ref Level 60.00 dB	m Offset 3	0.00 dB 👄 RBW 50 k	Hz		(*
Att 50 d	B SWT	37.9 µs 👄 VBW 200 k	Hz Mode Auto FFT		
SGL Count 100/100	TDF				
∋1Sa AvgPwr					
Limit Check		PASS	M1[1]		-19.64 dBi
Line li		PASS		1	2.56808770 GH
30 dbiii					
40 d0-					
40 UBIN					
20 d0					
30 UBIII					
00 d0					
20 UBIII					
10.10.1					
IU dBm					
0.40-					
U UBIII					
10 dBm					
-10 UBIII-					
M1 20 dBm					
-30 dBm					
-so ubiii					
Start 2.568 GHz		200	11 pts		Stop 2.571 GHz

3.6.2 out of band emi BRS Low ANT 1 AWGN upper 2carriers +3. 0 dB 2.568G 2.571G

Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: lower; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 1

Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: lower; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 1

Ref Level 60.00 dBm	Offset 30.00 dB 🖷 RBW 2 kHz		(
Att 50 dB	SWT 948.1 µs 👄 VBW 5 kHz	Mode Auto FFT	
3GL Count 100/100	TDF		
1Sa AvgPwr			
Limit Check	PASS	M1[1]	-13.90 dE
Line II	PASS		2.571984500 G
o ubin			
0 dBm			
dBm			
10 dBm			
20 dBm			
30 dBm			
1. 10-14 10 10 10 10 10 10 10 10 10 10 10 10 10	any water and the set in grade and the set in the set i	-	musers may in a faith
itart 2.569 GHz	300	0 pts	Stop 2.572 GF

3.6.2 out of band emi BRS Mid ANT 1 GSM lower lcarrier +3.0 dB 2.569G 2.572G

Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: lower; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 1

Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: lower; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 1

Bof and 60.00 db	··· Offcot 30 ((7
Att 50 d	n Onset 30.0 B SWT 37	0 us = KBW 501	KHZ Mode Auto FFT		
SGL Count 100/100	TDF	.5 p5 - 75 n 2001	Mode Adtorn		
1Sa AvgPwr					
Limit Check		PASS	M1[1]		-20.40 dB
Line li		PASS	1		2.57199930 G
50 dBm					
40 dBm					
30 dBm					
20 dBm					
10 dBm					
0 dBm	+				
-10 dBm					
-20 dBm	++			+	~
-30 dBm					
Start 2.569 GHz		20	D1 pts		Stop 2.572 GH
Π I			Ready	4.30	15.10.2019

3.6.2 out of band emi BRS Mid ANT 1 AWGN lower lcarrier +3.0 dB 2.569G 2.572G

Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: upper; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 1

Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: upper; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 1

Spectrum 🖌						T I
Ref Level 60.00 dBm	Offset 30.	00 dB 👄 RBW 2 kH	iz			
Att 50 08	5WI 948 TDF	8.1 µs 🖷 VBW 5 KF	12 MODE AUTO) FF I		
1Sa AvgPwr	101					
Limit Check		PASS	M1	[1]		-13.83 dBi
Line li		PASS			2.614	1008500 GH
50 dBm						
40 dBm			-			
30 dBm						
20 dBm						
10 dBm						
U dBm						
10 40 m						
ETO dBm						
an dam						
-20 ubiii						
20 000						
-30 COMPANY - State -						
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************	an align milion (see ) and a share of	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- and a second and a second and a second	and the second
Start 2.614 GHz		30	00 pts		Stop	p 2.617 GHz
			Re	ady	4,40	15.10.2019

dB 2.614G 2.617G



#### Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: upper; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 1



### Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: upper; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 1

Spectrum 🔆					T N
Ref Level 60.00 dBn	n Offset 30.	00 dB 👄 RBW 50 k	Hz		
SGL Count 100/100	5 3001 37 TDF	.9 µs 🖶 ¥BW 200 k	INZ MOUE AUTOFFT		
)1Sa AvgPwr					
Limit Check		PASS	M1[1]		-20.62 dB
Line li		PASS			2.61449850 GH
50 dBm					
40 d0m					
40 UBIII					
30 dBm					
oo abiii					
20 dBm					
10 dBm					
0 dBm	++				
-10 dBm	+ +				
MI					
-20 dBm	+ - +	~			~
-30 dBm	+ +				
Start 2.614 GHz	1	200	11 pts	1 1	Stop 2.617 GH
			Ready	4.00	15.10.2019

3.6.2 out of band emi BRS Mid ANT 1 AWGN upper lcarrier +3.0 dB 2.614G 2.617G



### Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: lower; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 2



Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: lower; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 2

Ref Level 60.00 dB	m Offset 30.0	00 dB 😑 RBW 2 kHz			(`
Att 50 c	iB <b>SWT</b> 948	.1 µs 👄 <b>VBW</b> 5 kHz	Mode Auto FFT		
SGL Count 100/100	TDF				
●1Sa AvgPwr					
Limit Check		PASS	M1[1]		-16.77 dB
50 dBm		PADO		+ +	
40 dBm					
30 dBm					
20 dBm					
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
			hard hard and a second here the second	12	
Start 2.569 GHz		3000	pts		Stop 2.572 GH

3.6.2 out of band emi BRS Mid ANT 1 GSM lower 2carriers +3.0 dB 2.569G 2.572G  $\,$ 



#### Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: lower; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 2



3 dB 2.569G 2.572G

## Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: lower; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 2

Ref Level 60.00 dBm Off	set 30.00 dB 😑 RBW - 50 k	:Hz	
Att 50 dB SW	7T 37.9 μs 👄 VBW 200 k	Hz Mode Auto FFT	
SGL Count 100/100	TDF		
1Sa AvgPwr			
Limit Check	PASS	M1[1]	-20.87 dB
50 dBm	PASS		2.37187180 G
40 d0m			
40 UBIII			
20 d9m			
SO UBIN			
00 d0			
20 UBIII			
IU dBm			
U dBm			
-10 dBm-			
00.40-			M1
-20 0011			
20 db			
-30 abm			
Start 2.569 GHz	200	11 pts	Stop 2.572 GH

3.6.2 out of band emi BRS Mid ANT 1 AWGN lower 2carriers +3. 0 dB 2.569G 2.572G



### Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: upper; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 2



### Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: upper; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 2

