

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C. Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.com.cn

TECT	Γ D \square	PA	DT
		Γ	Γ

Report No. CTC20200069E02

FCC ID-----: XRH-NPE105

IC: 11922A-NPE105

Applicant-----: North Pole Engineering

Address...... 221 North First Street, Suite 310 Minneapolis, MN 55401, United

States

Manufacturer North Pole Engineering

Address...... 221 North First Street, Suite 310 Minneapolis, MN 55401, United

States

Product Name······ GEM3

Trade Mark·····: N/A

Model/Type reference······: GEMSRB03

Listed Model(s) ·····: N/A

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS 247 Issue 2

Date of receipt of test sample...: Jan. 17, 2020

Date of testing...... Jan. 18, 2020 to Feb. 23, 2020

Date of issue...... Feb. 26, 2020

Result..... PASS

Compiled by:

(Printed name+signature) Terry Su

Supervised by:

(Printed name+signature) Miller Ma

Approved by:

(Printed name+signature) Walter Chen

Testing Laboratory Name.....: CTC Laboratories, Inc.

Shenzhen, Guangdong, P.R.C.

Tenny Su Miller Ma

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

		Table of Co	ntents	Page
1.	TEST	SUMMARY		3
	1.1.	TEST STANDARDS		
	1.2.	REPORT VERSION		
	1.3.	TEST DESCRIPTION		
	1.4.	TEST FACILITY]
	1.5.	MEASUREMENT UNCERTAINTY]
	1.6.	ENVIRONMENTAL CONDITIONS		6
2.	GEN	ERAL INFORMATION		
	2.1.	CLIENT INFORMATION		
	2.2.	GENERAL DESCRIPTION OF EUT		
	2.3.	OPERATION STATE		8
	2.4.	ACCESSORY EQUIPMENT INFORMATION		
	2.5.	MEASUREMENT INSTRUMENTS LIST		10
3.	TEST	ITEM AND RESULTS		12
	3.1.	CONDUCTED EMISSION		12
	3.2.	RADIATED EMISSION		15
	3.3.	BAND EDGE EMISSIONS		23
	3.4.	BANDWIDTH		29
	3.5.	PEAK OUTPUT POWER		32
	3.6.	POWER SPECTRAL DENSITY		34
	3.7.	ANTENNA REQUIREMENT		36
4.	LAB	EL AND LABEL LOCATION		37
5.	EUT	TEST PHOTOS		38
6.	PHO	TOGRAPHS OF EUT CONSTRUCTIONAL		39

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS 247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Feb. 26, 2020	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS 247 Issue 2					
Test Item	Standard	Section	Result	Test	
rest item	FCC IC		Result	Engineer	
Antenna Requirement	15.203	/	Pass	Lucy Lan	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Lucy Lan	
Band Edge Emissions	15.247(d)	RSS 247 5.5	Pass	Lucy Lan	
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (a)	Pass	Lucy Lan	
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (d)	Pass	Lucy Lan	
Power Spectral Density	15.247(e)	RSS 247 5.2 (b)	Pass	Lucy Lan	
Transmitter Radiated Spurious	15.209&15.247(d)	RSS 247 5.5& RSS-Gen 8.9	Pass	Lucy Lan	

Note: "N/A" is no application.

The measurement uncertainty is not included in the test result.

Page 5 of 39

Report No.: CTC20200069E02

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C.

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (F CC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	25°C
Relative Humidity:	40%
Air Pressure:	101kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	North Pole Engineering
Address:	221 North First Street, Suite 310 Minneapolis, MN 55401, United States
Manufacturer:	North Pole Engineering
Address:	221 North First Street, Suite 310 Minneapolis, MN 55401, United States

2.2. General Description of EUT

Product Name:	GEM3
Trade Mark:	N/A
Model/Type reference:	GEMSRB03
Listed Model(s):	N/A
Power supply:	3.3Vdc
Hardware version:	N/A
Firmware version:	N/A
ANT+ Specification	
Modulation:	GFSK
Bit Rate of Transmitter:	1Mbps
Operation frequency:	2457MHz, 2472MHz
Antenna type:	Ceramic Antenna
Antenna gain:	5.46dBi

2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)	Test software power settings value
00	2457	4
01	2472	4

Note: The display in grey were the channel selected for testing.

