FCC Test Report

Report No.: AGC02009160602FE05

FCC ID : XRQCH1

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: Efergy / Tendr CareHub

BRAND NAME : efergy

MODEL NAME : CH1

CLIENT : Efergy Technologies Limited

DATE OF ISSUE : July 20, 2016

STANDARD(S) TEST PROCEDURE(S)FCC Part 15.247
KDB 558074 v03r04

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

LAGC (enzhen)

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC02009160602FE05 Page 2 of 77

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	July 20, 2016	Valid	Original Report

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3. IEEE 802.11N MODULATION SCHEME	7
2.4. RELATED SUBMITTAL(S) / GRANT (S)	7
2.5. TEST METHODOLOGY	7
2.6. SPECIAL ACCESSORIES	8
2.7. EQUIPMENT MODIFICATIONS	8
3. MEASUREMENT UNCERTAINTY	9
4. DESCRIPTION OF TEST MODES	9
5. SYSTEM TEST CONFIGURATION	10
5.1. CONFIGURATION OF EUT SYSTEM	10
5.2. EQUIPMENT USED IN EUT SYSTEM	10
5.3. SUMMARY OF TEST RESULTS	10
6. TEST FACILITY	11
7. OUTPUT POWER	12
7.1. MEASUREMENT PROCEDURE	12
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	12
7.3. LIMITS AND MEASUREMENT RESULT	13
8. 6 DB BANDWIDTH	14
8.1. MEASUREMENT PROCEDURE	14
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
8.3. LIMITS AND MEASUREMENT RESULTS	
9. CONDUCTED SPURIOUS EMISSION	21
9.1. MEASUREMENT PROCEDURE	21
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	21
9.3. MEASUREMENT EQUIPMENT USED	21
9.4. LIMITS AND MEASUREMENT RESULT	21
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	36
10.1 MEASUREMENT PROCEDURE	36
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	36
10.3 MEASUREMENT EQUIPMENT USED	36
10.4 LIMITS AND MEASUREMENT RESULT	36
11. RADIATED EMISSION	43

11.1. MEASUREMENT PROCEDURE	43
11.2. TEST SETUP	44
11.3. LIMITS AND MEASUREMENT RESULT	45
11.4. TEST RESULT	45
12. BAND EDGE EMISSION	51
12.1. MEASUREMENT PROCEDURE	51
12.2. TEST SET-UP	
12.3. TEST RESULT	52
13. FCC LINE CONDUCTED EMISSION TEST	_
13.1. LIMITS OF LINE CONDUCTED EMISSION TEST	64
13.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	64
13.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	65
13.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	65
13.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	66
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	68
ADDENDIY D. DUOTOCD ADUS OF FUT	70

Page 5 of 77

1. VERIFICATION OF CONFORMITY

Applicant	Efergy Technologies Limited		
Address	Suite 1108-1109, Junction Building, 3820 Nanhuan Road, Binjial District, Hangzhou, Zhejiang, 310053 China		
Manufacturer	ShenZhen Gospell Smarthome Electronic Co., Ltd.		
Address	East of 01st-04st Floor, Block A, No.1 Industrial park, Fenghuanggang, South No.1 Baotian Road, Xixiang street, Bao'an District, Shenzhen City, Guangdo Province 518126, P.R.China		
Product Designation	Efergy / Tendr CareHub		
Brand Name	efergy.		
Test Model	CH1		
Date of test	July 04, 2016 to July 20, 2016		
Deviation	None		
Condition of Test Sample	Normal		
Test Result	Pass		
Report Template	AGCRT-US-BGN/RF		

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Reviewed by

Reviewed by

Rock Huang(Huang Dinglue)

Solger Zhang(Zhang Hongyi)
Authorized Officer

July 20, 2016

July 20, 2016

Page 6 of 77

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "Efergy / Tendr CareHub". It is designed by way of utilizing the DSSS and OFDM technology to achieve the system operation.

A major technical description of EUT is described as following

	<u> </u>
Operation Frequency	2.412 GHz~2.462GHz
Output Power	IEEE 802.11b:13.98dBm; IEEE 802.11g:13.28dBm; IEEE 802.11n(20):12.23dBm;
Modulation	DSSS(DBPSK/DQPSK/CCK);OFDM(BPSK/QPSK/16-QAM/64-QAM)
Number of channels	11
Hardware Version	GD2852Y_M03
Software Version	N/A
Antenna Designation	Integrated Antenna
Antenna Gain	2dBi
Power Supply	DC 5V by adapter

Note: The USB port is only for charging.

