

FCC RADIO TEST REPORT

FCCID	XRAFB521
Equipment	Wireless Device
Model Name	FB521
Applicant	Fitbit LLC
	199 Fremont Street, 14th Floor, San Francisco, CA 94105 USA
Manufacturer	Fitbit LLC
	199 Fremont Street, 14th Floor, San Francisco, CA 94105 USA
Standard	FCC Part 15 Subpart C §15.247

The product was received on Jan. 26, 2022 and testing was performed from Feb. 06, 2022 to Feb. 16, 2022. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	tory of	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example10	0
3	Testl	Re sult1	1
	3.1	Number of Channel Measurement1	1
	3.2	Hopping Channel Separation Measurement13	3
	3.3	Dwell Time Measurement	7
	3.4	20dB and 99% Bandwidth Measurement1	9
	3.5	Output Power Measurement	6
	3.6	Conducted Band Edges Measurement	7
	3.7	Conducted Spurious Emission Measurement	2
	3.8	Radiated Band Edges and Spurious Emission Measurement	9
	3.9	AC Conducted Emission Measurement4	3
	3.10	Antenna Requirements	5
4	List o	f Measuring Equipment4	6
5	Unce	rtainty of Evaluation4	8
Арр	pendix	A. Conducted Test Results	
Арр	pendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	

- Appendix D. Radiated Spurious Emission Plots
- Appendix E. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issue Date
FR101321A	01	Initial issue of report	Mar. 24, 2022
FR101321A	02	 Remove brand name Revise equipment, EUT information and AC Conducted Emission test mode 	Aug. 11, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power Pa		-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	6.51 dB under the limit at 30.000 MHz
3.9	15.207	AC Conducted Emission	Pass	6.05 dB under the limit at 0.157 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.

2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Yun Huang

Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, NFC, and GNSS

	Product Feature					
Sample 1	EUT 1					
Sample 2	EUT 2					
Sample 3	EUT 3					
FW Version 60.4001.158.24						
Antenna Type Bluetooth: Slot Antenna GPS / Glonass: Slot Antenna NFC: Loop Antenna						
Antenna information						

Remark: The EUTs information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

Peak Gain (dBi)

-4.2

1.2 Modification of EUT

2400 MHz ~ 2483.5 MHz

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory					
Test Site Location No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978						
Test Site No.	Sporton Site No. TH02-HY, CO05-HY, 03CH07-HY					

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Test Configuration of Equipment Under Test 2

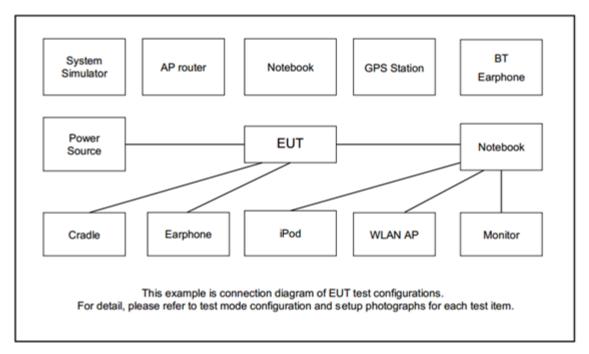
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases						
Test Item		Data Rate / Modulation					
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
	BI	Bluetooth EDR 3Mbps 8-DPSK					
Radiated		Mode 1: CH00_2402 MHz					
Test Cases		Mode 2: CH39_2441 MHz					
		Mode 3: CH78_2480 MHz					
	Mode 1 : Bluetooth Link w	vith Mobile Phone + Batter	y + USB Cable (Charging				
AC Conducted	from Adapter) for	Sample 2					
Emission	Mode 2 : Bluetooth Link w	vith Mobile Phone + Batter	y + USB Cable (Charging				
	from Notebook) for Sample 2						
 Remark: 1. For Radiated Test Cases, the worst mode data rate 3Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 3Mbps, and no other 							


The following summary table is showing all test modes to demonstrate in compliance with the standard.

significantly frequencies found in conducted spurious emission.