Test mode

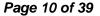
For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:


The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.4. Accessory Equipment Information

Equipment Information					
Name	Model	S/N	Manufacturer		
Notebook	X220	R9-EPTNL	Lenovo		
/	1	/	/		
Cable Information	Cable Information				
Name	Shielded Type	Ferrite Core	Length		
/	/	/	/		
Test Software Information					
Name	Software version	/	/		
Tera Term	V 4.99 (SVN# 7121)	/	/		

2.5. Measurement Instruments List

Tonsce	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Dec. 27, 2020	
2	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 27, 2020	
3	Signal Generator	Agilent	E8257D	MY46521908	Dec. 27, 2020	
4	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 27, 2020	
5	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 27, 2020	
6	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 27, 2020	
7	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 27, 2020	
8	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 27, 2020	
9	Climate Chamber	ESPEC	MT3065	/	Dec. 27, 2020	
10	300328 v2.1.1 test system	TONSCEND	v2.6	/	/	

Radiate	Radiated Emission and Transmitter spurious emissions						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until		
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 27, 2020		
2	High pass filter	micro-tranics	HPM50111	142	Dec. 27, 2020		
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 27, 2020		
4	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 27, 2020		
5	Loop Antenna	LAPLAC	RF300	9138	Dec. 27, 2020		
6	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 27, 2020		
7	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 27, 2020		
8	Pre-Amplifier	HP	8447D	1937A03050	Dec. 27, 2020		
9	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 27, 2020		
10	Antenna Mast	UC	UC3000	N/A	N/A		
11	Turn Table	UC	UC3000	N/A	N/A		
12	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 27, 2020		
13	Cable Above 1GHz	Hubersuhner	SUCOFLEX10 2	DA1580	Dec. 27, 2020		
14	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 27, 2020		
15	RF Connection Cable	HUBER+SUHNE R	RE-7-FL	N/A	Dec. 27, 2020		
16	RF Connection Cable	Chengdu E-Microwave			Dec. 27, 2020		
17	High pass filter	Compliance Direction systems	BSU-6	34202	Dec. 27, 2020		

Page 11 of 39 Report No.: CTC20200069E02

18	Attenuator	Chengdu E-Microwave	EMCAXX-10R NZ-3		Dec. 27, 2020
19	High and low temperature box	ESPEC	MT3065	12114019	Dec. 27, 2020

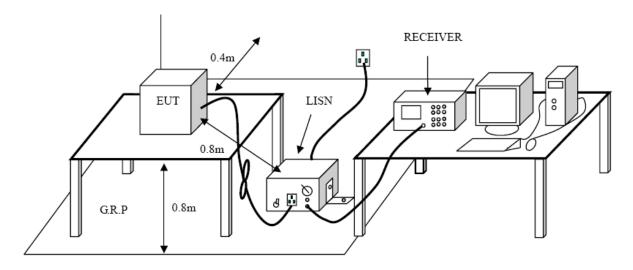
Conduc	Conducted Emission										
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until						
1	LISN	R&S	ENV216	101112	Dec. 27, 2020						
2	2 LISN	R&S	ENV216	101113	Dec. 27, 2020						
3	EMI Test Receiver	R&S	ESCI	100658	Dec. 27, 2020						

Note:1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

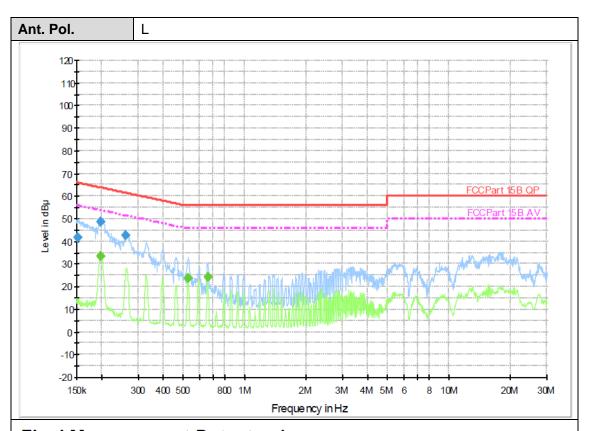
Frequency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.