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	1	2412 MHZ
	2	2417 MHZ
	3	2422 MHZ
	4	2427 MHZ
	5	2432 MHZ
2400~2483.5MHZ	6	2437 MHZ
	7	2442 MHZ
	8	2447 MHZ
	9	2452 MHZ
	10	2457 MHZ
	11	2462 MHZ

Note: For 20MHZ bandwidth system use Channel 1 to Channel 11

Page 7 of 77

2.3. IEEE 802.11N MODULATION SCHEME

MCS					NCBPS		NDBPS		Data rate(Mbps)		
Index	Nss	Modulation	R	NBPSC	NBPSC	NBPSC				800nsGI	
					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz	
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5	
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0	
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5	
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0	
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0	
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0	
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5	
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0	

Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	Guard interval

2.4. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: XRQCH1** filing to comply with the FCC Part 15 requirements.

2.5. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

Others testing (listed at item 5.3) was performed according to the procedures in FCC Part 15.247 rules KDB 558074 D01 DTS Meas Guidance v03r04.

Report No.: AGC02009160602FE05 Page 8 of 77

2.6. SPECIAL ACCESSORIES

Refer to section 5.2.

2.7. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 9 of 77

3. MEASUREMENT UNCERTAINTY

Conducted measurement: +/- 3.18dB Radiated measurement: +/- 3.91dB

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX
4	Normal operating

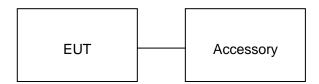
Note:

Transmit by 802.11b with Date rate (1/2/5.5/11)

Transmit by 802.11g with Date rate (6/9/12/18/24/36/48/54)

Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)

Note:


- 1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the eut is operating at its maximum duty cycle>or equal 98%
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

Report No.: AGC02009160602FE05 Page 10 of 77

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configure:

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Efergy / Tendr CareHub	CH1	XRQCH1	EUT
2	Adapter	SK21G-0500200Z	DC5V/2A	Marketed

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Output Power	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247	Conducted Spurious Emission	Compliant
§15.247	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Line Conduction Emission	Compliant

Report No.: AGC02009160602FE05 Page 11 of 77

6. TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.
Location	Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China.
FCC Registration No.	371540
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2014.

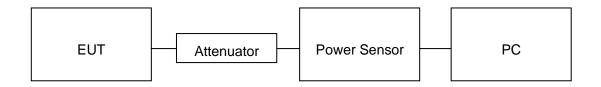
ALL TEST EQUIPMENT LIST

	Radiated Emission Test Site				
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 3, 2016	June 2, 2017
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 3, 2016	June 2, 2017
Spectrum analyzer	Agilent	E4407B	MY46185649	June 3, 2016	June 2, 2017
Power Sensor	Agilent	U2021XA	MY55050474	June 3, 2016	June 2, 2017
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	June 3, 2016	June 2, 2017
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 3, 2016	June 2, 2017

Conducted Emission Test Site					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
Artificial Mains Network	Narda	L2-16B	000WX31025	July 3, 2016	July 2, 2017
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 3, 2016	July 2, 2017
RF Cable	SCHWARZBECK	AK9515E	96222	July 3, 2016	July 2, 2017
Shielded Room	CHENGYU	843	PTS-002	June 3, 2016	June 2, 2017

Page 12 of 77

7. OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For average power test:

- 1. Connect EUT RF output port to power sensor through an RF attenuator.
- 2. Connect the power sensor to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

Note: The EUT was tested according to KDB 558074v03r04 for compliance to FCC 47CFR 15.247 requirements.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) AVERAGE POWER SETUP

Report No.: AGC02009160602FE05 Page 13 of 77

7.3. LIMITS AND MEASUREMENT RESULT

TEST ITEM	OUTPUT POWER
TEST MODE	802.11b with data rate 1

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	13.98	30	Pass
2.437	13.96	30	Pass
2.462	13.30	30	Pass

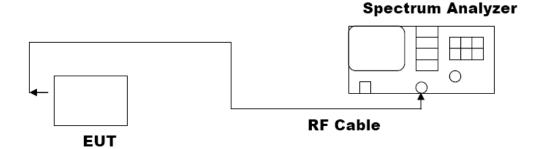
TEST ITEM	OUTPUT POWER
TEST MODE	802.11g with data rate 6

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	13.28	30	Pass
2.437	12.99	30	Pass
2.462	12.24	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 20 with data rate 6.5

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	12.23	30	Pass
2.437	11.98	30	Pass
2.462	11.07	30	Pass

