

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C. Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.com.cn

Г	EST REPORT				
Report No: CTC20200069E01					
FCC ID······:	XRH-NPE105				
IC:	11922A-NPE105				
Applicant:	North Pole Engineering				
Address	221 North First Street, Suite 310 Minneapolis, MN 55401, United States				
Manufacturer	North Pole Engineering				
Address:	221 North First Street, Suite 310 Minneapolis, MN 55401, United States				
Product Name······:	GEM3				
Trade Mark:	N/A				
Model/Type reference······:	GEMSRB03				
Listed Model(s) ······	N/A				
Standard:					
Date of receipt of test sample:	Jan. 17, 2020				
Date of testing:	Jan. 18, 2020 to Feb. 23, 2020				
Date of issue	Feb. 26, 2020				
Result:	PASS				
Compiled by:		-T- Cu			
(Printed name+signature)	Terry Su	Tenny Su Miller Ma			
Supervised by:		naillair Ma			
(Printed name+signature)	Miller Ma	////////////			
Approved by:		t			
(Printed name+signature)	Walter Chen	water chis			
Testing Laboratory Name:	: CTC Laboratories, Inc.				
Address	1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C.				
This test report may be duplicated completely for legal use with the approval of the applicant. It					

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	TEST	T SUMMARY	
	1.1.	Test Standards	
	1.2.	REPORT VERSION	
	1.3.	TEST DESCRIPTION	
	1.4.	TEST FACILITY	
	1.5.	Measurement Uncertainty	5
	1.6.	ENVIRONMENTAL CONDITIONS	
2.	GEN	IERAL INFORMATION	7
	2.1.	CLIENT INFORMATION	7
	2.2.	GENERAL DESCRIPTION OF EUT	7
	2.3.	OPERATION STATE	8
	2.4.	Accessory Equipment Information	
	2.5.	Measurement Instruments List	
3.	TEST	T ITEM AND RESULTS	
	3.1.	CONDUCTED EMISSION	
	3.2.	RADIATED EMISSION	
	3.3.	BAND EDGE EMISSIONS	23
	3.4.	Bandwidth	29
	3.5.	PEAK OUTPUT POWER	
	3.6.	POWER SPECTRAL DENSITY	
	3.7.	ANTENNA REQUIREMENT	
4.		EL AND LABEL LOCATION	
5.	EUT	TEST PHOTOS	
6.	РНО	DTOGRAPHS OF EUT CONSTRUCTIONAL	

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

<u>RSS 247 Issue 2</u>: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Feb. 26, 2020	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS 247 Issue 2					
To a land	Standard	Section	Result	Test	
Test Item	FCC	IC	Result	Engineer	
Antenna Requirement	15.203	/	Pass	Lucy Lan	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Lucy Lan	
Band Edge Emissions	15.247(d)	RSS 247 5.5	Pass	Lucy Lan	
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (a)	Pass	Lucy Lan	
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (d)	Pass	Lucy Lan	
Power Spectral Density	15.247(e)	RSS 247 5.2 (b)	Pass	Lucy Lan	
Transmitter Radiated Spurious	15.209&15.247(d)	RSS 247 5.5& RSS-Gen 8.9	Pass	Lucy Lan	

Note: "N/A" is no application.

The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C.

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) f or the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in th e identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (F CC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	25°C
Relative Humidity:	40%
Air Pressure:	101kPa

EN

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	North Pole Engineering	
Address:	221 North First Street, Suite 310 Minneapolis, MN 55401, United States	
Manufacturer:	North Pole Engineering	
Address:	221 North First Street, Suite 310 Minneapolis, MN 55401, United States	

2.2. General Description of EUT

Product Name:	GEM3	
Trade Mark:	N/A	
Model/Type reference:	GEMSRB03	
Listed Model(s):	N/A	
Power supply:	3.3Vdc	
Hardware version:	N/A	
Firmware version:	N/A	
BLE 4.2		
Modulation:	GFSK	
Bit Rate of Transmitter:	1Mbps	
Operation frequency:	2402MHz~2480MHz	
Channel number:	40	
Channel separation:	2MHz	
Antenna type:	Ceramic Antenna	
Antenna gain:	5.46dBi	

2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)	Test software power settings value
00	2402	4
01	2404	
:	÷	÷
18	2438	
19	2440	4
20	2442	
:	÷	÷
38	2478	
39	2480	4

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.4. Accessory Equipment Information

Equipment Information						
Name	Model	S/N	Manufacturer			
Notebook	X220	R9-EPTNL	Lenovo			
1	1	1	/			
Cable Information	Cable Information					
Name	Shielded Type	Ferrite Core	Length			
/	1	1	/			
Test Software Information						
Name	Software version	1	/			
Tera Term	V 4.99 (SVN# 7121)	/	/			

