

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.com.cn

TEST REPORT

Report No. CTC20192113E06

FCC ID-----: XRH-NPE107

Applicant North Pole Engineering

Address 221 North First Street, Suite 310 Minneapolis, MN 55401, United

States

Manufacturer North Pole Engineering

Address 221 North First Street, Suite 310 Minneapolis, MN 55401, United

States

Product Name······: AWE Charger

Trade Mark······ N/A

Model/Type reference······ AWEC01

Listed Model(s) ······ OTbeat Link Charging Case

Standard 47 CFR FCC Part 18

Date of receipt of test sample...: Oct. 24, 2019

Date of testing...... Oct. 25, 2019 to Nov. 12, 2019

Result..... PASS

Compiled by:

(Printed name+signature) Terry Su

Supervised by:

(Printed name+signature) Miller Ma

Approved by:

(Printed name+signature) Walter Chen

Testing Laboratory Name.....: CTC Laboratories, Inc.

High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Terry Su Miller Ma water chr

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

1.1.

1.2.

1.3.

1 4 1.5.

1.6.

2.1.

2.2.

2.3.

2.4.

2.5.

3.1.

3.2.

4.

5.

	Table of Contents	Page
TES	T SUMMARY	3
1.	TEST STANDARDS	3
.2.	REPORT VERSION	3
3.	TEST DESCRIPTION	4
4.	TEST FACILITY	5
5.	Measurement Uncertainty	5
.6.	Environmental conditions	6
GEN	NERAL INFORMATION	7
2.1.	CLIENT INFORMATION	7
2.2.	GENERAL DESCRIPTION OF EUT	7
2.3.	Accessory Equipment information	8
2.4.	DESCRIPTION OF TEST MODES	8
2.5.	Measurement Instruments List	
EM	C EMISSION TEST	10

Report No.: CTC20192113E06

1. TEST SUMMARY

1.1. Test Standards

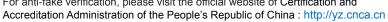
The tests were performed according to following standards:

<u>47 CFR FCC Part 18:</u> Industrial, Scientific, and Medical Equipment Unintentional Radiators.

<u>ANSI C63.4: 2014:</u> American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz.

1.2. Report version

Revised No.	Date of issue	Description
01	01 Nov. 13, 2019 Origina	



1.3. Test Description

FCC CFR Title 47 FCC Part 18				
Test Item Standard Section Result Test Engineer				
Conducted Emissions Test	18.307(b)	Pass	Terry Su	
Radiated Emission Test	18.305(b),(c)	Pass	Terry Su	

Note: "N/A" is no application.

The measurement uncertainty is not included in the test result.

Page 5 of 26 Report No.: CTC20192113E06

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) f or the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in th e identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (F CC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items Measurement Uncertainty Notes Conducted Emissions 9kHz~30MHz 3.20 dB (1) Radiated Emissions 30~1000MHz 4.70 dB (1) Radiated Emissions 1~18GHz 5.00 dB (1) Radiated Emissions 18~40GHz (1) 5.54 dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Lative Humidity	55 %
Air Pressure	101kPa

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	North Pole Engineering
Address:	221 North First Street, Suite 310 Minneapolis, MN 55401, United States
Manufacturer:	North Pole Engineering
Address:	221 North First Street, Suite 310 Minneapolis, MN 55401, United States

2.2. General Description of EUT

Product Name:	AWE Charger		
Marketing Name:	N/A		
Model/Type reference:	AWEC01		
Listed Model(s):	OTbeat Link Charging Case		
Model Difference:	All these models are identical in the same PCB, layout and electrical circuit, the only difference is model name.		
Power supply:	5Vdc from External adapter 3.7Vdc from 230mAh Li-ion Battery		
Hardware version:	N/A		
Software version:	N/A		
Wireless Charger			
Operation Frequency Range:	760kHz~840kHz		
Operation Frequency:	800kHz		

2.3. Accessory Equipment information

Equipment Information					
Name Model S/N Manufacturer					
AWE	AWE01		North Pole Engineering		
AC/DC Adapter	PSA05F-050QAL6	PJ23006448A1	PHIHONG		
Cable Information					
Name Shielded Type Ferrite Core Length					
USB Cable YES NO			2M		

2.4. Description of Test Modes

Test mode	Charging	Wireless charging to AEW
1	•	
2		•

Note: ■ is operation mode.

Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report.