- 2. The worst case of Conducted Emission is mode 2; only the test data of it was reported.
- 3. For Radiated Test Cases, the tests were performed with Sample 3

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
2.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Mobile Phone	Apple	A1586	N/A	N/A	N/A
5.	Adapter	DVE	DSA-5PFM-05 FUS	FCC DoC	N/A	N/A
6.	Adapter	SONY	EP800	NA	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "Tera Term 4.95" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor. *Offset* = *RF* cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

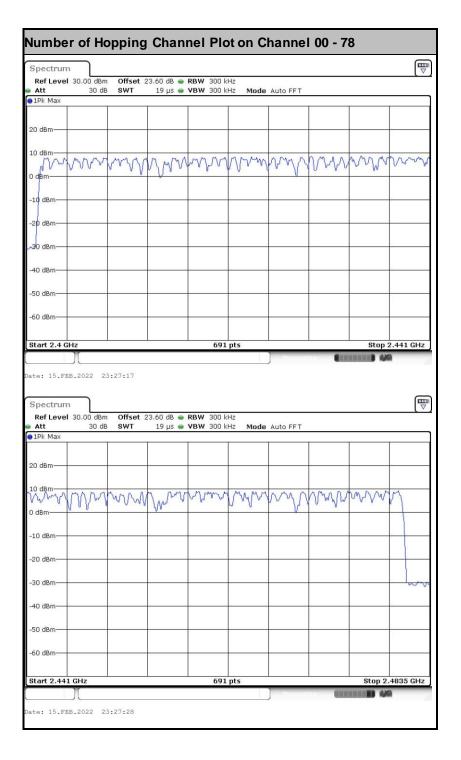
3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup


EUT

Spectrum Analyzer

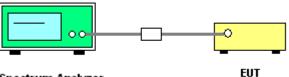
3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

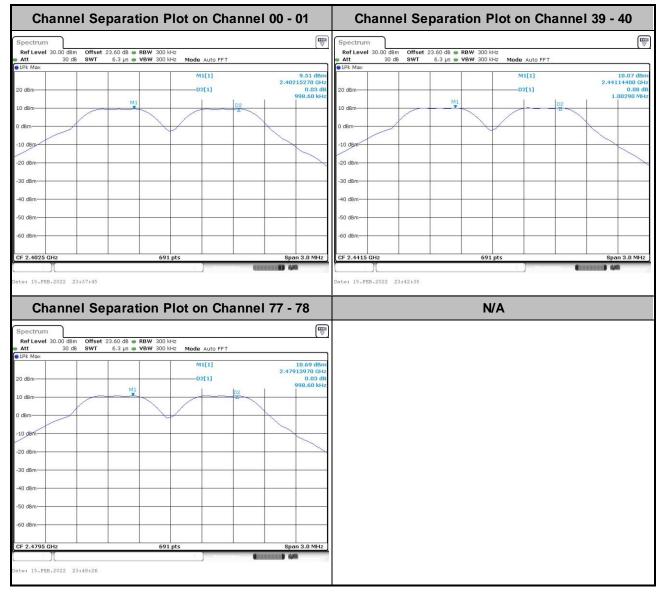

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

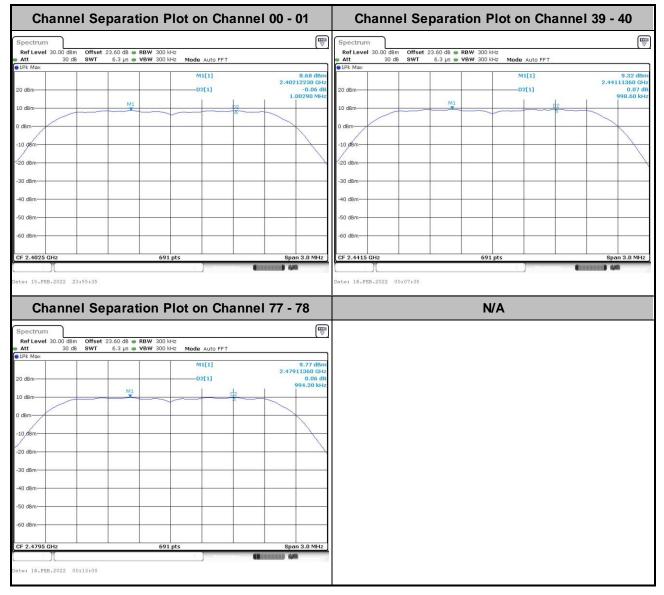
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