2.5. Measurement Instruments List

Tonsce	Tonscend JS0806-2 Test system					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 13, 2020	
2	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 27, 2020	
3	Signal Generator	Agilent	E8257D	MY46521908	Dec. 27, 2020	
4	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 27, 2020	
5	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 27, 2020	
6	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 27, 2020	
7	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 27, 2020	
8	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 27, 2020	
9	Climate Chamber	ESPEC	MT3065	/	Dec. 27, 2020	
10	300328 v2.1.1 test system	TONSCEND	v2.6	/	/	

Radiated Emission and Transmitter spurious emissions						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 27, 2020	
2	High pass filter	micro-tranics	HPM50111	142	Dec. 27, 2020	
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 27, 2020	
4	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 27, 2020	
5	Loop Antenna	LAPLAC	RF300	9138	Dec. 27, 2020	
6	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 27, 2020	
7	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 27, 2020	
8	Pre-Amplifier	HP	8447D	1937A03050	Dec. 27, 2020	
9	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 27, 2020	
10	Antenna Mast	UC	UC3000	N/A	N/A	
11	Turn Table	UC	UC3000	N/A	N/A	
12	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 27, 2020	
13	Cable Above 1GHz	Hubersuhner	SUCOFLEX10 2	DA1580	Dec. 27, 2020	
14	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 27, 2020	
15	RF Connection Cable	HUBER+SUHNE R	RE-7-FL	N/A	Dec. 27, 2020	
16	RF Connection Cable	Chengdu E-Microwave			Dec. 27, 2020	
17	High pass filter	Compliance Direction systems	BSU-6	34202	Dec. 27, 2020	

CTC Laboratories, Inc.

中国国家认证认可监督管理委员会 EN

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C. Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

18	Attenuator	Chengdu E-Microwave	EMCAXX-10R NZ-3		Dec. 27, 2020
19	High and low temperature box	ESPEC	MT3065	12114019	Dec. 27, 2020

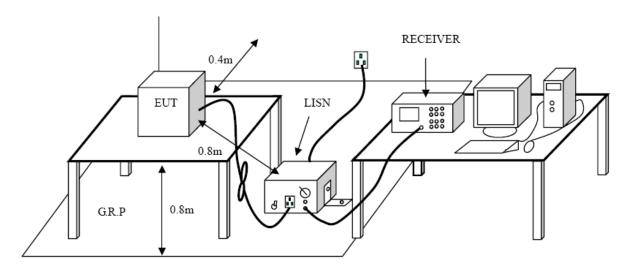
Conduc	ted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 27, 2020
2	LISN	R&S	ENV216	101113	Dec. 27, 2020
3	EMI Test Receiver	R&S	ESCI	100658	Dec. 27, 2020

Note:1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

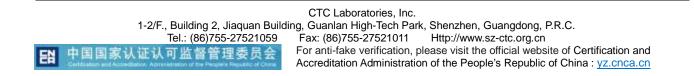
* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