Test item	Test mode
Conducted emission	1
Radiated emission	2

2.5.	Measurement	Instruments	List

Cond	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	LISN	R&S	ENV216	101112	Dec. 28, 2019	
2	LISN	R&S	ENV216	101113	Dec. 28, 2019	
3	EMI Test Receiver	R&S	ESCI	100920	Dec. 28, 2019	
4	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 28, 2019	

Radia	Radiated Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 28, 2019	
2	High pass filter	micro-tranics	HPM50111	142	Dec. 28, 2019	
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 28, 2019	
4	Ultra-Broadband Antenna	SchwarzBeck	BBHA9170	25841	Dec. 28, 2019	
5	Loop Antenna	LAPLAC	RF300	9138	Dec. 28, 2019	
6	Loop Antenna	ETS	6507	146	Dec. 28, 2019	
7	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 28, 2019	
8	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 28, 2019	
9	Pre-Amplifier	HP	8447D	1937A03050	Dec. 28, 2019	
10	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 28, 2019	
11	Antenna Mast	UC	UC3000	N/A	N/A	
12	Turn Table	UC	UC3000	N/A	N/A	
13	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 28, 2019	
14	Cable Above 1GHz	Hubersuhner	SUCOFLEX102	DA1580	Dec. 28, 2019	
15	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 28, 2019	
16	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	Dec. 28, 2019	
17	RF Connection Cable	Chengdu E-Microwave			Dec. 28, 2019	
18	High pass filter	Compliance Direction systems	BSU-6	34202	Dec. 28, 2019	
19	Attenuator	Chengdu E-Microwave	EMCAXX-10RN Z-3		Dec. 28, 2019	

Note: The Cal. Interval was one year.

Page 10 of 26

Report No.: CTC20192113E06

3. EMC EMISSION TEST

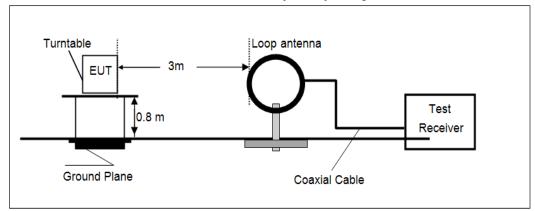
3.1. Radiated Emission

LIMIT

FCC CFR Title 47 Part 18 Section 18.305(b):

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)
Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500 500 or more	25 25 × SQRT(power/500)	300 1 ₃₀₀
	Any non-ISM frequency	Below 500 500 or more	15 15 × SQRT(power/500)	300 ¹ 300
Industrial heaters and RF stabilized arc welders	On or below 5,725 MHz Above 5,725 MHz	Any Any	10 (²)	1,600 (²)
Medical diathermy	Any ISM frequency Any non-ISM frequency	Any Any	25 15	300 300
Ultrasonic	Below 490 kHz	Below 500 500 or more	2,400/F(kHz) 2,400/F(kHz) × SQRT(power/500)	300 ³ 300
	490 to 1,600 kHz Above 1,600 kHz	Any Any	24,000/F(kHz) 15	30 30
Induction cooking ranges	Below 90 kHz On or above 90 kHz	Any Any	1,500 300	⁴ 30 ⁴ 30

 $^{^{1}}$ Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.

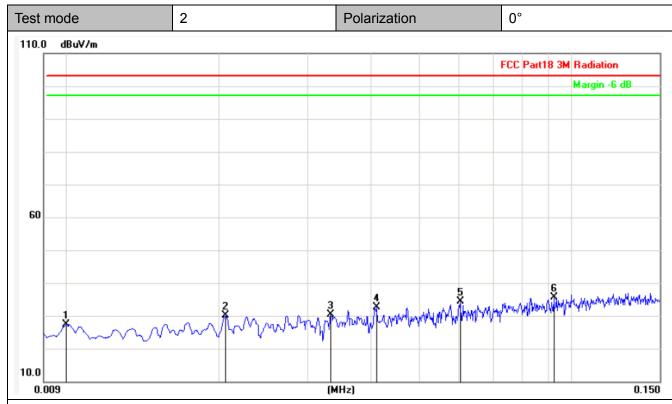

- 1. This product belongs to non-ISM equipment, the field strength limit is 15uV/m at 300 meter distance.
- 2. Limit: $20\log^{(15\text{uV/m})} + 40\log^{(300/3)} = 23.52 + 80 = 103.52 \text{dBuV/m}$ at 3 meters distance

²Reduced to the greatest extent possible.

 $^{^3}$ Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment is not permitted the increase in field strength otherwise permitted here for over 500 watts.