Spectrum 💥			
Ref Level         60.00         dBm           Att         50         dB           SGL         Count         100/100	Offset 30.00 dB ● RBW 2 kHz SWT 948.1 µs ● VBW 5 kHz TDF	Mode Auto FFT	
1Sa AvgPwr			
Limit Check Line li	PASS PASS	M1[1]	-15.24 dBr 2.614005500 GH
50 dBm			
40 dBm			
30 dBm			
20 dBm			
10 dBm			
0 dBm			
10 dBm			
-20 dBm			
-30 dBm			
Start 2.614 GHz	300	0 pts	Stop 2.617 GH
Ĭ		Ready	15.10.2019

3.6.2 out of band emi BRS Mid ANT 1 GSM upper 2carriers +3.0 dB 2.614G 2.617G



#### Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: upper; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 2



3 dB 2.614G 2.617G

## Band: 41 BRS (MBS); ANT 1; Frequency: 2.5720 GHz to 2.6140 GHz; Band Edge: upper; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 2

Reflevel 60.00 dBm	Offset 30.00 dB = RBW 50	kHz	
Att 50 dB	SWT 37.9 µs • VBW 200	kHz Mode Auto FFT	
SGL Count 100/100	TDF		
∋1Sa AvgPwr			
Limit Check	PASS	M1[1]	-21.12 dB
Line li	PASS		2.61420160 GF
50 dBm			
40 dBm			
30 dBm			
20 dBm			
10 dBm			
0 dBm			
-10 dBm			
-20 dBr			
-30 dBm			
Start 2.614 GHz	20	01 pts	Stop 2.617 GH

3.6.2 out of band emi BRS Mid ANT 1 AWGN upper 2carriers +3. 0 dB 2.614G 2.617G



### Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: lower; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 1



Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: lower; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 1

Ref Level 60.00 dB	m Offset 30.0	IO dB 😑 RBW 2 kHz			
Att 50 c	IB SWT 948	.1 µs 👄 VBW 5 kHz	Mode Auto FFT		
1Sa AvgPwr	TDF				
Limit Check		PASS	M1[1]		-20.24 dB
Line li		PASS		2.6	517998500 G
50 dBm					
40 dBm					
30 dBm					
20 dBm					
10 dBm					
0 dBm					
10 dBm					
20 dBm					
-30 dBm					
relevingtographic and a second second			wether gains and the second second for	-	man
Start 2.615 GHz		3000	pts	s	top 2.618 GH

3.6.2 out of band emi BRS High ANT 1 GSM lower lcarrier +3.0 dB 2.615G 2.618G



### Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: lower; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 1



3 dB 2.615G 2.618G

## Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: lower; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 1

Ref Level 60.00 dBm	Offset 30.0	0 dB 👄 RBW 50 k	Hz		
Att 50 dB	SWT 37	.9 µs 👄 <b>VBW</b> 200 k	Hz Mode Auto FFT		
SGL Count 100/100	TDF				
∋1Sa AvgPwr					
Limit Check		PASS	M1[1]		-20.21 dB
Line li		PASS		2.	.61776390 GF
50 dBm					
40 dBm					
30 dBm					
20 dBm					
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					M1
-30 dBm					
Start 2.615 GHz		200	)1 pts	SI	op 2.618 GH

3.6.2 out of band emi BRS High ANT 1 AWGN lower lcarrier +3. 0 dB 2.615G 2.618G



### Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: upper; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 1



## Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: upper; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 1

Reflevel 60.00 dBm	Offset 30.0	0 dB 👄 RBW 2 kHz			
Att 50 dB	SWT 948.	1 µs 🖶 VBW 5 kHz	Mode Auto FFT		
SGL Count 100/100	TDF				
∋1Sa AvgPwr					
Limit Check		PASS	M1[1]		-20.61 dB
Line li		PASS		2	.690000500 GI
50 dBm					
40 dBm					
30 dBm					
20 dBm					
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					
-80 dBm					
Nature Andrew States and Street and	**************************************	angun galan ang galan ang ang ang ang ang ang ang ang ang a	and a second	,	
Start 2.69 GHz		3000	pts		Stop 2.693 GH

3.6.2 out of band emi BRS High ANT 1 GSM upper lcarrier +3.0 dB 2.690G 2.693G



### Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: upper; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 1



3 dB 2.690G 2.693G

## Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: upper; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 1

Spectrum 💥			T T
Ref Level 60.00 dBn	n Offset 30.00 dB 👄 RBW 5	50 kHz	
SGL Count 100/100	TDF	JUKHZ MOUE AUTOFFT	
∋1Sa AvqPwr			
Limit Check	PASS	M1[1]	-19.91 dB
Line li	PASS		2.69050900 GF
50 dBm			
40 dBm			
30 dBm			
20 dBm			
10 dBm			
0 dBm			
-10 dBm			
20 dBm		++	
-30 dBm			
Start 2.69 GHz		2001 pts	Stop 2,693 GH
		,	15.10.2019

3.6.2 out of band emi BRS High ANT 1 AWGN upper lcarrier +3. 0 dB 2.690G 2.693G



### Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: lower; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 2



3 dB 2.615G 2.618G

## Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: lower; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 2

Ref Level 60.00 dB	m Offset 30.	00 dB 👄 RBW 2 kHz		
Att 50 (	1B SWT 948	3.1 µs 👄 VBW 5 kHz	Mode Auto FFT	
SGE COURT 100/100	TDF			
Limit Check		PASS	M1[1]	-23.07 dBr
Line li		PASS		 2.617998500 GF
50 dBm				
40 dBm				
30 dBm				
20 dBm				
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				 ار بینماند.
and the second	the second provide a second second		af all a star and a star of a star o	 and the second
Start 2.615 GHz		3000	pts	Stop 2.618 GHz

3.6.2 out of band emi BRS High ANT 1 GSM lower 2carriers +3. 0 dB 2.615G 2.618G



### Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: lower; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 2



Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: lower; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 2

Bof Lough 60.00 dbm	Offect 30.00 dt = RRW	50 kus	
Att 50 dB	SWT 37.9 us = VBW	200 kHz Mode Auto FET	
SGL Count 100/100	TDF		
1Sa AvgPwr			
Limit Check	PASS	M1[1]	-20.97 dB
Line li	PASS		2.61527360 G
50 dBm			
10 dBm			
30 dBm			
20 dBm			
10 dBm			
) dBm			
10 dBm			
20 dBm 1			
30 dBm			
Start 2.615 GHz		2001 pts	Stop 2.618 GH

3.6.2 out of band emi BRS High ANT 1 AWGN lower 2carriers +3 .0 dB 2.615G 2.618G



### Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: upper; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 2



3 dB 2.690G 2.693G

## Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: upper; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 2