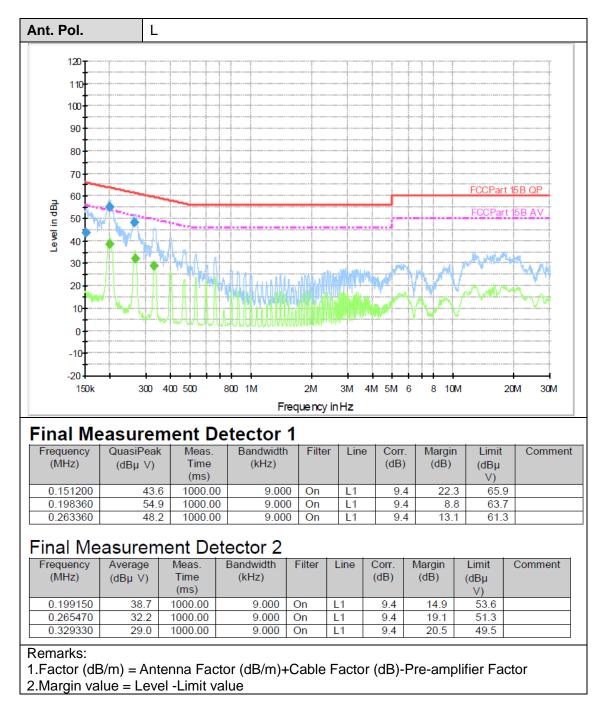

3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

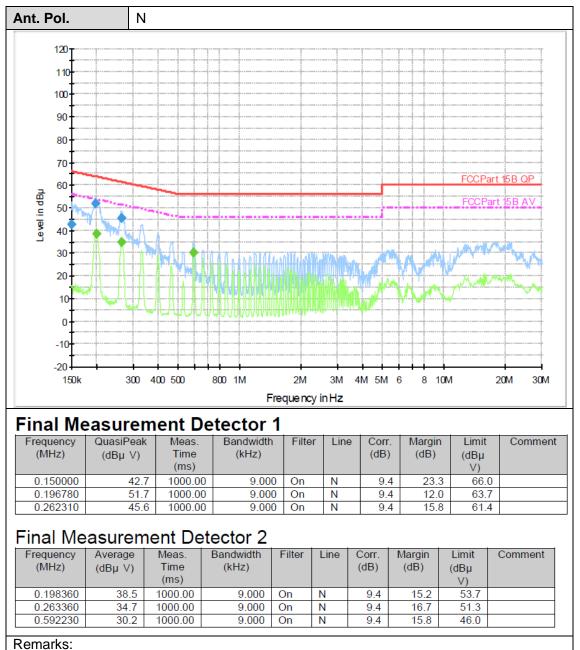
4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

7. During the above scans, the emissions were maximized by cable manipulation.




Test Mode

Please refer to the clause 2.3.

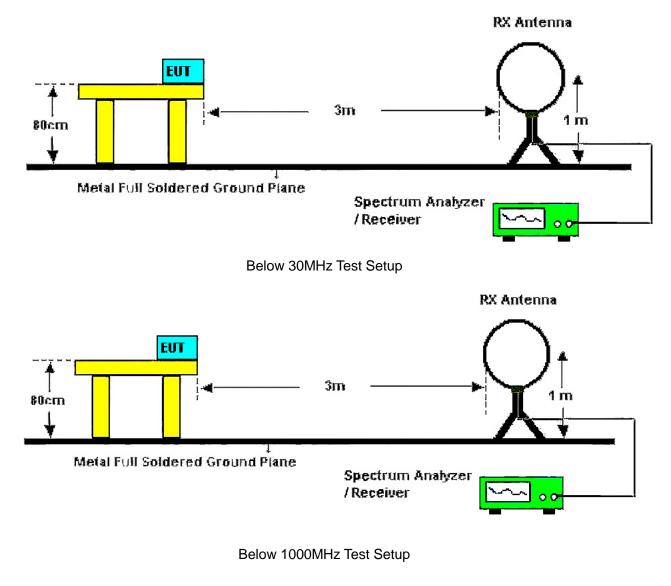
Test Results

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

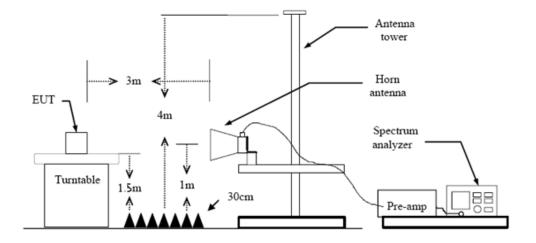
3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS – Gen 8.9


Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 CUIT	54.00	Average
Above 1 GHz	74.00	Peak

Note:


(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013

2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

5. Set to the maximum power setting and enable the EUT transmit continuously.

6. Use the following spectrum analyzer settings

(1) Span shall wide enough to fully capture the emission being measured;

(2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10^{th} harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode

Please refer to the clause 2.3.

<u>Test Result</u>

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: 1.The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2. Only the worst 2402 channels are shown