Page 14 of 77


8. 6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Page 15 of 77

8.3. LIMITS AND MEASUREMENT RESULTS

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11b with data rate 11

LIMITS AND MEASUREMENT RESULT				
Applicable Limits				
Applicable Limits	Test Data (MHz)		Criteria	
	Low Channel	9.047	PASS	
>500KHZ	Middle Channel	9.037	PASS	
	High Channel	8.038	PASS	

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11g with data rate 54

LIMITS AND MEASUREMENT RESULT			
A Paral la 12 a Ma	Applicable Limits		
Applicable Limits	Test Data (MHz)		Criteria
>500KHZ	Low Channel	16.28	PASS
	Middle Channel	16.03	PASS
	High Channel	16.27	PASS

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11n 20 with data rate 65

LIMITS AND MEASUREMENT RESULT			
Augliochte Limite	Applicable Limits		
Applicable Limits	Test Data (MHz)		Criteria
>500KHZ	Low Channel	17.57	PASS
	Middle Channel	17.56	PASS
	High Channel	17.57	PASS

Page 16 of 77

802.11b TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

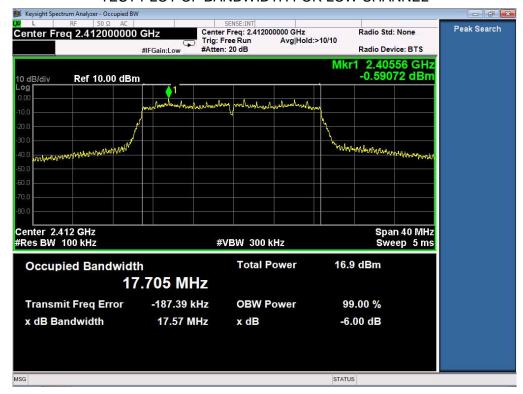
Page 17 of 77

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

802.11g TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Page 18 of 77

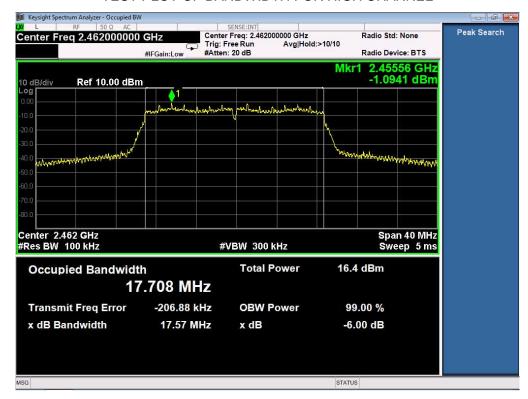
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL



TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 19 of 77

802.11n (20) TEST RESULT TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Page 20 of 77

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 21 of 77

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

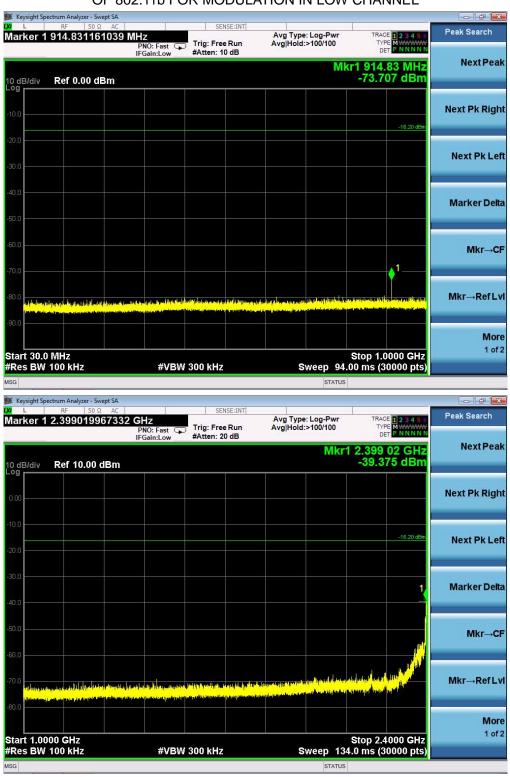
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2.