Reflevel 60 00 dBm	Offset 30.00 dB 🖷 B	2 PW 2 PH2		
Att 50 dB	SWT 948.1 µs • V	BW 5 kHz Mode	Auto FFT	
SGL Count 100/100	TDF			
∋1Sa AvgPwr				
Limit Check	PA	88	M1[1]	-23.25 dB
Line li	PA	.85	1 1	2.690000500 G
50 dBm-				
40 dBm				
30 dBm				
20 dBm				
10 dBm				
0 dBm				
-10 dBm				
-20 dBm-				
-80 dBm				
Start 2.69 GHz	www.anggaratassitekine-inakaasiata	3000 pts	144477 54,7444 AND	Stop 2.693 GH

3.6.2 out of band emi BRS High ANT 1 GSM upper 2carriers +3. 0 dB 2.690G 2.693G



### Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: upper; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 2



### Band: 41 BRS (UBS); ANT 1; Frequency: 2.6180 GHz to 2.6900 GHz; Band Edge: upper; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 2

Ref Level 60.00 dBm	Offset 30.00 dB 👄 RBW	50 kHz	<b>L</b>
Att 50 dB	<b>SWT</b> 37.9 µs 👄 <b>VBW</b> 2	200 kHz Mode Auto FFT	
SGL Count 100/100	TDF		
∋1Sa AvgPwr			
Limit Check	PASS	M1[1]	-20.87 dB
Line li	PASS		2.69256750 GF
50 dBm			
40 dBm			
30 dBm			
20 dBm			
10 dBm			
0 dBm			
-10 dBm			
-20 dBm			M1
-30 dBm			
Start 2.69 GHz		2001 pts	Stop 2.693 GH

3.6.2 out of band emi BRS High ANT 1 AWGN upper 2carriers +3 .0 dB 2.690G 2.693G



### Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 1



### Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 1

Ref Level 60.00 dBm	Offset 30.00 dB 🖷 RBW 2	kHz	
Att 50 dB	SWT 948.1 µs • VBW 5	kHz Mode Auto FFT	
1Sa AvgPwr	TDF		
Limit (theck	PARS	M1[1]	-21 27 dB
Line li	PASS	(initial)	2.349999500 GF
0 dBm			
0 dBm			
0 dBm			
0 dBm			
0 40			
o abiii			
dBm			
10 dBm			
20 dBm			
30 dBm			
tart 2.347 GHz	illerindettersseligerendensetige falleringen in die tekensetige eine einer	3000 pts	Ston 2.35 GH

3.6.2 out of band emi WCS 2300 GSM lower lcarrier +3.0 dB 2. 347G 2.350G



### Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 1



### Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 1

Ref Level 60.00 dBm	Offset 30.00 dB	RBW 50 kH	Z		<b>`</b>
Att 50 dB	<b>SWT</b> 37.9 μs	👄 VBW 200 kH	z Mode Auto FFT		
SGL Count 100/100	TDF				
∋1Sa AvgPwr					
Limit Check		PASS	M1[1]		-20.66 dB
Line li		PASS	1	1 1	2.34999930 GF
SU dBm					
40 dBm					
30 dBm					
20 dBm					
10 dBm					
0 dBm					
-10 dBm					
-20 dBm				+	~~~~
-30 dBm					
Start 2.347 GHz		2001	pts		Stop 2.35 GH

3.6.2 out of band emi WCS 2300 AWGN lower lcarrier +3.0 dB 2 .347G 2.350G



### Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 1



### Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 1

Ref Level 60.00 dBm	Offset 30.00	) dB 👄 RBW 2 kH	z			(`
Att 50 dB	SWT 948.	L µs 👄 VBW 5 kH	z Mode Au	to FFT		
SGL Count 100/100	TDF					
∋1Sa AvgPwr						
Limit Check		PASS	M	1[1]		-20.93 dB
Line li		PASS			2	.360002500 GH
50 dBm						
40 dBm						
30 dBm						
20 dBm						
10 dBm						
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
harrison and the second	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-american and an	
Start 2.36 GHz		30	00 pts			Stop 2.363 GH
T T				eady []	4.00	14.10.2019

3.6.2 out of band emi WCS 2300 GSM upper lcarrier +3.0 dB 2. 360G 2.363G



### Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 1



### Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 1

Att 50 dB	SWT 37	7.9 μs 👄 <b>VBW</b> 200	kHz Mode Auto FFT		
1Sa AvgPwr	TUF				
Limit Check Line li	PASS PASS		M1[1]	 -18.68 dB 2.36008470 GF	
50 dBm					
40 dBm					
30 dBm					
20 dBm					
10 dBm					
0 dBm					
-10 dBm					
20 dBm					
-30 dBm					
Start 2.36 GHz		20	01 pts	Stop 2.363 GH	

3.6.2 out of band emi WCS 2300 AWGN upper lcarrier +3.0 dB 2 .360G 2.363G


# Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 2



# Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 2

Ref Level 60.00 dB	m Offset 30.00 dB 👄 RB	W 2 kHz	•
Att 50 d	IB SWT 948.1 µs 🖷 VB	W 5 kHz Mode Auto FFT	
3GE Count 100/100 3GE Count 100/100	101		
Limit Check	PAS	S M1[1]	-23.93 dB
Line li	PAS	s i j	2.349988500 GF
50 dBm			
40 dBm			
30 dBm			
20 dBm			
10 dBm			
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm			
an the second state of the			man man and and and and a second a
Start 2.347 GHz	• • •	3000 pts	Stop 2.35 GH

3.6.2 out of band emi WCS 2300 GSM lower 2carriers +3.0 dB 2 .347G 2.350G



# Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 2



# Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: lower; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 2

Ref Level 60.00 dBm	Offset 30.00 dB	😑 RBW 50 k	Hz	· · · ·
Att 50 dB	SWT 37.9 μs	👄 VBW 200 ki	Hz Mode Auto FFT	
SGL Count 100/100	TDF			
€1Sa AvgPwr				
Limit Check		PASS	M1[1]	-21.04 dB
Line li		PASS		 2.34977290 GI
50 dBm				
40 dBm				
30 dBm				
20 dBm				
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				M1
-30 dBm				
Start 2.347 GHz		200	1 pts	Stop 2.35 GH

3.6.2 out of band emi WCS 2300 AWGN lower 2carriers +3.0 dB 2.347G 2.350G



# Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: GSM; Input Power = 0.3 dB < AGC; Number of signals 2



# Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: GSM; Input Power = 3 dB > AGC; Number of signals 2