	l		izontal					
0.0 dBu	JV/m							
					F	CC Part15 Class B	3M Radiation	
							Margin	-6 dB
40						4	5	6
	1			What with profile with	3 X			L The
m	- <u>_</u>		M a math	Warrant Tronger	proper presently	frow Mulling	Wayn Wrah Va	Manuar
	VW	\sim		Maa	W		ntel and a second se	
0								
0 30.000	40 50	60 7	0 80	(MHz)	30	00 400 5	00 600 70	0 1000.00
					-			0 1000.00
	Frequer	ncy	Factor	Reading	Level	Limit	Margin	0 1000.00
30.000 No.	Frequer (MHz)	ncy)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
30.000 No. 1	Frequer (MHz) 47.460	icy))0	Factor (dB/m) -17.71	Reading (dBu∀) 46.75	Level (dBuV/m) 29.04	Limit (dBuV/m) 40.00	Margin (dB) -10.96	Detector peak
30.000 No. 1 2	Frequer (MHz) 47.460 156.10	icy))0 00	Factor (dB/m) -17.71 -17.30	Reading (dBu∀) 46.75 49.14	Level (dBuV/m) 29.04 31.84	Limit (dBuV/m) 40.00 43.50	Margin (dB) -10.96 -11.66	Detector peak peak
30.000 No. 1 2 3	Frequer (MHz) 47.460 156.10 207.50	ncy) 00 00 98	Factor (dB/m) -17.71 -17.30 -20.63	Reading (dBuV) 46.75 49.14 51.80	Level (dBuV/m) 29.04 31.84 31.17	Limit (dBuV/m) 40.00 43.50 43.50	Margin (dB) -10.96 -11.66 -12.33	Detector peak peak peak
30.000 No. 1 2 3 4	Frequer (MHz) 47.460 156.10 207.50 370.47	ncy) 00 00 98 00	Factor (dB/m) -17.71 -17.30 -20.63 -16.35	Reading (dBuV) 46.75 49.14 51.80 55.61	Level (dBuV/m) 29.04 31.84 31.17 39.26	Limit (dBuV/m) 40.00 43.50 43.50 46.00	Margin (dB) -10.96 -11.66 -12.33 -6.74	Detector peak peak peak peak
30.000 No. 1 2 3 4 5	Frequer (MHz) 47.460 156.10 207.50 370.47 594.54))0 00 98 00 00	Factor (dB/m) -17.71 -17.30 -20.63 -16.35 -12.32	Reading (dBuV) 46.75 49.14 51.80 55.61 52.81	Level (dBuV/m) 29.04 31.84 31.17 39.26 40.49	Limit (dBuV/m) 40.00 43.50 43.50 46.00 46.00	Margin (dB) -10.96 -11.66 -12.33 -6.74 -5.51	Detector peak peak peak
30.000 No. 1 2 3 4	Frequer (MHz) 47.460 156.10 207.50 370.47))0 00 98 00 00	Factor (dB/m) -17.71 -17.30 -20.63 -16.35	Reading (dBuV) 46.75 49.14 51.80 55.61	Level (dBuV/m) 29.04 31.84 31.17 39.26	Limit (dBuV/m) 40.00 43.50 43.50 46.00	Margin (dB) -10.96 -11.66 -12.33 -6.74	Detector peak peak peak peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C. Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and 中国国家认证认可监督管理委员会 EN Accreditation Administration of the People's Republic of China : yz.cnca.cn

10.0 dBu	i∀/m	Vertica						
					F	CC Part15 Class B	3M Radiation	
							Margin	-6 dB
40						4	5 X	
	1			J. J. WWW	3			Š.
	×	. 11		Jun white where		Month Librah	I. I.I.	WM W
TV-	man de d	M	www	VW i	"A same	c	"Multh Winny W"	41.0 M
	140	1.1	J		40.			
0								
0 30.000	40 50	60 70	80	(MHz)	30	0 400 5	00 600 70	0 1000.
-				1				
-	Frequen	icy	Factor	Reading	Level	Limit	Margin	
30.000 No.	Frequen (MHz)	icy	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
30.000 No.	Frequen (MHz) 47.460)))0	Factor (dB/m) -17.71	Reading (dBuV) 46.39	Level (dBuV/m) 28.68	Limit (dBuV/m) 40.00	Margin (dB) -11.32	Detecto peal
30.000 No. 1 2	Frequen (MHz))))0	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto peal
30.000 No.	Frequen (MHz) 47.460	icy))0 99	Factor (dB/m) -17.71	Reading (dBuV) 46.39	Level (dBuV/m) 28.68	Limit (dBuV/m) 40.00	Margin (dB) -11.32	Detecto peal peal
30.000 No. 1 2	Frequen (MHz) 47.460 158.03	99 97	Factor (dB/m) -17.71 -17.46	Reading (dBuV) 46.39 50.31	Level (dBuV/m) 28.68 32.85	Limit (dBuV/m) 40.00 43.50	Margin (dB) -11.32 -10.65	Detecto peal peal peal
30.000 No. 1 2 3	Frequen (MHz) 47.460 158.03 205.56	99 97 99	Factor (dB/m) -17.71 -17.46 -20.69	Reading (dBuV) 46.39 50.31 52.50	Level (dBuV/m) 28.68 32.85 31.81	Limit (dBuV/m) 40.00 43.50 43.50	Margin (dB) -11.32 -10.65 -11.69	Detecto peal peal peal peal
30.000 No. 1 2 3 4	Frequen (MHz) 47.460 158.03 205.56 371.43	99 97 99 99 99	Factor (dB/m) -17.71 -17.46 -20.69 -16.33	Reading (dBuV) 46.39 50.31 52.50 54.43	Level (dBuV/m) 28.68 32.85 31.81 38.10	Limit (dBuV/m) 40.00 43.50 43.50 46.00	Margin (dB) -11.32 -10.65 -11.69 -7.90	Detecto peal peal peal peal peal