CTC Laboratories, Inc.

Test Mode

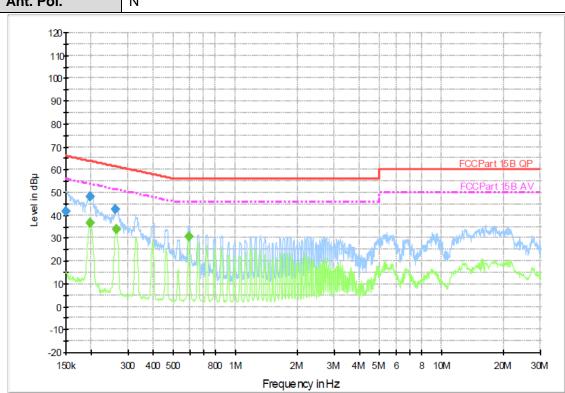
Please refer to the clause 2.3.

Test Results

Final Measurement Detector 1

	Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
	0.152410	41.8	1000.00	9.000	On	L1	9.4	24.1	65.9	
	0.196780	48.4	1000.00	9.000	On	L1	9.4	15.3	63.7	
Ī	0.261260	42.5	1000.00	9.000	On	L1	9.4	18.9	61.4	


Final Measurement Detector 2


Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.196000	33.6	1000.00	9.000	On	L1	9.4	20.2	53.8	
0.525380	23.9	1000.00	9.000	On	L1	9.4	22.1	46.0	
0.657000	24.3	1000.00	9.000	On	L1	9.4	21.7	46.0	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.150600	41.5	1000.00	9.000	On	N	9.4	24.5	66.0	
0.197570	48.2	1000.00	9.000	On	N	9.4	15.5	63.7	
0.261260	42.4	1000.00	9.000	On	N	9.4	19.0	61.4	

Final Measurement Detector 2

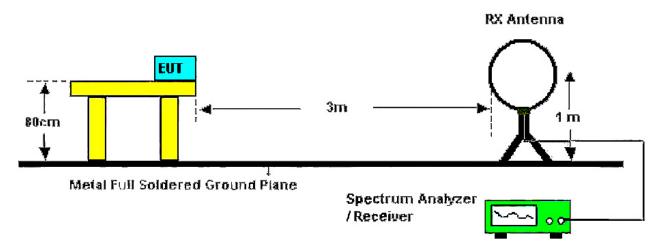
Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ ∨)	Time	(kHz)			(dB)	(dB)	(dBµ	
		(ms)						V)	
0.196780	36.8	1000.00	9.000	On	N	9.4	16.9	53.7	
0.263360	33.7	1000.00	9.000	On	N	9.4	17.6	51.3	
0.589870	30.8	1000.00	9.000	On	N	9.4	15.2	46.0	

Remarks:

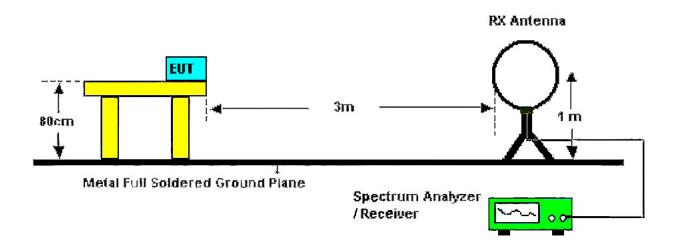
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3.2. Radiated Emission

<u>Limit</u>

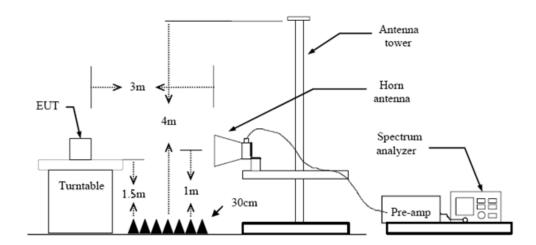

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS - Gen 8.9

Frequency	Limit (dBuV/m @3m)	Value	
30 MHz ~ 88 MHz	40.00	Quasi-peak	
88 MHz ~ 216 MHz	43.50	Quasi-peak	
216 MHz ~ 960 MHz	46.00	Quasi-peak	
960 MHz ~ 1 GHz	54.00	Quasi-peak	
Abovo 1 CHz	54.00	Average	
Above 1 GHz	74.00	Peak	