Ref Level 60.00 dBm	Offset 30.00 dB 👄 RBW 2	kHz	<b>L</b>
Att 50 dB	SWT 948.1 µs 🖷 VBW 5	kHz Mode Auto FFT	
SGL Count 100/100	TDF		
Lingit dhe sh	D A DO		00.44.40
Limit Greck	PASS	MILI	-23,44 dB 2,260002500 Cl
i0 dBm	1455		2.000002000 G
IO dBm	·		
0 00.00			
IO dBm			
0 d8m			
o ubiii			
0.40-			
O UBIII			
- dD-m			
ubiii			
10 10-			
IU dBm			
00 d0-			
20 UBII			
3U dBm			
and the second s	and the second descent of the second descent and the second descent and the second descent descent descent des	``####################################	14-14-14-14-14-14-14-14-14-14-14-14-14-1
Start 2.36 GHz	· · · · · · · · · · · · · · · · · · ·	3000 pts	Stop 2.363 GH

3.6.2 out of band emi WCS 2300 GSM upper 2carriers +3.0 dB 2 .360G 2.363G



# Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: AWGN; Input Power = 0.3 dB < AGC; Number of signals 2



# Band: 30 WCS 2300; ANT1; Frequency: 2.3500 GHz to 2.3600 GHz; Band Edge: upper; Mod: AWGN; Input Power = 3 dB > AGC; Number of signals 2

Ref Level 60.00 dBn	n Offset 30	00 dB 👄 RBW 50 k	:Hz		(
Att 50 di	в <b>swt</b> з	7.9 µs 👄 <b>VBW</b> 200 k	Hz Mode Auto FFT		
SGL Count 100/100	TDF				
1Sa AvgPwr					
Limit Check		PASS	M1[1]		-21.45 dB
50 dBm		PASS			2.30008440 G
40 40 -					
+0 uBin					
3U dBm					
20 dBm					
10 dBm				-	
0 dBm				++	
-10 dBm				++	
-20 dBm	M1				
-30 dBm					
00 0011					
Start 2.36 GHz		200	)1 pts		Stop 2.363 GH
			Ready		14.10.2019

# 5.5.5 TEST EQUIPMENT USED

- Conducted



## 5.6 OUT-OF-BAND REJECTION

Standard FCC Part 27

**The test was performed according to:** ANSI C63.26

## 5.6.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band rejection test case for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:



FCC Part 22/24/27/90 Industrial signal booster – Test Setup; Out-of-band rejection

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

5.6.2 TEST REQUIREMENTS / LIMITS For this test case exists no applicable limit



# 5.6.3 TEST PROTOCOL

Band 41 BRS (LBS				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [MHz]
2534.0	34.9	2492.5	2571.7	79.2

Band 41 BRS (MBS				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [MHz]
2595.0	36.8	2570.3	2615.7	45.5

Band 41 BRS (UBS				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [MHz]
2650.0	37.0	2614.3	1693.5	79.2

Band 30 WCS, dov				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [MHz]
2357.8	37.4	2349.7	2360.3	10.6

Remark: Please see next sub-clause for the measurement plot.



# 5.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")



#### Frequency Band = Band 41 BRS (LBS), Direction = RF downlink

20dB



# Frequency Band = Band 41 BRS (MBS), Direction = RF downlink

3.3 Out of band rejection BRS Mid ANT 1 2.59300G 20dB



Spectrum	1				
Ref Level Att TDF	60.00 dBm 50 dB	Offset 30.00 dB 🖷 SWT 10 ms 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto Swee	p
●1Pk Max					
				M1[1]	36.99 dBr
50 dBm-					2.6500000 GH
				ndB	20.00 d
40 dBm			M1	BW	79.164000000 MH
				QTACLUI	
30 dBm					
			тб	12	
20 dBm-			Ý	V	
10 d8m				1	
TO UBIL	abara Manadashi da shi da s	and the second secon	*		er a se en se en esta en esta en esta en esta en esta en esta esta esta esta esta esta esta esta
0 dBm					
-10 dBm-					
-20 dBm					
-30 dBm					
CF 2.654 G	Hz		10000 p	ots	Span 360.0 MHz
Marker					
Type Ref	f Trc	X-value	Y-value	Function	Function Result
M1	1	2.65 GHz	36.99 dBm	ndB down	79.164 MHz
T1	1	2.614346 GHz	17.33 dBm	ndB	20.00 dB
12	1	2.69351 GHz	17.11 dBm	Q factor	33.5
	][			Measuring	15.10.2019

Frequency Band = Band 41 BRS (UBS), Direction = RF downlink

3.3 Out of band rejection BRS High ANT 1 2.65400G _20dB

Spectrum Ref Level 60.00 dBm Att 50 dB 
 Offset
 30.00 dB ●
 RBW
 300 kHz

 SWT
 19 μs
 ♥ VBW
 1 MHz
 Mode Auto FFT TDF 🔵 1Pk Ma M1[1] 37.41 dB 2.35780000 GH 50 dBm ndB M1_Bw ____Qfactor 20.00 GP 20.00 d 0000 MF 10.62 40 dBm 222. 30 dBm 20 dBm 10 dBm-0 dBmm ma . -10 dBm -20 dBm--30 dBm-CF 2.355 GHz 10000 pts Span 50.0 MHz Marker Function n ndB down n ndB n Q factor 
 Type
 Ref
 Trc

 M1
 1

 T1
 1

 T2
 1
 X-value 2.3578 GHz 2.3496925 GHz 2.3603125 GHz Y-value 37.41 dBm 17.54 dBm 17.26 dBm Function Result 10.62 MHz 20.00 dB 222.0 **III (2**) 3.3 Out of band rejection WCS 2300 2.35500G

# Frequency Band = Band 30 WCS 2300, Direction = RF downlink

3.3 Out of band rejection WCS 2300 2.35500G _20dB

# 5.6.5 TEST EQUIPMENT USED

- Conducted



# 5.7 FIELD STRENGTH OF SPURIOUS RADIATION

Standard FCC Part 27, §27.53

# **The test was performed according to:** ANSI C63.26

#### 5.7.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053

The EUT was connected to the test setup according to the following diagram:







The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table  $1.5 \times 1.5 \text{ m}^2$  in the semi-anechoic chamber, 0.8 meter above the ground or floorstanding arrangement shall be placed on the horizontal ground reference plane. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions.

The measurement procedure is implemented into the EMI test software BAT EMC from NEXIO. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered by a DC power source. ?

#### 1. Measurement above 30 MHz and up to 1 GHz

**Step 1:** Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 10 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 180°
- Turntable step size: 15°
- Height variation range: 1 4 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

#### Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by  $\pm$  45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by  $\pm$  100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range:  $\pm$  30 ° around the determined value
- Antenna Polarisation: max. value determined in step 1

#### Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:



- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

#### 3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

#### Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.5 m height in the semi-anechoic chamber. Absorbers are placed around and between the turn table and the antenna tower.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 30 °.