⁴Induction cooking ranges manufactured prior to February 1, 1980, shall be subject to the field strength limits for miscellaneous ISM equipment.

Radiated Emission Test Set-Up Frequency below 30MHz

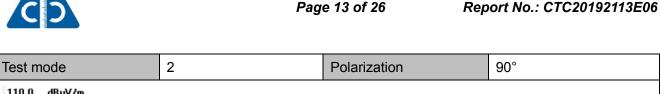

TEST PROCEDURE

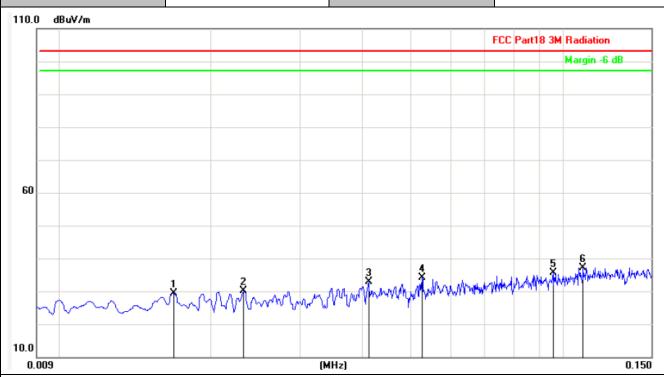
- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
- Span shall wide enough to fully capture the emission being measured;
- 1) 9kHz 150kHz, RBW=200Hz, Sweep=auto, Detector function=peak, Trace=max hold;
- 2) 150kHz 30MHz, RBW=9kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

TEST MODE:

Please refer to the clause 2.4.

TEST RESULTS




No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.0100	24.51	2.88	27.39	103.25	-75.86	QP
2	0.0206	21.83	8.18	30.01	103.25	-73.24	QP
3	0.0334	19.37	11.03	30.40	103.25	-72.85	QP
4	0.0411	19.06	13.49	32.55	103.25	-70.70	QP
5	0.0603	18.66	15.63	34.29	103.25	-68.96	QP
6	0.0925	16.44	19.19	35.63	103.25	-67.62	QP

Remark:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.0169	22.77	6.70	29.47	103.25	-73.78	QP
2	0.0232	21.18	8.83	30.01	103.25	-73.24	QP
3	0.0411	19.06	13.86	32.92	103.25	-70.33	QP
4	0.0526	18.70	15.54	34.24	103.25	-69.01	QP
5	0.0957	16.47	19.13	35.60	103.25	-67.65	QP
6	0.1100	16.61	20.61	37.22	103.25	-66.03	QP

Remark:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

30.000

Test mode 2 Polarization 0°

110.0 dBuV/m

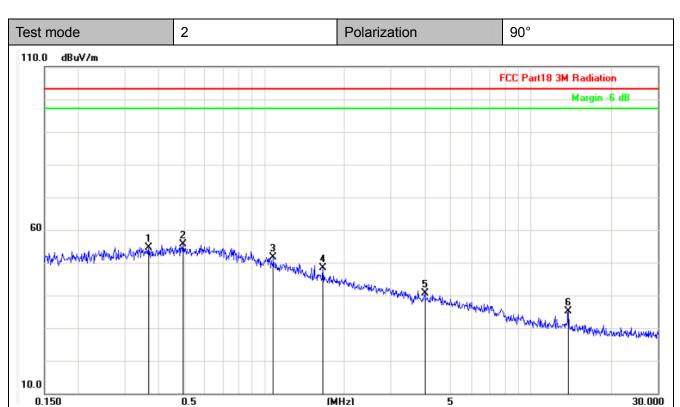
FCC Part18 3M Radiation
Margin 6 dB

60

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.2495	16.58	37.95	54.53	103.25	-48.72	QP
2	0.3871	16.54	38.29	54.83	103.25	-48.42	QP
3	0.5916	16.52	38.73	55.25	103.25	-48.00	QP
4	0.8897	16.60	36.67	53.27	103.25	-49.98	QP
5	1.4874	16.58	31.12	47.70	103.25	-55.55	QP
6	2.7212	16.50	26.43	42.93	103.25	-60.32	QP

(MHz)

5


Remark:

10.0 0.150

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

0.5

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.3692	16.55	38.09	54.64	103.25	-48.61	QP
2	0.4967	16.50	39.02	55.52	103.25	-47.73	QP
3	1.0824	16.63	34.97	51.60	103.25	-51.65	QP
4	1.6625	16.57	31.91	48.48	103.25	-54.77	QP
5	4.0062	16.64	23.95	40.59	103.25	-62.66	QP
6	13.8411	16.60	18.42	35.02	103.25	-68.23	QP