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration



Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

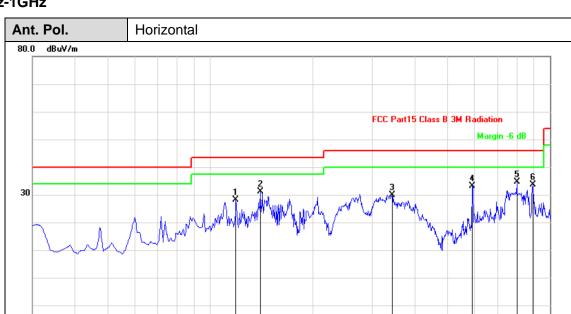
RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode

Please refer to the clause 2.3.

Test Result


9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

CTC Laboratories, Inc.

1000.000

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	119.2399	-19.36	47.57	28.21	43.50	-15.29	peak
2	140.5800	-17.60	48.64	31.04	43.50	-12.46	peak
3	343.3100	-16.86	46.74	29.88	46.00	-16.12	peak
4	591.6299	-12.37	45.47	33.10	46.00	-12.90	peak
5	801.1499	-9.50	44.09	34.59	46.00	-11.41	peak
6	891.3600	-8.39	41.91	33.52	46.00	-12.48	peak

(MHz)

300

400

500

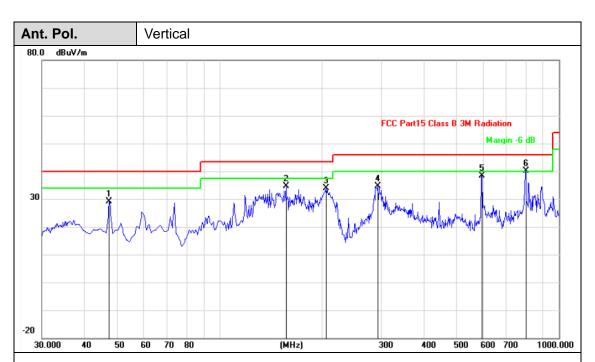
600 700

Remarks:

-20

30.000

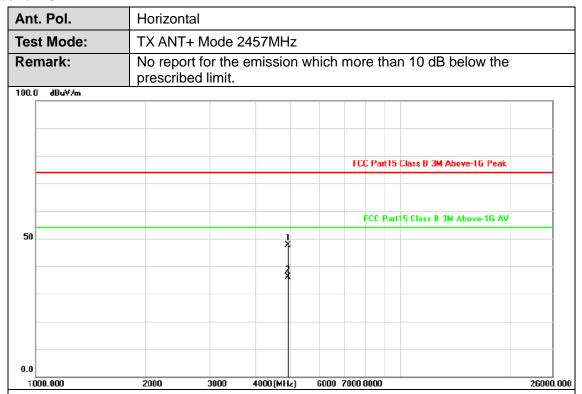
40


50

60

70 80

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	47.4600	-17.71	46.87	29.16	40.00	-10.84	peak
2	157.0700	-17.38	51.93	34.55	43.50	-8.95	peak
3	206.5399	-20.66	54.63	33.97	43.50	-9.53	peak
4	293.8400	-17.97	52.55	34.58	46.00	-11.42	peak
5	594.5400	-12.32	50.68	38.36	46.00	-7.64	peak
6	799.2100	-9.53	49.71	40.18	46.00	-5.82	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Above 1 GHz

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l .	Margin (dB)	Detector
1	4914.000	-2.51	50.02	47.51	74.00	-26.49	peak
2	4914.000	-2.51	38.68	36.17	54.00	-17.83	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