The turn table step size (azimuth angle) for the preliminary measurement is 15 °. **Step 2:** 

The maximum RFI field strength was determined during the measurement by rotating the turntable ( $\pm 180$  degrees) and varying the height of the receive antenna (h = 1 ... 4 m) with a additional tilt function of the antenna.The turn table azimuth will slowly vary by  $\pm 15^{\circ}$ . EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

#### Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

#### 5.7.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.



#### Part 27; Miscellaneous Wireless Communication Services

#### Subpart C – Technical standards

#### §27.53 – Emission limits

#### Band 30

(a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:

(1) For base and fixed stations' operations in the 2305-2320 MHz band and the 2345-2360 MHz band:

(i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz, 70 + 10 log (P) dB on all frequencies between 2287.5 and 300 MHz, 72 + 10 log (P) dB on all frequencies between 2285 and 2287.5 MHz, and 75 + 10 log (P) dB below 2285 MHz;

(iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.

(2) For fixed customer premises equipment (CPE) stations operating in the 2305-2320 MHz band and the 2345-2360 MHz band transmitting with more than 2 watts per 5 megahertz average EIRP:

(i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz, 70 + 10 log (P) dB on all frequencies between 2287.5 and 2300 MHz, 72 + 10 log (P) dB on all frequencies between 2285 and 2287.5 MHz, and 75 + 10 log (P) dB below 2285 MHz;



(iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.

(3) For fixed CPE stations operating in the 2305-2320 MHz and 2345-2360 MHz bands transmitting with 2 watts per 5 megahertz average EIRP or less:

(i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2365 MHz, and not less than  $70 + 10 \log (P) dB$  above 2365 MHz.

(4) For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(i) By a factor of not less than:  $43 + 10 \log (P) dB$  on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than  $55 + 10 \log (P) dB$  on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than  $61 + 10 \log (P) dB$  on all frequencies between 2324 and 2328 MHz and on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than  $67 + 10 \log (P) dB$  on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;

(iii) By a factor of not less than  $43 + 10 \log (P) dB$  on all frequencies between 2360 and 2365 MHz, and not less than  $70 + 10 \log (P) dB$  above 2365 MHz.

(5) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the channel blocks at 2305, 2310, 2315, 2320, 2345, 2350, 2355, and 2360 MHz, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e., 1 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.



(6) [Reserved]

(7) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power;

(8) Waiver requests of any of the out-of-band emission limits in paragraphs (a)(1) through (a)(7) of this section shall be entertained only if interference protection equivalent to that afforded by the limits is shown;

(9) [Reserved]

(10) The out-of-band emissions limits in paragraphs (a)(1) through (a)(3) of this section may be modified by the private contractual agreement of all affected licensees, who must maintain a copy of the agreement in their station files and disclose it to prospective assignees, transferees, or spectrum lessees and, upon request, to the Commission.

#### Band 41 BRS (LBS/MBS/UBS)

(m) For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels.

(1) Prior to the transition, and thereafter, solely within the MBS, for analog operations with an EIRP in excess of -9 dBW, the signal shall be attenuated at the channel edges by at least 38 dB relative to the peak visual carrier, then linearly sloping from that level to at least 60 dB of attenuation at 1 MHz below the lower band edge and 0.5 MHz above the upper band edge, and attenuated at least 60 dB at all other frequencies.

(2) For digital base stations, the attenuation shall be not less than 43 + 10 log (P) dB, unless a documented interference complaint is received from an adjacent channel licensee with an overlapping Geographic Service Area. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS No. 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.



# 5.7.3 TEST PROTOCOL

Band 41 BRS (LBS), downlink;						
Spurious Freq. [MHz]	Spurious Level [dBm]	P _{in} [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
1699.8	-53.4	-6.4/-8.0/-6.4	PEAK	100	-13.0	40.4
2532.0	-28.4	-6.4/-8.0/-6.4	PEAK	100	-13.0	15.4
5064.0	-33.0	-6.4/-8.0/-6.4	PEAK	100	-13.0	20.0
2496.2	-26.2	-6.4/-8.0/-6.4	PEAK	100	-13.0	13.2
2532.0	-29.8	-6.4/-8.0/-6.4	PEAK	100	-13.0	16.8
5064.0	-37.0	-6.4/-8.0/-6.4	PEAK	100	-13.0	24.0
10946.6	-23.6	-6.4/-8.0/-6.4	PEAK	100	-13.0	10.6

Band 41 BRS (	(MBS), downlin	k;				
Spurious Freq. [MHz]	Spurious Level [dBm]	P _{in} [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
2572.2	-25.0	-7.1/-8.0/-7.6	PEAK	100	-13.0	12.0
5186.0	-36.3	-7.1/-8.0/-7.6	PEAK	100	-13.0	23.3
2572.2	-26.8	-7.1/-8.0/-7.6	PEAK	100	-13.0	13.8
5186.0	-41.6	-7.1/-8.0/-7.6	PEAK	100	-13.0	28.6
10926.5	-23.1	-7.1/-8.0/-7.6	PEAK	100	-13.0	10.1

Band 41 BRS	(UBS), downlink	(;				
Spurious Freq. [MHz]	Spurious Level [dBm]	P _{in} [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
1467.9	-59.6	-7.1/-8.3/-5.6	PEAK	100	-13.0	46.6
2464.0	-52.8	-7.1/-8.3/-5.6	PEAK	100	-13.0	39.8
2654.0	-32.1	-7.1/-8.3/-5.6	PEAK	100	-13.0	19.1
5308.0	-41.2	-7.1/-8.3/-5.6	PEAK	100	-13.0	28.2
2618.2	-34.5	-7.1/-8.3/-5.6	PEAK	100	-13.0	21.5
5308.1	-41.4	-7.1/-8.3/-5.6	PEAK	100	-13.0	28.4
10944.8	-23.5	-7.1/-8.3/-5.6	PEAK	100	-13.0	10.5

Band 30 WCS						
Spurious Freq. [MHz]	Spurious Level [dBm]	P _{in} [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
1689.0	-54.0	-8.8/-8.2/-8.8	PEAK	100	-13.0	41.0
2350.2	-29.2	-8.8/-8.2/-8.8	PEAK	100	-13.0	16.2
2359.8	-27.3	-8.8/-8.2/-8.8	PEAK	100	-13.0	14.3
2355.0	-22.4	-8.8/-8.2/-8.8	PEAK	100	-13.0	9.4
10957.1	-23.9	-8.8/-8.2/-8.8	PEAK	100	-13.0	10.9

Remark: Please see next sub-clause for the measurement plot.