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value



Ant. P	ol.	Horiz	zontal								
Test N	lode:	TX B	LE Mod	le 24(02MHz						
Rema	rk:		eport for cribed line		emission v	vhich mo	ore	than	10 dB l	below the)
100.0 d	BuV/m										
							FCC	Part15	Class B 3M	l Above-16 Po	eak
							F	CC Part	15 Clase B	3M Above-1G	AV
50					1						
					Ť						
0.0	00	2000		3000	4000 (MHz)	6000 70	00 80	000			26000.
No.	Frequ (MF	-	Facto (dB/m		Reading (dBuV)	Leve (dBuV/		1	imit uV/m)	Margin (dB)	Detector
1	4804	.000	-2.82	2	49.85	47.03	3	7	4.00	-26.97	peak
2	4804	.000	-2.82	2	38.44	35.62	2	5	4.00	-18.38	AVG
Remar	ks:										
1.Fact	or (dB/m) =				/m)+Cabl	e Factor	(dE	3)-Pre	e-ampli	fier Facto	or
	gin value =		l imit val	lie							

Ant. Po	ol.	Verti	cal									
Test M	ode:	TX E	BLE Mod	de 24	02MHz							
Remar	k:		eport fo cribed li		emissio	n v	vhich r	nore	than	10 dB	below the	Э
100.0 di	3u¥/m											
50					3	1					Above-16 Pc 3N Above-16	
0.0	00	2000	;	3000	4000 (M	Hz)	6000	7000 8	000			26000
No.	Frequer (MHz		Facto (dB/m		Readin (dBuV	~	Lev		1	imit uV/m)	Margin (dB)	Detector
1	4804.0		-2.82	-	50.92		48.			4.00	-25.90	peak
2			-2.82		39.44		36.			4.00	-17.38	
	4804.0	00	-2.04	_	39.44	,	30.	02	_ <u></u>	4.00	-17.30	AVG

2.Margin value = Level -Limit value

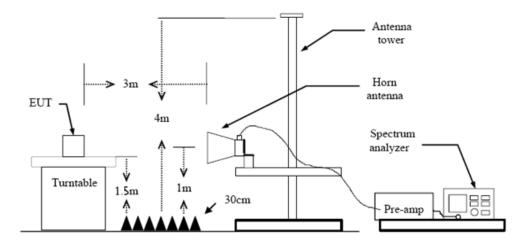
EN

Ant. Po	I.	Hori	zontal										
Fest Mo	ode:	TX E	BLE Mod	de 24	480 i	MHz							
Remarl	c :		eport fo cribed li		em	ission	wł	nich m	nore t	han	10 dB b	elow the	
100.0 dB	uV/m												
									FCC	Part15	Class B 3M	Above-16 Pea	ak
									F	C Part	15 Class B 3	3M Above-1G	AV
50						X							_
						3				_			_
						Î							
0.0	0	200	n	3000		4000 (MHz	1	6000	7000 80	00			2600
No.		uency Hz)	Fact (dB/n	I		ading BuV)		Lev (dBu)		1	.imit uV/m)	Margin (dB)	Detector
1	496	0.000	-2.3	8	4	9.80		47.	42	7	4.00	-26.58	peak
2	496	0.000	-2.3	8	3	8.10		35.	72	5	54.00	-18.28	AVG
										•			
	r (dB/m)	= Anten = Level -			B/m	ı)+Cab	le	Facto	or (dB)-Pr€	e-amplif	ier Factor	

Ant	. Pol	•	Vert	ical									
Test	t Mo	de:	ТΧΙ	BLE Moo	de 2	480MH	z						
Ren	nark	:		No report for the emission which more than 10 dB below the prescribed limit.									
100.0	dBu'	//m											
-									FCC	Part15 Class B 3)	4 Above-16 Pe	eak	
-									F	CC Part15 Class B	3M Above-16	AV	
50							1 X						
							X						
_													
0.0	00.000		200	0	3000	4000	(MHz)	6000	7000 8	000		2600	
N	0.	Frequer (MHz	-	Facto (dB/m		Read (dBu	-	Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Detector	
	1	4960.0	00	-2.3	8	50.2	27	47.	89	74.00	-26.11	peak	
	2	4960.0	00	-2.3	8	37.6	6	35.	28	54.00	-18.72	AVG	
	narks		Antor				Cobl		or (dE	3)-Pre-ampl	ifier Easte		

2.Margin value = Level -Limit value

3.3. Band Edge Emissions


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m	n)(at 3m)
(MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Conducted band edge limit: The highest point of the operating frequency waveform down 20dB

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

Test Mode

Please refer to the clause 2.3.