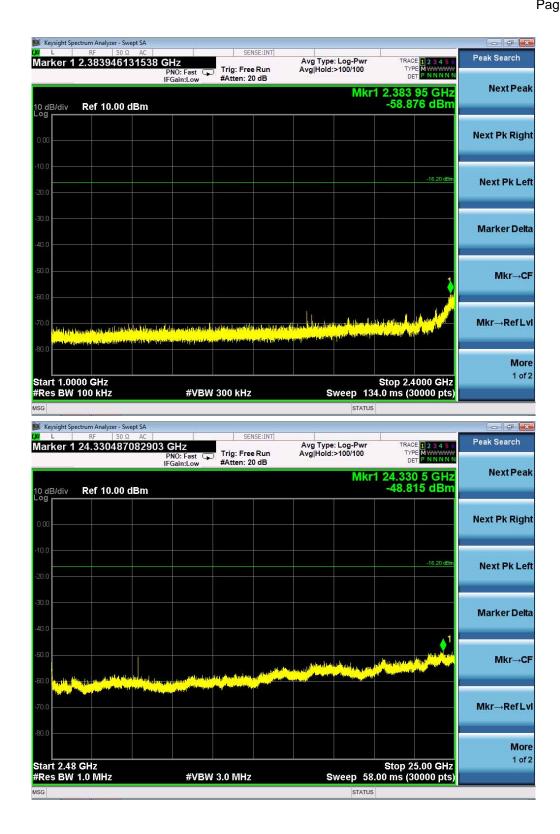
9.3. MEASUREMENT EQUIPMENT USED


The same as described in section 6.

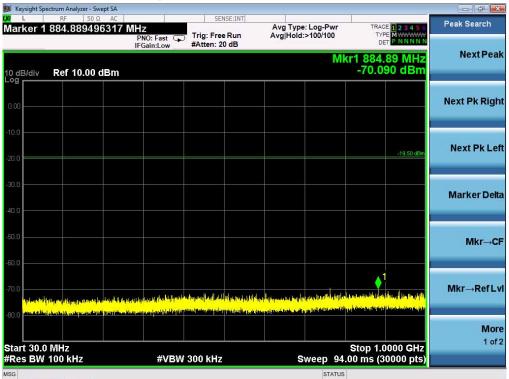
9.4. LIMITS AND MEASUREMENT RESULT

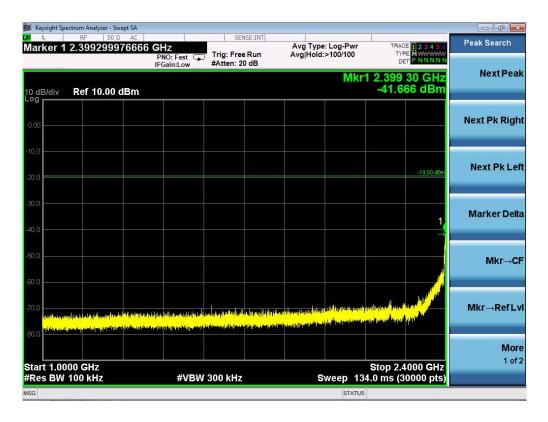
LIMITS AND MEASUREMENT RESULT			
Applicable Limite	Measurement Result		
Applicable Limits	Test Data	Criteria	
In any 100 KHz Bandwidth Outside the	At least -20dBc than the limit		
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS	
intentional radiator is operating, the radio frequency	Channel		
power that is produce by the intentional radiator			
shall be at least 20 dB below that in 100KHz			
bandwidth within the band that contains the highest			
level of the desired power.	At least -20dBc than the limit	PASS	
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS	
restricted bands, as defined in §15.205(a), must also			
comply with the radiated emission limits specified			
in§15.209(a))			

Page 22 of 77

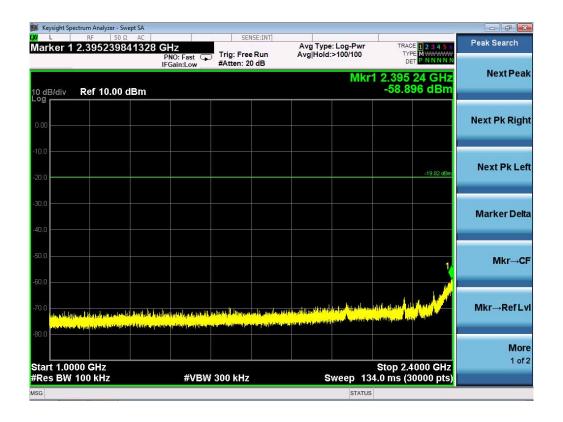

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11b FOR MODULATION IN LOW CHANNEL


TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN MIDDLE CHANNEL


Page 25 of 77

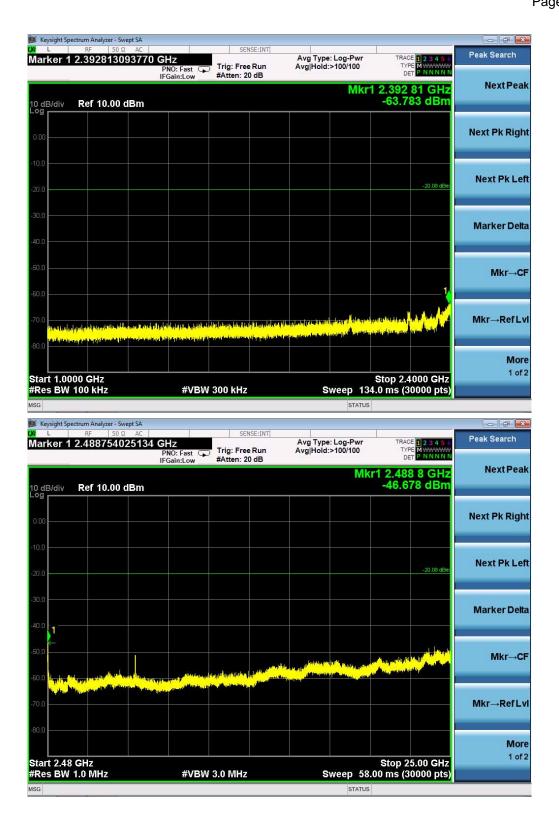

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN HIGH CHANNEL

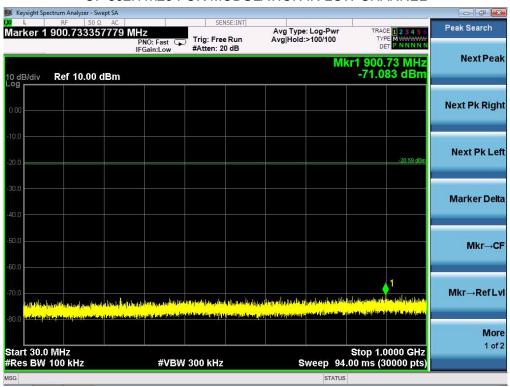
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11g FOR MODULATION IN LOW CHANNEL

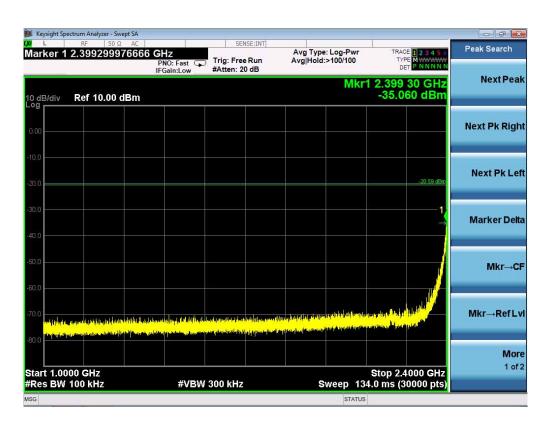


Page 28 of 77

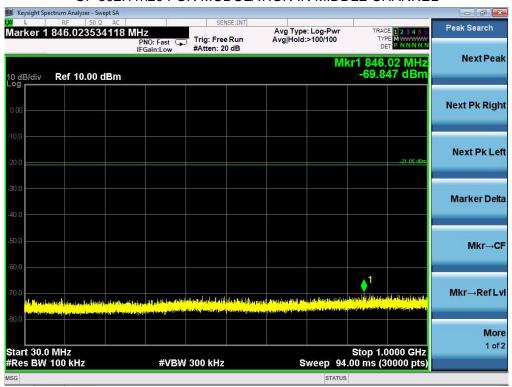
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11g FOR MODULATION IN MIDDLE CHANNEL