# 5.7.4 MEASUREMENT PLOT

-60 -70 -80 -90

-100 ______ 30MHz

#### Frequency Band = Band 41 BRS (LBS); Test Frequencies = low, mid and high; Direction = RF downlink



Man

Frequency

1GHz Polarization: Horizonta





Frequency

1 GHz - 18 GHz



## 18 GHz - 27 GHz

			<ul> <li>FCC/FCC -13 dBm - Average/3.0m/</li> <li>FCC/FCC -13 dBm - Peak/3.0m/</li> <li>Meas.Peak (Vertical)</li> <li>Meas.Avg (Vertical)</li> <li>Meas.RMS (Vertical)</li> </ul>
	0		
dBm -1	0		
-2			
-3	.0		
-4	.0		the sector of the sector standards
-5	man man and a second	اللى سارىخانى يارىپايلامارى سارى مايارى مەرىپى دىنچە، كاھىرىدىكارىدى يەن مەرىپايىر مەرىپايلىرى بارىيار دىن يەرىپايلى مەرىپايلى مەرىپايلى بارىيارى بارىيار بارىيارى	And a state of the
-6	60		
-7	.0		
-8	.0		
-9			
-10			
	18GHz	Frequency	27GHz Polarization: Vertical

FCC/FCC -13 dBm - RMS/3.0m/
 FCC/FCC -13 dBm - Average/3.0m/
 FCC/FCC -13 dBm - Peak/3.0m/
 Meas.Peak (Horizontal)
 Meas.Avg (Horizontal)
 Meas.RMS (Horizontal)

FCC/FCC -13 dBm - RMS/3.0m/

0			
dBm -10.			
-20 .			
-30 .			
-40			
-50	Marking and provident and a stand and a stand and a stand and a stand	والمراجع والمرور ويعاديها والمراجع والمراجع والمرور والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع المراجع والمراجع والم	ىرىنا ئەسەب مەلەر مەمەر بەلەرەل بەرەلەر يەرەل يەرەل يەرەل يەرەل يەرەل يەرەل يەرەل يەرەل يەرەل يەرەپ يەلەرەر يەر يەرەل يەرەب يەرەل يەرەپ ئەلەرە يەرەل يەرەل يەرەل يەرەل يەرەپ ئەل يەرەپ ئەرەپ ئەرەپ ئەرەپ ئەرەپ ئەرەپ ئەرەپ ئەرەپ
-60			
-70			
-80			
-90			
100			
-100	18GHz		27GHz
		Frequency	Polarization: Horizontal





#### Frequency Band = Band 41 BRS (MBS); Test Frequencies = low, mid and high; Direction = RF downlink 30 MHz - 1 GHz

The test report shall not be reproduced except in full without the written approval of the testing laboratory. ECL-TA-19-001-V01.00





Frequency

1 GHz - 18 GHz

-80

1GHz

18GHz Polarization: Horizontal



#### 18 GHz - 27 GHz



FCC/FCC -13 dBm - RMS/3.0m/ FCC/FCC -13 dBm - Average/3.0m/

FCC/FCC -13 dBm - Peak/3.0m/

0			
dBm -10			
-20		¥	
-30			
-40			
-50	where an an and a start and a	مىلىرىمىلىيىلىقى بەلەپلىرىيەرنىيەمىلىمەتلىقىلىلىكى ئەرىلىيە ئەلىلىمەتلىقى بەلىرەك ئالايىلىيە ئاھىلىلىكى ئالىكىيىش بىلىلىيىسىسى	
-60			
-70			
-80			
-90			
-100			
	18GHz	Frequency	27GHz Polarization: Horizontal

Level (Manual suspects) (Horizontal)
 Meas.Peak (Horizontal)

Meas.Avg (Horizontal)

[—] Meas.RMS (Horizontal)

[×] Average (Finals 18G-26G) (Horizontal)

[×] LIMIT AV (Finals 18G-26G) (Horizontal)



# Frequency Band = Band 41 BRS (UBS); Test Frequencies = low, mid and high; Direction = RF downlink



30 MHz - 1 GHz





Frequency

1 GHz - 18 GHz

1GHz

18GHz Polarization: Horizontal



## 18 GHz - 27 GHz

			FCC/FCC -13 dBm - Peak/3.0m/ Meas.Peak (Vertical) Meas.Avg (Vertical) Meas.RMS (Vertical)
0			
dBm -10			
-20			
-30			
40			
-40	Malance and an all the strategic and a strateg	and and and an an and and	provide the second s
-60			
-70			
-80			
-90			
-100			
	'18GHz	Frequency	27GHz Polarization: Vertical

FCC/FCC -13 dBm - RMS/3.0m/
 FCC/FCC -13 dBm - Average/3.0m/
 FCC/FCC -13 dBm - Peak/3.0m/
 Meas.Peak (Horizontal)
 Meas.Avg (Horizontal)
 Meas.RMS (Horizontal)