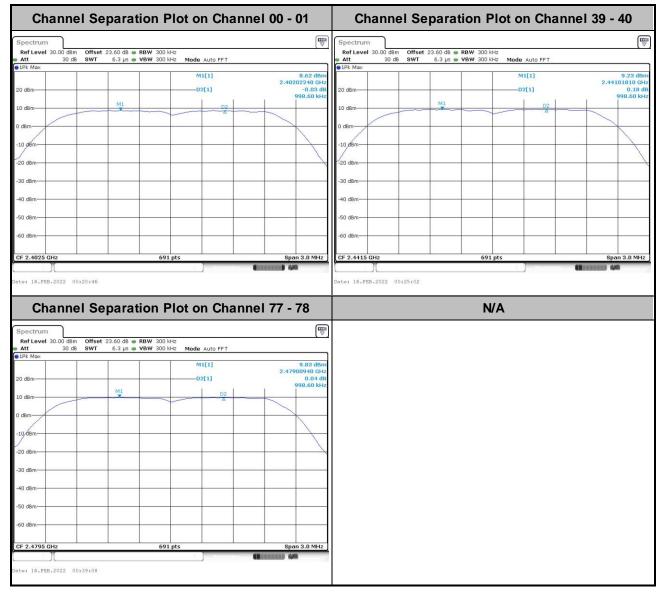

Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.



<1Mbps>



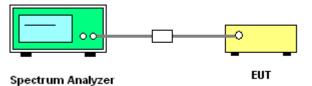
<2Mbps>

<3Mbps>

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

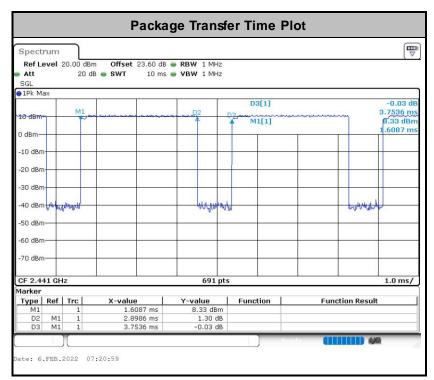
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

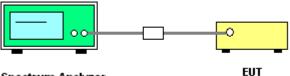
2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