26000.000

Ant. Pol. Vertical **Test Mode:** TX ANT+ Mode 2457MHz Remark: No report for the emission which more than 10 dB below the prescribed limit. 100.0 dBuV/m FCC Part15 Class B 3M Above-1G Peak FCC Part15 Class B 3M Above-1G AV

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	4914.000	-2.51	49.90	47.39	74.00	-26.61	peak
2	4914.000	-2.51	38.99	36.48	54.00	-17.52	AVG

4000 (MHz)

6000 7000 8000

Remarks:

0.0 1000.000

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

2000

3000

26000.000

Test Mode: TX ANT+ Mode 2472MHz

Remark: No report for the emission which more than 10 dB below the prescribed limit.

100.0 dBuV/m

FCC Part 15 Class B 3M Above-16 Peak

FCC Part 15 Class B 3M Above-16 AV

No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector
1	4944.000	-2.42	51.09	48.67	74.00	-25.33	peak
2	4944.000	-2.42	40.40	37.98	54.00	-16.02	AVG

4000 (MHz)

6000 7000 8000

3000

2000

Remarks:

1000.000

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

26000.000

Ant. Pol.

Test Mode: TX ANT+ Mode 2472MHz

Remark: No report for the emission which more than 10 dB below the prescribed limit.

100.0 dBuV/m

FCC Part 15 Class B 3M Above-1G Peak

FCC Part 15 Class B 3M Above-1G AV

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detecto
1	4944.000	-2.42	50.75	48.33	74.00	-25.67	peal
2	4944.000	-2.42	40.59	38.17	54.00	-15.83	AVG

4000 (MHz)

6000 7000 8000

Remarks:

1000.000

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

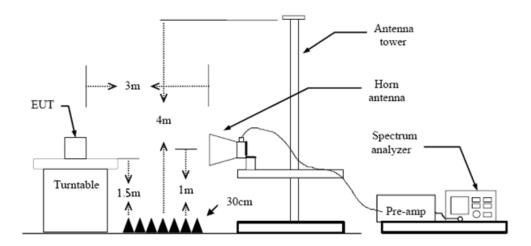
2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

2000

3000

3.3. Band Edge Emissions


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m)(at 3m)			
(MHz)	Peak	Average		
2310 ~2390	74	54		
2483.5 ~2500	74	54		

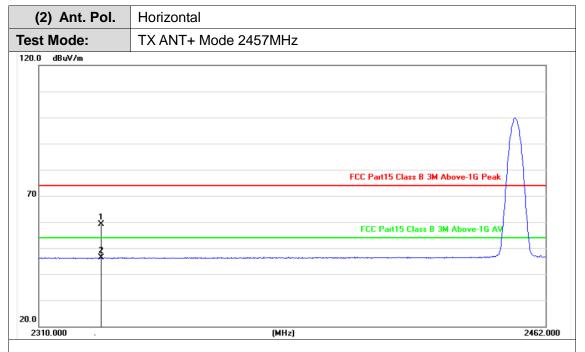
Conducted band edge limit: The highest point of the operating frequency waveform down 20dB

Test Configuration

Test Procedure

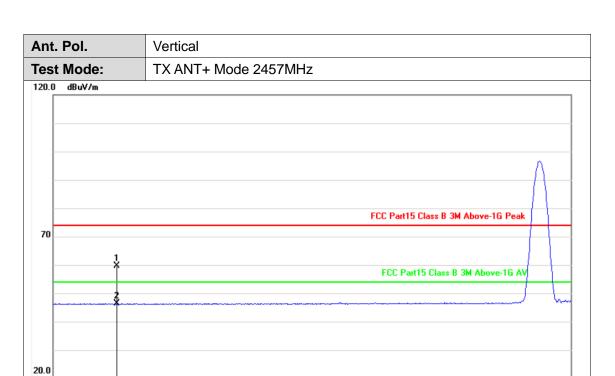
- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

Test Mode


Please refer to the clause 2.3.