FCC/FCC -13 dBm - RMS/3.0m/ FCC/FCC -13 dBm - Average/3.0m/

0			
dBm -10_			
-20 _			
-30 _			
-40			
-50	Any age address have been a state and a state of the second s	المعالم والماء المامين والماعين والماعلين والمحافظ المتحد ومنافعا المحافظ المحافظ المحافظ المحافظ المحافظ والمحال والمحال والمحالي	May may on it was a new market with the second s
			~~~~~~
-00 -			
-70 _			
-80 _			
-90 _			
-100 _			
	18GHz	Frequency	27GHz Polarization: Horizontal

Frequency Band = Band 30 WCS 2300; Test Frequencies = low, mid and high; Direction = RF downlink

~ Mm

Frequency

30 MHz - 1 GHz

The test report shall not be reproduced except <u>in full</u> without the written approval of the testing laboratory. ECL-TA-19-001-V01.00

-50 -60 -70 -80

-90 -100 30MHz

1GHz Polarization: Horizontal

1 GHz - 18 GHz

18 GHz - 27 GHz

5.7.5 FIELD STRENGTH CALCULATIONS

FS = SA + AF + CL + PA

Where as:

- **FS** = Field strength
- **SA** = EMC test receiver reading
- **AF** = Antenna factor
- **CL** = Cable loss
- **PA** = Preamplifier

5.7.6 TEST EQUIPMENT USED

- Radiated Emissions

6 TEST EQUIPMENT

1 Conducted

Ref.No.	Туре	Description	Manufacturer	Inventory no.	Last Calibration	Calibration Due
1.1	FSV40	Signal Analyzer 10 Hz - 40 GHz	Rohde & Schwarz	E2050	2019-10	2020-10
1.2	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	G2089	2017-08	2020-08
1.3	SMIQ	Vector Signal Generator 9 kHz – 3.3 GHz	Rohde & Schwarz	G1509	2018-10	2021-10
1.4	SMIQ	Vector Signal Generator 9 kHz – 3.3 GHz	Rohde & Schwarz	G1510	2018-10	2021-10
1.5	ESH3-Z5	Line Impedance Stabilisation Network (LISN) 150 Hz – 30 MHz	Rohde & Schwarz	K794	2019-02	2020-10
1.6	30.3015	ThermoHygro Datalogger	TFA	X 507	2018-08	2020-08
1.7	BAT-EMC	Software	Nexio	V3.18.0.32		

2 Radiated Emissions

Ref.No.	Туре	Description	Manufacturer	Inventory no.	Last Calibration	Calibration Due
2.1	ESU40	EMI test receiver 10 Hz - 40 GHz	Rohde & Schwarz	E2025	2018-10	2020-10
2.2	HFH2-Z2	Antenna 9 kHz – 30 MHz	Rohde & Schwarz	K549	2018-10	2020-10
2.3	CBL 6111C	Antenna 30 MHz – 1 GHz	Chase	K1026	2018-12	2019-12
2.4	HL 025	Antenna 1 GHz - 18 GHz	Rohde & Schwarz	K1114	2019-06	2020-06
2.5	MWH-1826/B	Antenna 18 GHz – 26.5 GHz	ARA Inc.	K1042	2018-11	2020-11
2.6	MWH-2640/B	Antenna 26 GHz - 40 GHz	ARA Inc.	K1043	2018-11	2020-11
2.7	AM1431	Pre amplifier 10 kHz – 1 GHz	Miteq	K1721	2019-10	2021-10
2.8	AFS4-00102000	Preamplifier 100 MHz - 20 GHz	Miteq	K817	2019-08	2021-08
2.9	AFS4-00102000	Preamplifier 100 MHz - 20 GHz	Miteq	K838	2019-10	2020-10
2.10	JS43-1800-4000	Preamplifier 18 GHz - 40 GHz	Miteq	K1104	2019-05	2020-10
2.11	BAT-EMC	Software	Nexio	V3.18.0.32		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

	LISN insertion loss ESH3-Z5 K794	Cable loss 1 (inside chamber K1865	Cable loss 2 (chamber to receiver) K1125	Limiter K877
dB	dB	dB	dB	dB
10.25	0.12	0.05	0.18	9.90
10.91	0.25	0.17	0.55	9.94
11.15	0.39	0.21	0.61	9.94
11.35	0.42	0.25	0.71	9.97
11.53	0.52	0.26	0.77	9.98
11.72	0.63	0.29	0.82	9.98
11.90	0.72	0.30	0.86	10.02
12.03	0.80	0.31	0.89	10.03
12.19	0.88	0.33	0.94	10.04
12.29	0.91	0.34	0.98	10.06
12.40	0.94	0.36	1.02	10.08
12.53	0.97	0.37	1.07	10.12
12.60	0.99	0.39	1.10	10.12
12.69	1.02	0.40	1.15	10.12

7.1 LISN ROHDE & SCHWARZ ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB) U = Receiver reading LISN Insertion loss = Voltage Division Factor of LISN Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table.

Frequenci	AF HFH-	Corr	Cable loss 1 (inside chamber)	Cable loss 2 (chamber to receiver)	Distance corr. (-40 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	<u> </u>	Corr.	K1865	K1122 + K1761	decade)	(limit)	(used)
MHz	0B (1/m)	dB	dB	dB	dB	m	m
0.009	22.30	-79.96	0.01	0.03	-80	300	3
0.01	22.30	-79.95	0.02	0.03	-80	300	3
0.015	21.55	-79.94	0.03	0.03	-80	300	3
0.02	20.80	-79.93	0.04	0.03	-80	300	3
0.025	20.50	-79.93	0.04	0.03	-80	300	3
0.03	20.20	-79.92	0.05	0.03	-80	300	3
0.05	20.00	-79.92	0.05	0.03	-80	300	3
0.08	19.88	-79.91	0.05	0.04	-80	300	3
0.1	19.80	-79.91	0.05	0.04	-80	300	3
0.2	19.79	-79.91	0.05	0.04	-80	300	3
0.3	19.78	-79.88	0.06	0.06	-80	300	3
0.49	19.76	-79.87	0.06	0.07	-80	300	3
0.490001	19.76	-39.87	0.06	0.07	-40	30	3
0.5	19.76	-39.87	0.06	0.07	-40	30	3
0.8	19.72	-39.84	0.07	0.09	-40	30	3
1	19.70	-39.84	0.07	0.09	-40	30	3
2	19.73	-39.77	0.10	0.13	-40	30	3
3	19.77	-39.70	0.13	0.17	-40	30	3
4	19.80	-39.65	0.16	0.19	-40	30	3
5	19.70	-39.62	0.17	0.21	-40	30	3
6	19.60	-39.58	0.19	0.23	-40	30	3
8	19.50	-39.50	0.24	0.26	-40	30	3
10	19.50	-39.45	0.25	0.30	-40	30	3
12	20.00	-39.42	0.26	0.32	-40	30	3
14	20.36	-39.37	0.29	0.34	-40	30	3
16	20.43	-39.33	0.30	0.37	-40	30	3
18	20.47	-39.30	0.31	0.39	-40	30	3
20	20.48	-39.26	0.33	0.41	-40	30	3
22	20.37	-39.24	0.34	0.42	-40	30	3
24	20.25	-39.19	0.36	0.45	-40	30	3
26	20.09	-39.16	0.37	0.47	-40	30	3