Test Results

EN

(1) Radiation Test

nt. I	Pol.	Hori	zontal					
'est l	Mode:	BLE	Mode 2402	2MHz				
20.0	dBuV/m	· · · · · · · · · · · · · · · · · · ·						
					F00 D	rt15 Class B 3M Ab		
70					rtt Fa		JUVE-IQ FEAK	
						(
			×		FCC	Part15 Class B 3M	Above-16 AV	
	1		2			memory	/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20.0								
2310.	.000			(MHz)				2407.00
No	Frequ		Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390	.000	31.10	26.67	57.77	74.00	-16.23	peak
2	2390	.000	31.10	14.80	45.90	54.00	-8.10	AVG
	tor (dB/m)		na Factor (Limit value	dB/m)+Cabl	e Factor (dB	3)-Pre-ampl	ifier Fact	or

nt. Po	Ι.	Vertical					
est Mo	ode:	BLE Mode 24	02MHz				
20.0 dBu	V/m						
					(
				FCC Pa	art15 Class B SM A	bove-16 Peak	
70							
			1	500			
			_	FLL	Part15 Class B 3N	ADOVE-TO AV	
	· · · · · · · · · · · · · · · · · · ·		⊈				
2310.000			(MHz)				2407.0
2310.000			ניייינ				2401.0
	Frequence	cy Factor	Reading	Level	Limit	Margin	
No.	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)		Detector
1	2390.00	0 31.10	26.76	57.86	74.00	-16.14	peak
2	2390.00	0 31.10	14.99	46.09	54.00	-7.91	AVG
		·					

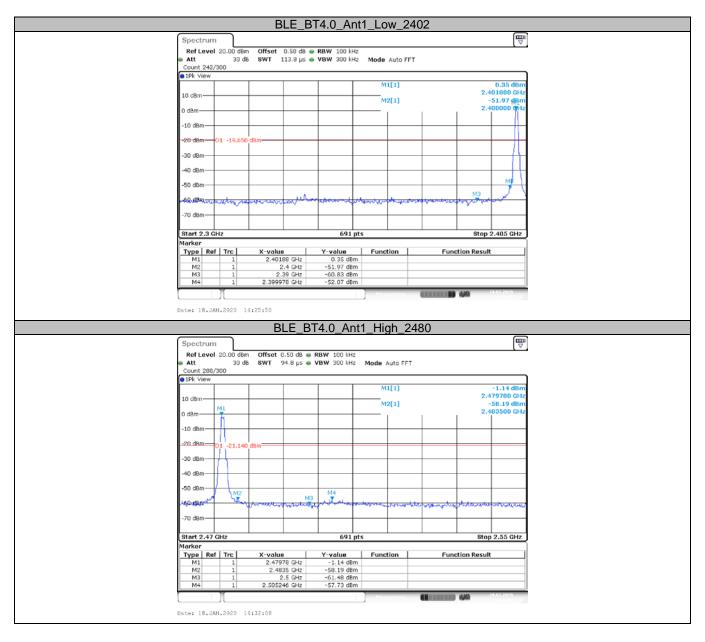
2.Margin value = Level -Limit value

Ant.	Pol.	Hor	izontal					
est	Mode:	BLE	Mode 248	0 MHz				
70	dBu¥/m					art15 Class B 3M Al Part15 Class B 3N		
	. 000			(6411-)				2500
20.0	5.000			(MHz)				2500.
	Freque		Factor (dB/m)	(MHz) Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	
247	Freque	:)		Reading	1			Delecio

Page 26 of 39

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. Po	I.	Vert	ical					
Test Mo	ode:	BLE	Mode 248	0 MHz				
120.0 dB	JV/m							
70			*			Part15 Class B 3M CC Part15 Class B		
20.0	1			(MHz)				2500
No.	Freque (MHz	-	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.		31.50	28.64	60.14	74.00	-13.86	peak
2	2483.	5 <mark>00</mark>	31.50	15.26	46.76	54.00	-7.24	AVG
Remark		Anter	nna Factor (dB/m)+Cab	le Factor (dl	3)-Pre-ampl	lifier Fact	or


2.Margin value = Level -Limit value

EN

(2) Conducted Test

TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE_BT4.0	Ant1	Low	2402	0.35	-52.07	<=-19.65	PASS
		High	2480	-1.14	-57.73	<=-21.14	PASS

3.4. Bandwidth

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)/ RSS-247 5.2 a:

Test Item	Limit	Frequency Range(MHz)	
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5	