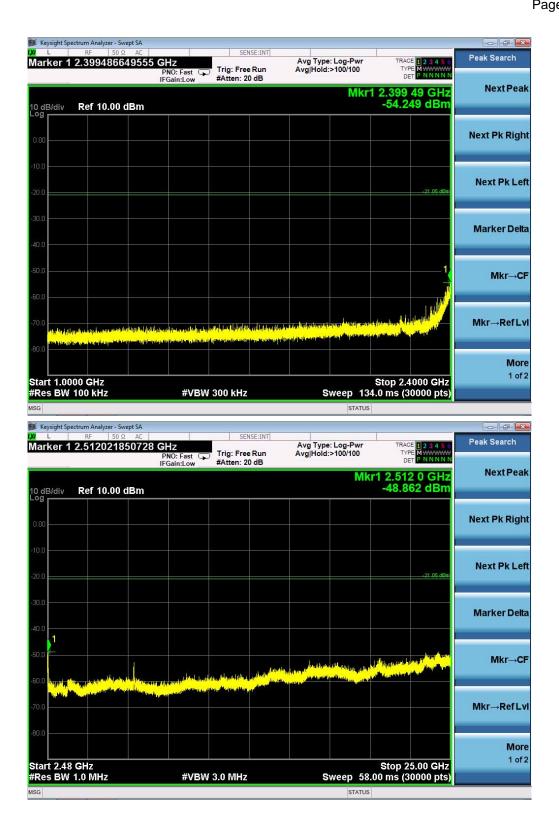


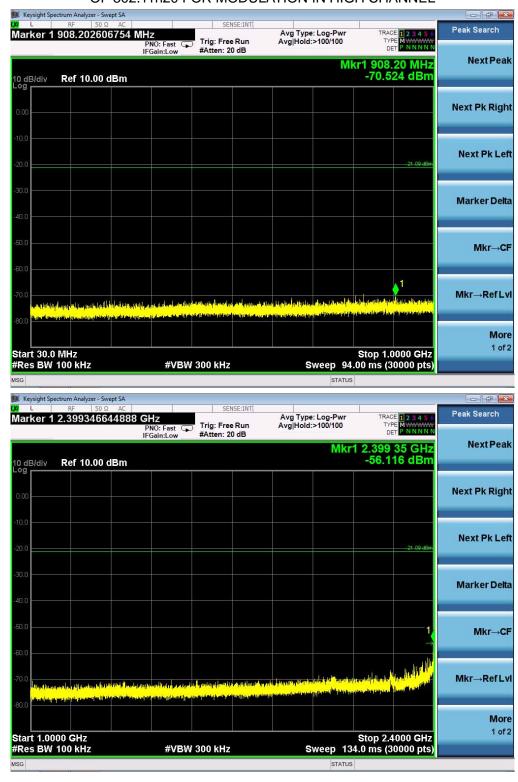

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE
OF 802.11g FOR MODULATION IN HIGH CHANNEL



Page 31 of 77


TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11n20 FOR MODULATION IN LOW CHANNEL




TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN MIDDLE CHANNEL

Page 34 of 77

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN HIGH CHANNEL

Note: The 100kHz RBW used in the conducted spurious test from 2.4835GHz to 25GHz may result in long measuring times, To avoid such long measuring times, the 1MHz RBW can be used for pre-test. If the emission level exceeded the limit at one or more frequencies, the 100kHz RBW would be used for final test at the special frequency.

Page 36 of 77

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 8.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT

TEST ITEM	POWER PECTRAL DENSITY
TEST MODE	802.11b with data rate 1

Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-9.961	8	Pass
Middle Channel	-9.871	8	Pass
High Channel	-10.822	8	Pass

TEST ITEM	POWER PECTRAL DENSITY
TEST MODE	802.11g with data rate 6

Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-12.874	8	Pass
Middle Channel	-12.821	8	Pass
High Channel	-13.166	8	Pass

Report No.: AGC02009160602FE05 Page 37 of 77

TEST ITEM	POWER PECTRAL DENSITY
TEST MODE	802.11n 20 with data rate 6.5

Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-14.376	8	Pass
Middle Channel	-15.340	8	Pass
High Channel	-14.888	8	Pass

Page 38 of 77

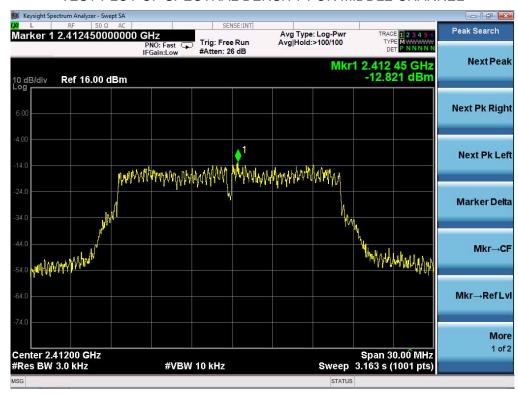
802.11b TEST RESULT
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