Test Results

(1) Radiation Test


No.	Frequency (MHz)		_	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	31.10	28.14	59.24	74.00	-14.76	peak
2	2390.000	31.10	15.26	46.36	54.00	-7.64	AVG

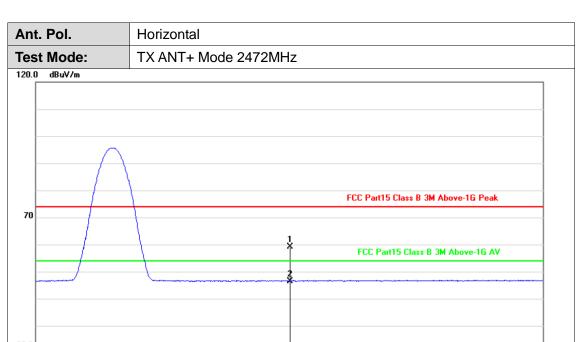
Remark:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2462.000

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
1	2390.000	31.10	28.65	59.75	74.00	-14.25	peal
2	2390.000	31.10	15.23	46.33	54.00	-7.67	AVG

(MHz)


Remark:

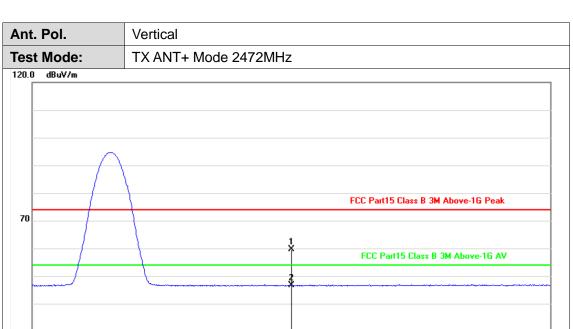
2310.000

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2500.000

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	31.50	27.63	59.13	74.00	-14.87	peak
2	2483.500	31.50	14.87	46.37	54.00	-7.63	AVG

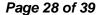
(MHz)


Remark:

2467.000

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

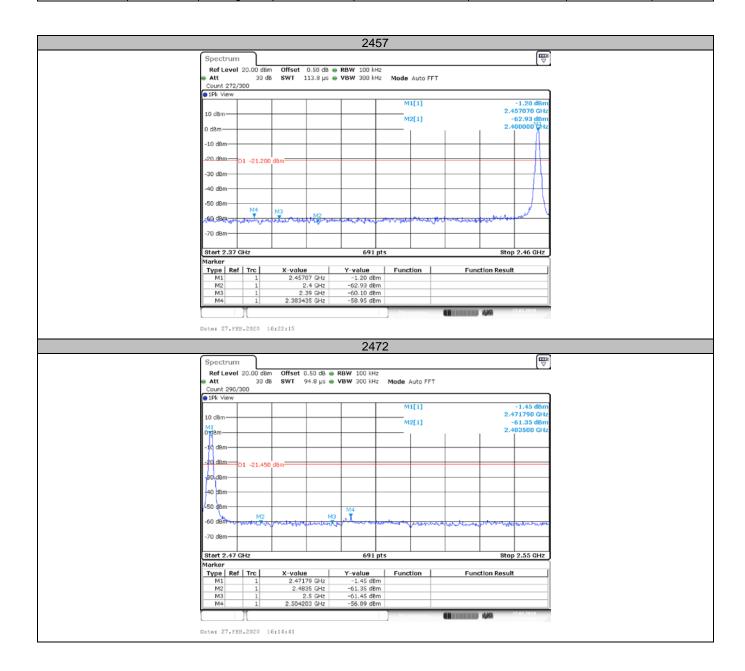
2500.000


No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	31.50	28.19	59.69	74.00	-14.31	peak
2	2483.500	31.50	15.12	46.62	54.00	-7.38	AVG

(MHz)

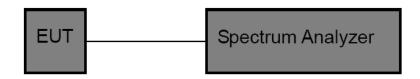
Remark:

20.0


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

(3) Conducted Test

TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE BT4	O Ant1	Low	2457	-1.20	-58.95	<=-21.2	PASS
DLE_D14	0 Ant1	High	2472	-1.45	-56.89	<=-21.45	PASS


3.4. Bandwidth

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)/ RSS-247 5.2 a:

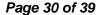
Test Item	Limit	Frequency Range(MHz)	
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5	

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

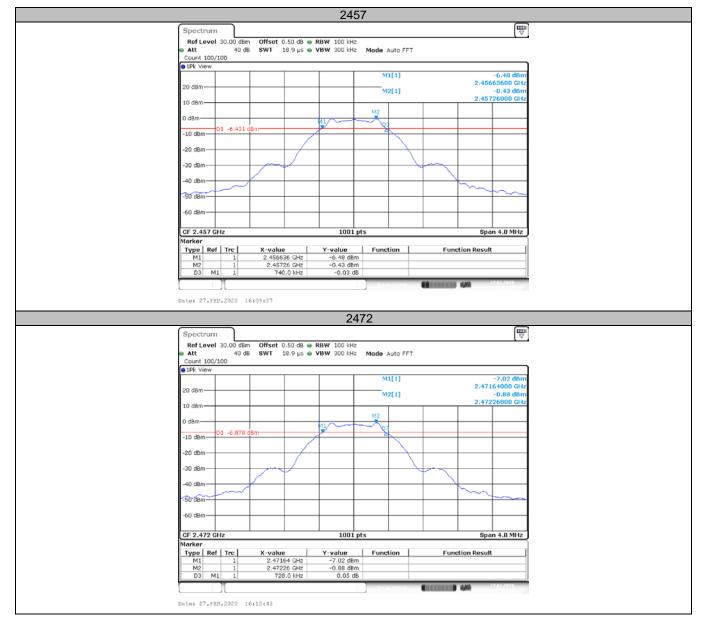
NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.


Test Mode

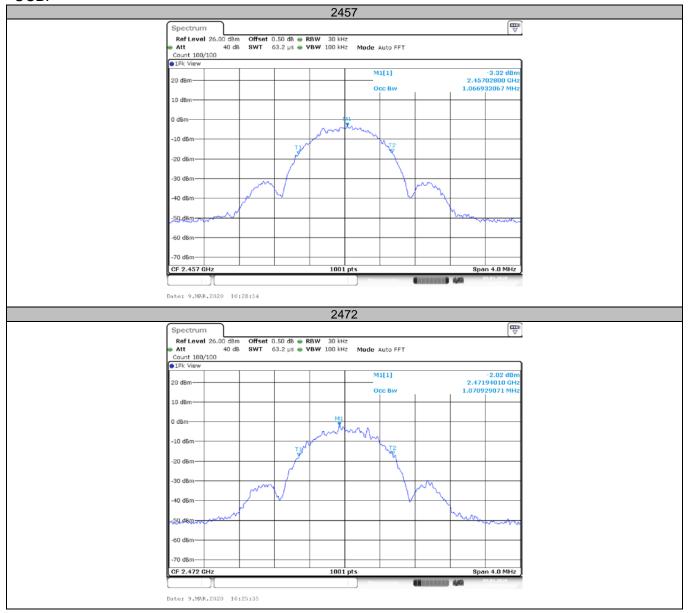
Please refer to the clause 2.3.

Test Results

TestMode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
A NIT .	A n+1	2457	0.687	0.5	PASS
ANT+	Ant1	2472	0.711	0.5	PASS


TestMode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
ANT+	Ant1	2457	1.067		PASS
ANIT	Anti	2472	1.071		PASS

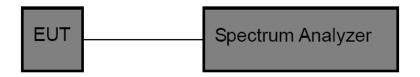
Test plot as follows:


DTS:

中国国家认证认可监督管理委员会

OCB:

中国国家认证认可监督管理委员会


3.5. Peak Output Power

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)/ RSS-247 5.4 d:

Section	Test Item	Limit	Frequency Range(MHz)
CFR 47 FCC 15.247(b)(3)	Maximum conducted output power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4 d	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

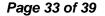
- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

Peak Detector: RBW≥DTS Bandwidth, VBW≥3*RBW.