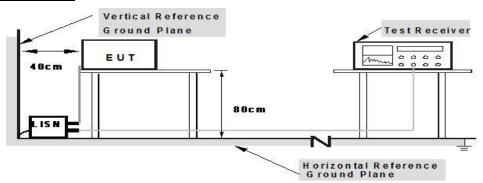
Remark:

^{1.}Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

^{2.}Margin value = Level -Limit value

Page 16 of 26 Report No.: CTC20192113E06

3.2. Conducted Emission (AC Mains)


LIMIT

FCC CFR Title 47 Part 18 Section 18.307(b):

Fraguency range (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} Decreases with the logarithm of the frequency.

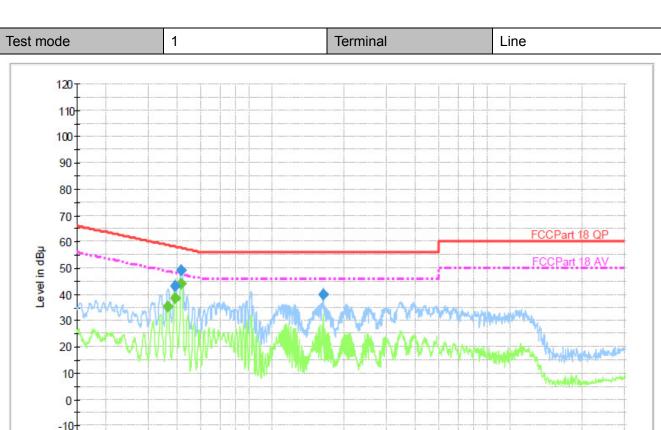
TEST CONFIGURATION

Note: 1.Support units were connected to second LISM.

2.Both of LISMs (AMM) are 80 cm from EUT and at least 80

from other units and other metal planes

TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.4-2014.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE

Please refer to the clause 2.4.

TEST RESULTS

-20 ↓ 150k

Final Measurement Detector 1

300 400 500

800 1M

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.389450	42.9	1000.00	9.000	On	L1	9.4	15.2	58.1	
0.410190	48.9	1000.00	9.000	On	L1	9.4	8.7	57.6	
1.619510	39.7	1000.00	9.000	On	L1	9.5	16.3	56.0	

2M

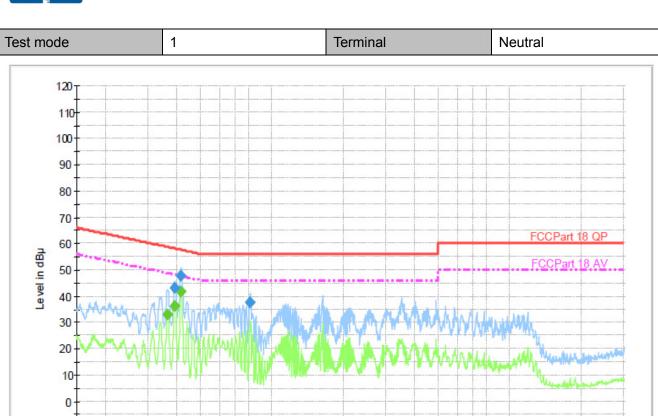
Frequency in Hz

3M

4M 5M 6

8 10M

20M


30M

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.362440	35.4	1000.00	9.000	On	L1	9.4	13.3	48.7	
0.387900	38.6	1000.00	9.000	On	L1	9.4	9.5	48.1	
0.413480	44.2	1000.00	9.000	On	L1	9.4	3.4	47.6	

CTC Laboratories, Inc.

-10-20 150k

Final Measurement Detector 1

300 400 500

800 1M

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ	
		(ms)						V)	
0.387900	43.1	1000.00	9.000	On	N	9.4	15.0	58.1	
0.413480	47.7	1000.00	9.000	On	N	9.4	9.9	57.6	
0.808570	37.4	1000.00	9.000	On	N	9.4	18.6	56.0	

2M Frequency in Hz 4M 5M 6

8 10M

20M

30M

Final Measurement Detector 2

	Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
Γ	0.362440	33.0	1000.00	9.000	On	N	9.4	15.7	48.7	
	0.387900	36.3	1000.00	9.000	On	N	9.4	11.8	48.1	
	0.411830	41.8	1000.00	9.000	On	N	9.4	5.8	47.6	