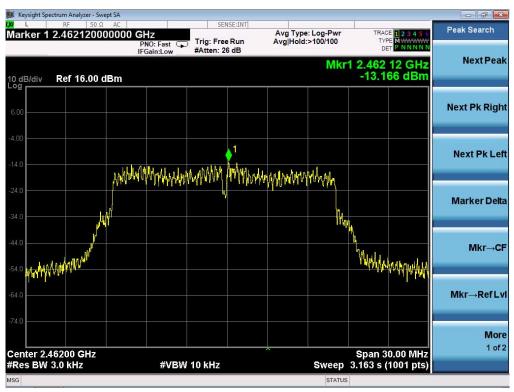


Page 39 of 77

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



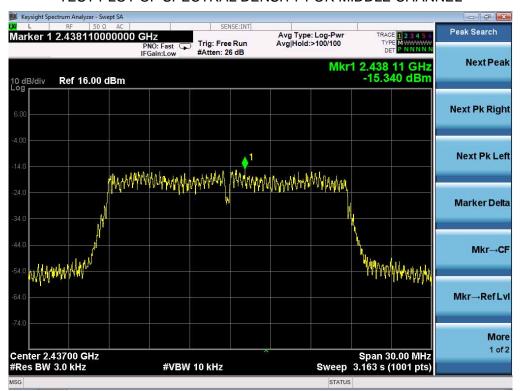
802.11g TEST RESULTTEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



Report No.: AGC02009160602FE05 Page 40 of 77

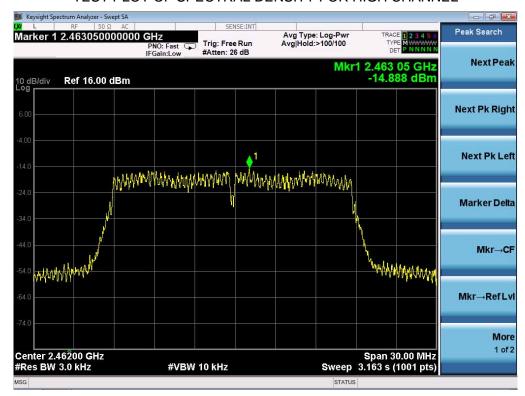
TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



Page 41 of 77

802.11n 20 TEST RESULTTEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



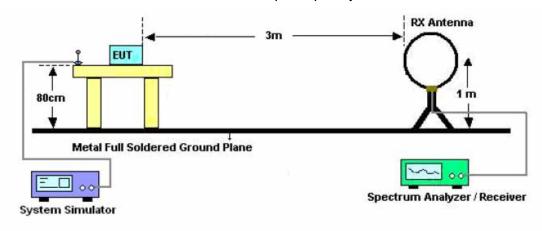
TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

Page 42 of 77

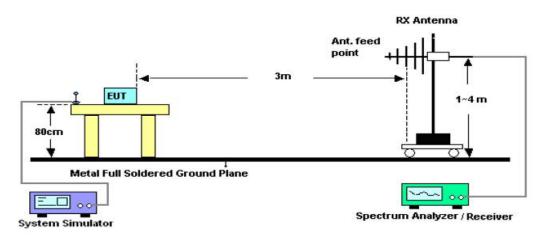
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

Page 43 of 77

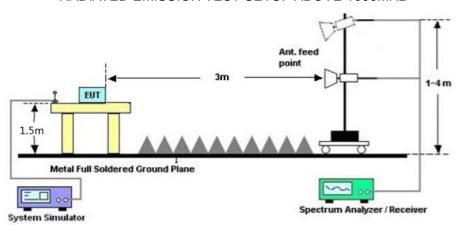
11. RADIATED EMISSION


11.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


Page 44 of 77

11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 45 of 77

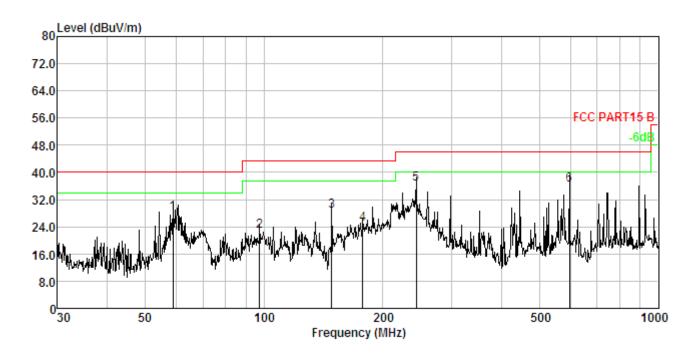
11.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

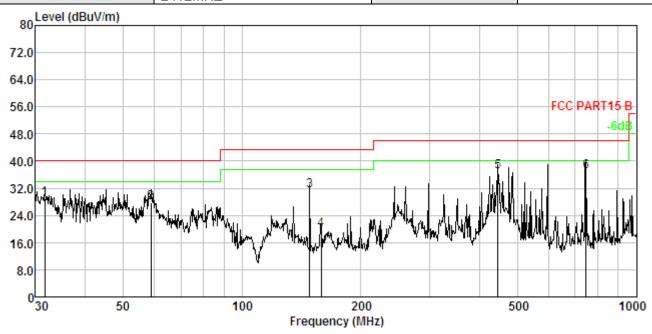
the test records reported below are the worst result compared to other modes.