Test Configuration

EUT	Spectrum Analyzer

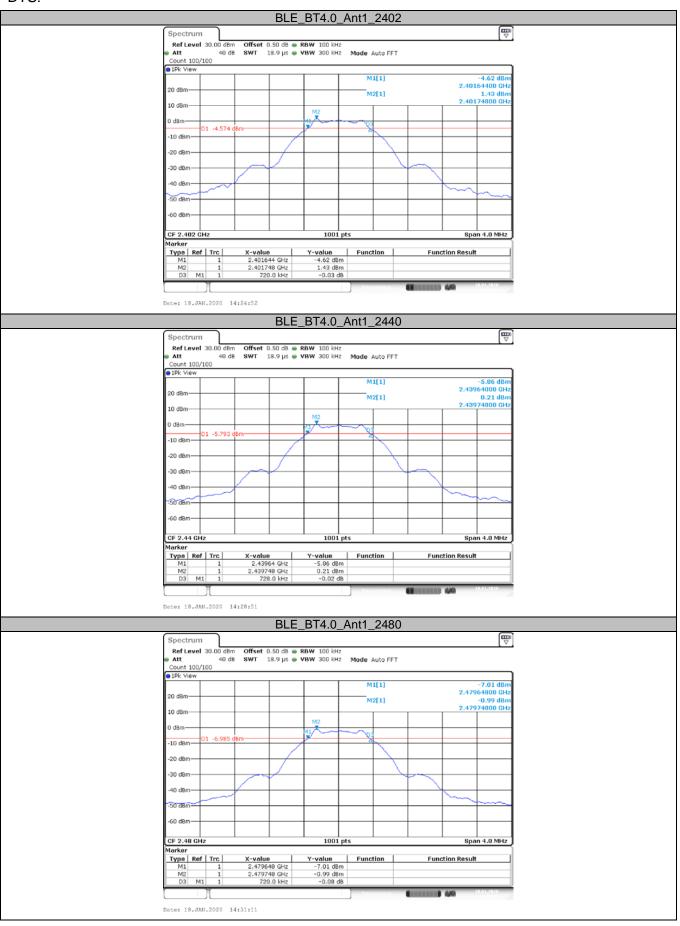
Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Set RBW = 1% to 5% of the OBW
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.3.


Test Results

TestMode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.720	0.5	PASS
BLE		2440	0.728	0.5	PASS
		2480	0.720	0.5	PASS

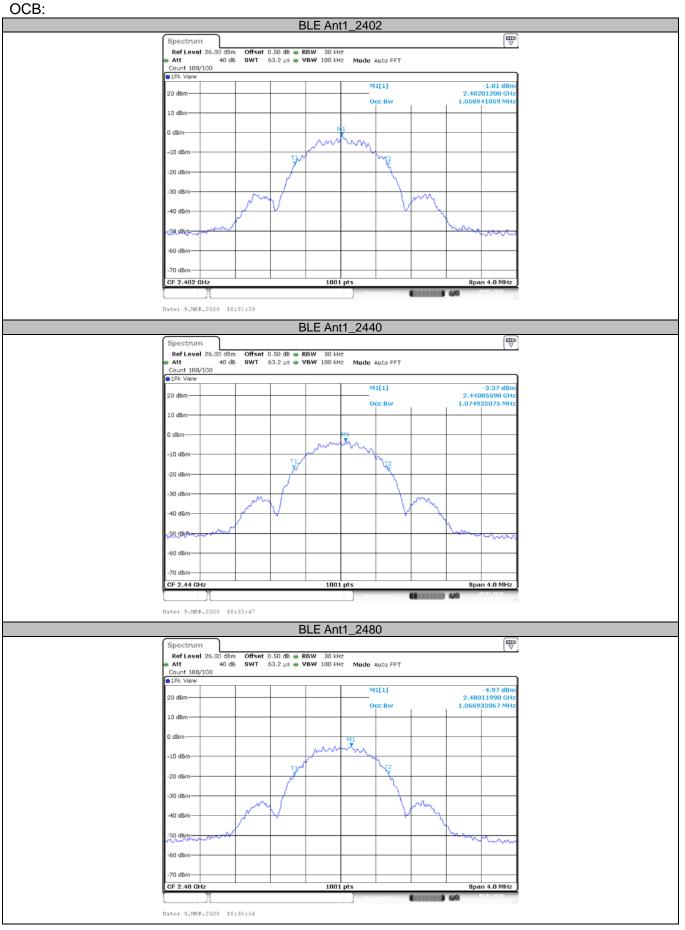
TestMode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
BLE	Ant1	2402	1.059		PASS
		2440	1.075		PASS
		2480	1.067		PASS

DTS:

CTC Laboratories, Inc.