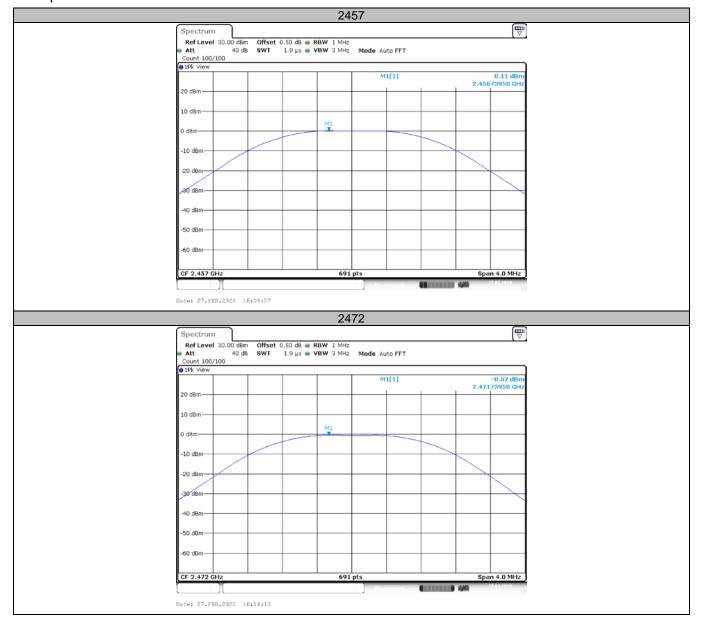
Sweep time=Auto.

Detector= Peak.

Trace mode= Maxhold.


Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

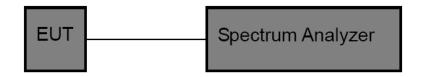

Please refer to the clause 2.2

Test Result

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
ANT+	Ant1	2457	0.11	<=30	PASS
		2472	-0.52	<=30	PASS

Test plot as follows:

中国国家认证认可监督管理委员会


3.6. Power Spectral Density

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)/ RSS-247 5.2 b:

Test Item	Limit	Frequency Range(MHz)	
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

Test Configuration

Test Procedure

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.
- Spectrum Setting:

Set analyser center frequency to DTS channel center frequency.

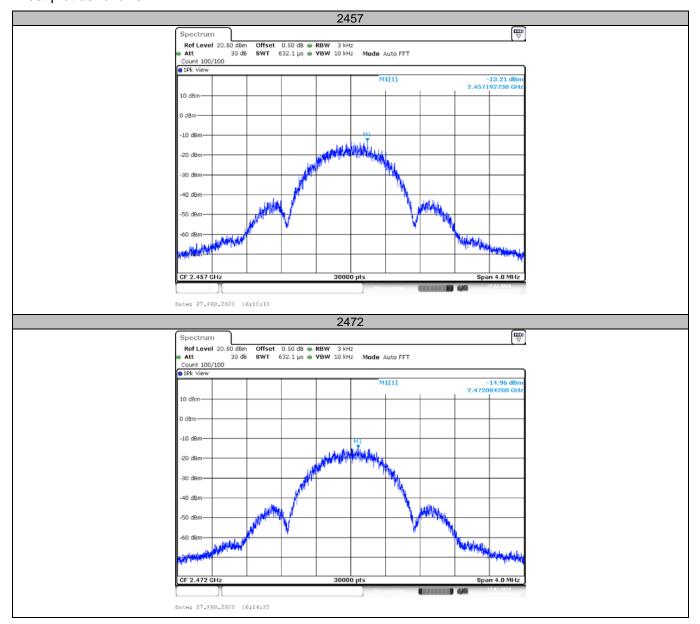
Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz Set the VBW to: 10 kHz

Detector: peak Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode


Please refer to the clause 2.2

Test Result

TestMode	Antenna	Channel	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
ANT+	Ant1	2457	-13.21	<=8	PASS
		2472	-14.96	<=8	PASS

Test plot as follows:

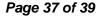
Page 36 of 39

Report No.: CTC20200069E02

3.7. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

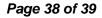

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

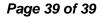
Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.



4.LABEL AND LABEL LOCATION

Reference to the test report No.: CTC20192112E01.



5.EUT TEST PHOTOS

Reference to the test report No.: CTC20192112E01.

6.PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Reference to the test report No.: CTC20192112E01.