11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ


EUT	Efergy / Tendr CareHub	Model Name	CH1
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	58.819	1.66	12.11	44.33	30.20	27.90	40.00	-12.10	QP
2.	97.456	2.12	9.99	40.98	30.38	22.71	43.50	-20.79	QP
3.	148.441	2.50	13.82	42.90	30.53	28.69	43.50	-14.81	QP
4.	178.133	2.67	12.60	40.02	30.59	24.70	43.50	-18.80	QP
5.	243.377	2.95	11.78	52.53	30.70	36.56	46.00	-9.44	QP
6.	595.133	3.76	19.03	44.52	31.01	36.30	46.00	-9.70	QP

RESULT: PASS

EUT	Efergy / Tendr CareHub	Model Name	CH1
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Vertical

No.	Freq MHz	Cable Loss dB		Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	31.620	1.10	13.23	44.63	29.99	28.97	40.00	-11.03	QP QP
2.	58.819	1.66	12.11	44.09	30.20	27.66	40.00	-12.34	QP
3.	148.441	2.50	13.82	45.41	30.53	31.20	43.50	-12.30	QP
4.	158.668	2.56	13.88	33.80	30.55	19.69	43.50	-23.81	QP
5.	446.414	3.50	16.31	47.99	30.91	36.89	46.00	-9.11	QP
6.	744.866	3.96	21.20	42.94	31.09	37.01	46.00	-8.99	QP

RESULT: PASS

Note:

- 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.
- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All test modes had been pre-tested. The 802.11b at low channel is the worst case and recorded in the report.

Report No.: AGC02009160602FE05 Page 48 of 77

RADIATED EMISSION ABOVE 1GHZ

EUT	Efergy / Tendr CareHub	Model Name	CH1
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4824.033	45.24	3.72	48.96	74	-25.04	peak
4824.053	40.15	3.72	43.87	54	-10.13	AVG
7236.066	40.74	8.15	48.89	74	-25.11	peak
7236.099	35.21	8.15	43.36	54	-10.64	AVG
Remark:						
actor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT	Efergy / Tendr CareHub	Model Name	CH1
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4824.086	43.88	3.72	47.6	74	-26.4	peak	
4824.051	38.71	3.72	42.43	54	-11.57	AVG	
7236.040	39.52	8.15	47.67	74	-26.33	peak	
7236.109	34.08	8.15	42.23	54	-11.77	AVG	
Remark:							
Factor = Ante	Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Report No.: AGC02009160602FE05 Page 49 of 77

EUT	Efergy / Tendr CareHub	Model Name	CH1
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2437MHZ	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
4874.030	46.15	3.75	49.9	74	-24.1	peak		
4874.108	40.85	3.75	44.6	54	-9.4	AVG		
7311.056	41.25	8.16	49.41	74	-24.59	peak		
7311.092	36.88	8.16	45.04	54	-8.96	AVG		
Remark:								
Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

EUT	Efergy / Tendr CareHub	Model Name	CH1
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2437MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4874.118	45.22	3.75	48.97	74	-25.03	peak
4874.056	40.03	3.75	43.78	54	-10.22	AVG
7311.071	39.81	8.16	47.97	74	-26.03	peak
7311.067	34.46	8.16	42.62	54	-11.38	AVG
Remark:						

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 50 of 77

EUT	Efergy / Tendr CareHub	Model Name	CH1
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2462MHZ	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
4924.080	46.25	3.81	50.06	74	-23.94	peak		
4924.021	41.03	3.81	44.84	54	-9.16	AVG		
7386.109	41.12	8.19	49.31	74	-24.69	peak		
7386.066	35.94	8.19	44.13	54	-9.87	AVG		
Remark:								
Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

EUT	Efergy / Tendr CareHub	Model Name	CH1
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2462MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4924.040	44.26	3.81	48.07	74	-25.93	peak
4924.107	39.85	3.81	43.66	54	-10.34	AVG
7386.029	40.22	8.19	48.41	74	-25.59	peak
7386.073	34.76	8.19	42.95	54	-11.05	AVG
Remark:	<u>, </u>		!			i.
Factor = Ante	enna Factor + Ca	able Loss – I	Pre-amplifier.			

RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been pre-tested. The 802.11b mode is the worst case and recorded in the report.