Tel.: (86)755-27521059

EN

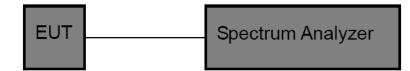

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C. Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

中国国家认证认可监督管理委员会

EN

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C. Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>


3.5. Peak Output Power

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)/ RSS-247 5.4 d:

Section	Test Item	Limit	Frequency Range(MHz)
CFR 47 FCC 15.247(b)(3)	Maximum conducted output power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4 d	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. Spectrum Setting:

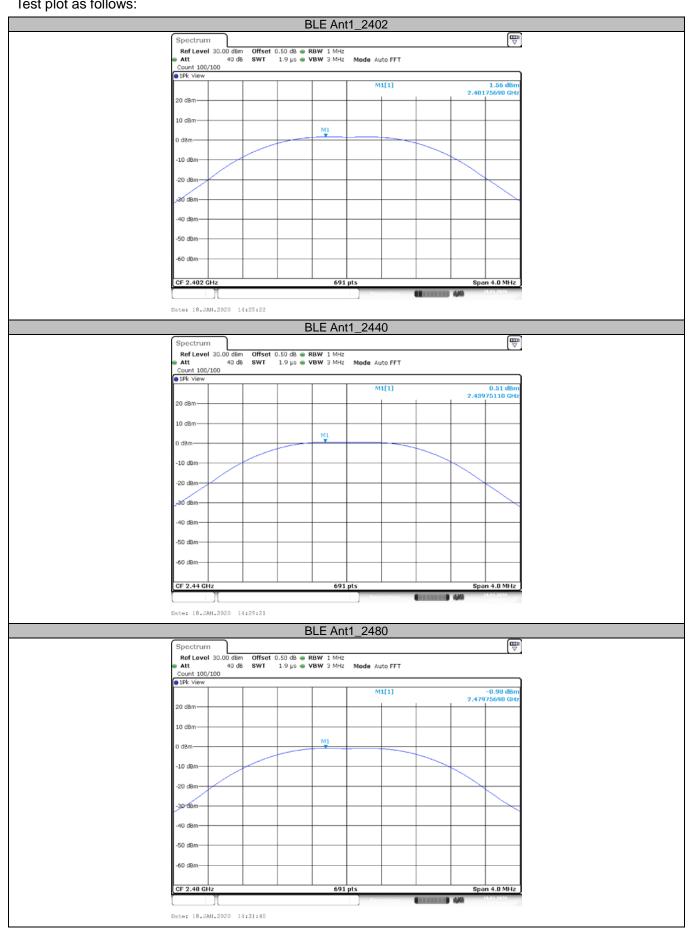
Peak Detector: RBW≥DTS Bandwidth, VBW≥3*RBW.

Sweep time=Auto.

Detector= Peak.

Trace mode= Maxhold.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.


Test Mode

Please refer to the clause 2.2

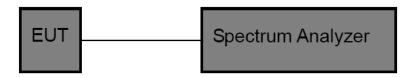
Test Result

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
BLE	Ant1	2402	1.56	<=30	PASS
		2440	0.51	<=30	PASS
		2480	-0.9	<=30	PASS

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C. Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn


3.6. Power Spectral Density

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)/ RSS-247 5.2 b:

Test Item	Limit	Frequency Range(MHz)	
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Set analyser center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

Set the VBW to: 10 kHz

Detector: peak

Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.2

Test Result

TestMode	Antenna	Channel	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
BLE	Ant1	2402	-11.86	<=8	PASS
		2440	-13.17	<=8	PASS
		2480	-14.31	<=8	PASS

Spectrum Ref Level 20. Att

ount 100/100

30 dB

BLE Ant1_2402

Mode Auto FFT

♥

0 1Pk View M1[1] 11.86 0 2.402 10 dBn 0 dBn 10 0 John Marting 20 d 30 de 40 di M AMA 60 dB CE 2 402 CL 200 Date: 18.JAN.2020 14:25:35 BLE Ant1_2440 ⊽ Spectrum Ref Level 20.50 dBm Att 30 dB Mode Auto FFT Count 100/100 ●1Pk Vie M1[1] -13.17 (2.439 10 dBn 0 dB 10 d 20 di 30 d 40 dF 60 d CE 2 44 G 3000 0 MH Date: 18.JAN.2020 14:29:33 BLE Ant1_480 Spectrum Ref Level 20.50 dBm Att 30 dB Att Count 100/100 Mode Auto FFT 1Pk Viev M1[1] -14.31 dB 385270 Gi 2.479 10 dB 0 dB 10 d A MARINA MARINA 20 d 30 de h na il day 60 dB Why the s CF 2.48 G 1 0 MH Date: 18.JAN.2020 14:31:53

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

EN

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, P.R.C. Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

3.7. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

Report No.: CTC20200069E01

See appendix for Label and label location

Page 38 of 39

See appendix for Set up Photo.

EN

6.PHOTOGRAPHS OF EUT CONSTRUCTIONAL

See appendix for internal and external Photos.