28	19.90	-39.12	0.39	0.49	-40	30	3
30	19.70	-39.09	0.40	0.51	-40	30	3

7.2 ANTENNA ROHDE & SCHWARZ HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA CHASE CBL 6111C (30 MHZ - 1 GHZ)

(d_{Limit} = 10 m)

			Cable loss	Pre-	Cable	Cable loss	
	CBL		1 (inside	amplifier	loss 2	3	dused
	6111C		chamber to		(under	(Chamber	(meas.
			floor)	K1721	chamber)	to receiver	distance
-	K1026	Corr.	K1813		K1121	K1761	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	m
30	24.7	-37.78	0.02	-38.26	0.40	0.06	10
50	14.2	-37.49	0.28	-38.38	0.50	0.11	10
100	15.6	-37.31	0.52	-38.66	0.71	0.12	10
150	16.6	-37.17	0.73	-38.85	0.81	0.14	10
200	14.5	-36.85	0.95	-38.90	0.94	0.16	10
250	18.0	-36.56	1.10	-38.91	1.07	0.18	10
300	18.8	-36.05	1.20	-38.65	1.20	0.20	10
350	20.0	-35.87	1.29	-38.63	1.25	0.22	10
400	21.4	-35.57	1.36	-38.54	1.38	0.23	10
450	22.4	-35.14	1.42	-38.25	1.45	0.24	10
500	23.3	-34.64	1.49	-37.91	1.52	0.26	10
550	24.8	-34.47	1.54	-37.84	1.56	0.27	10
600	25.0	-34.20	1.60	-37.73	1.65	0.28	10
650	25.9	-34.30	1.64	-37.99	1.75	0.30	10
700	26.0	-33.98	1.71	-37.80	1.81	0.30	10
750	27.9	-33.99	1.77	-37.95	1.87	0.32	10
800	27.0	-34.32	1.80	-38.34	1.90	0.32	10
850	28.9	-34.24	1.85	-38.41	1.98	0.34	10
900	28.5	-34.76	1.91	-39.02	2.00	0.35	10
950	30.5	-34.50	1.93	-38.89	2.10	0.36	10
1000	29.8	-34.03	1.99	-38.57	2.18	0.37	10

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 \times LOG (d_{Limit}/d_{used})$ Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

	AF				Cable
	R&S				loss (to
	HL 025			Pre-amp	receiver)
Frequency	K1114	Corr.		K838	K1910
MHz	dB (1/m)	dB		dB	dB
1000	21.27	-19.15		-20.92	1.77
2000	27.32	-18.10		-20.60	2.50
3000	30.97	-17.33		-20.43	3.10
4000	33.48	-17.01		-20.58	3.57
5000	34.99	-17.04		-21.08	4.04
6000	36.98	-17.09		-21.52	4.43
7000	37.94	-16.73		-21.53	4.80
8000	39.21	-15.81		-20.97	5.16
9000	40.62	-15.02		-20.44	5.42
10000	41.78	-14.62		-20.42	5.80
11000	43.05	-14.75		-20.83	6.08
12000	43.12	-15.07		-21.41	6.34
13000	43.51	-15.50		-22.10	6.60
14000	44.53	-15.62		-22.48	6.86
15000	44.96	-15.47		-22.55	7.08
16000	45.57	-15.14	1	-22.49	7.35
17000	45.66	-15.44	1	-22.90	7.46
18000	45.44	-15.41	1	-23.27	7.86

7.4 ANTENNA ROHDE & SCHWARZ HL 025 (1 GHZ - 18 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

7.5 ANTENNA ARA INC. MWH-1826-B (18 GHZ - 26.5 GHZ) PARTIALLY IN CONJUNCTION WITH PRE-AMPLIFIER MITEQ JS43-1800-4000: THE USE OF THE PRE-AMPLIFIER IS DEPENDENT FROM THE FIELD STRENGTH

	AF		
	MWH-		
	1826/B		F
Frequency	K1042	Corr.	
MHz	dB (1/m)	dB	
18000	32.6	-35.37	
18500	32.5	-38.45	
19000	32.6	-37.84	
19500	32.7	-37.10	
20000	32.7	-37.27	
20500	32.9	-37.16	
21000	33.1	-36.82	
21500	33.0	-36.80	
22000	33.1	-36.40	
22500	33.2	-35.94	
23000	33.5	-36.62	
23500	33.5	-35.26	
24000	33.5	-35.87	
24500	33.8	-36.22	
25000	33.8	-35.48	
25500	33.8	-35.37	
26000	34.1	-35.84	
26500	34.4	-35.49	
27000	32.6	-35.37	

	Cable		
	loss (to		
Pre-amp	receiver)		
K1104	K1910		
dB	dB		
-43.23	7.86		
-46.40	7.95		
-45.93	8.09		
-45.21	8.11		
-45.57	8.30		
-45.49	8.33		
-45.29	8.47		
-45.33	8.53		
-45.10	8.70		
-44.78	8.84		
-45.51	8.89		
-44.36	9.10		
-44.96	9.09		
-45.32	9.10		
-44.84	9.36		
-44.67	9.30		
-45.41	9.57		
-45.10	9.61		
-45.98	9.86		

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values.

7.6 ANTENNA ARA INC. MWH-2640-B (26 GHZ – 40 GHZ)) PARTIALLY IN CONJUNCTION WITH PRE-AMPLIFIER MITEQ JS43-1800-4000: THE USE OF THE PRE-AMPLIFIER IS DEPENDENT FROM THE FIELD STRENGTH

4		-				
		AF				Cable
					Dra ama	IUSS (to
	F	2640/B	C -		Pre-amp	receiver)
	Frequency	K1043	Corr.		К1104	к1910
	GHz	dB (1/m)	dB	ļ	dB	dB
	26.5	35.8	-36.27		-45.88	9.61
	27.0	35.5	-36.12		-45.98	9.86
	28.0	36.4	-35.66		-45.55	9.89
	29.0	35.9	-37.11		-47.07	9.96
	30.0	36.3	-37.49		-47.70	10.21
	31.0	36.2	-36.47		-46.93	10.46
	32.0	36.7	-35.66		-46.14	10.48
	33.0	37.0	-36.77		-47.58	10.81
	34.0	37.2	-37.33		-48.43	11.10
	35.0	37.1	-38.50		-49.69	11.19
	36.0	37.4	-39.25		-50.76	11.51
	37.0	37.6	-38.84		-50.33	11.49
	38.0	37.8	-36.63		-48.24	11.61
	39.0	38.0	-32.15		-43.94	11.79
	40.0	37.9	-30.37		-42.22	11.85

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

KDB 935210 D05	ECL
Power measurement	0.68 dB
Measuring AGC threshold level	0.90 dB
Out of band rejection	0.90 dB
Input-versus-output signal comparison	0.91 dB
Mean power output	0.90 dB
Measuring out-of-band/out-of-block (including intermodulation) emissions and	0.00 dB
Out-of-band/out-of-block emissions	0.90 dB
Spurious emissions conducted	2.18 dB
Spurious emissions radiated mesurements	5.38 dB
Total frequency uncertainty	2 x 10 -7

reference : ECL-MU5.4.6.3-EMC-14-001-V02.00 MU Wireless.xlsx

9 PHOTO REPORT

Labeling DUT

Measuring field strength of spurious radiation, Setup for 30 MHz to 1 GHz

Measuring field strength of spurious radiation, Setup for 1 GHz to 27 GHz