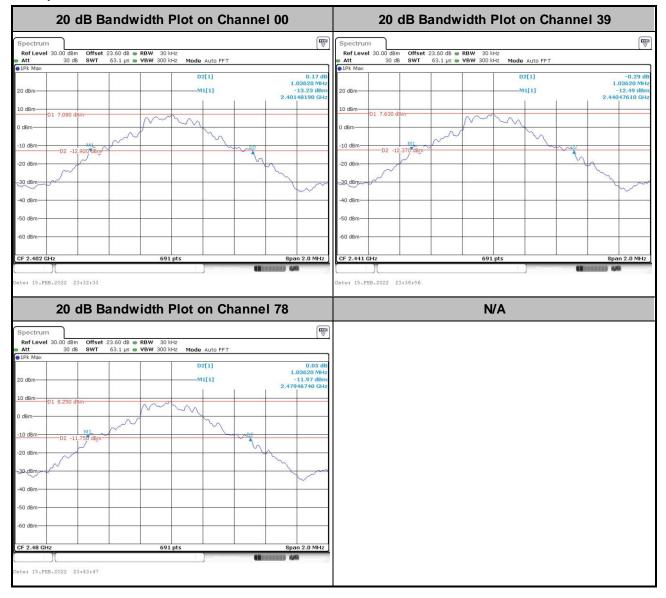

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

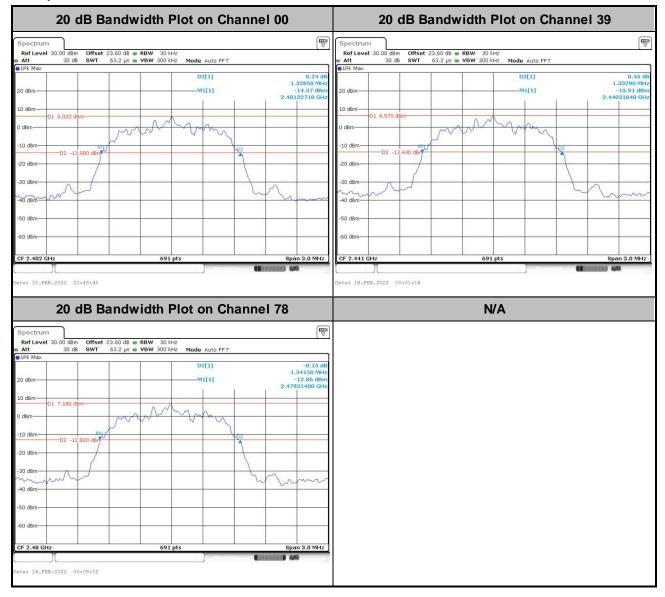
- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

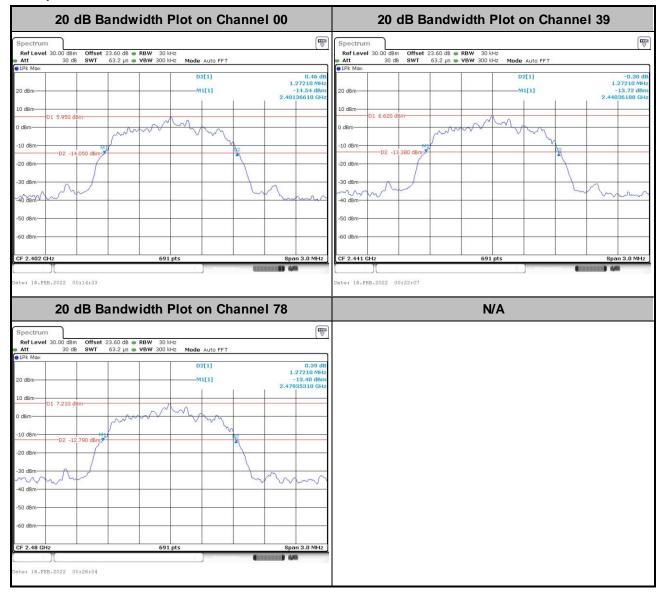

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

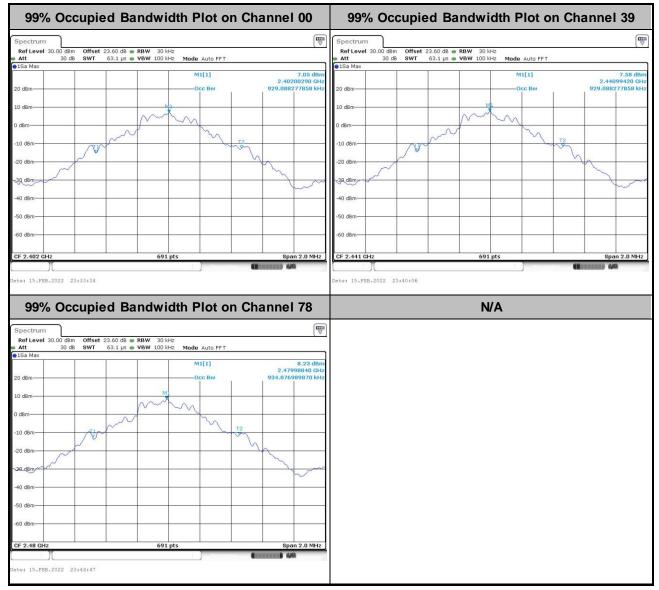


<1Mbps>



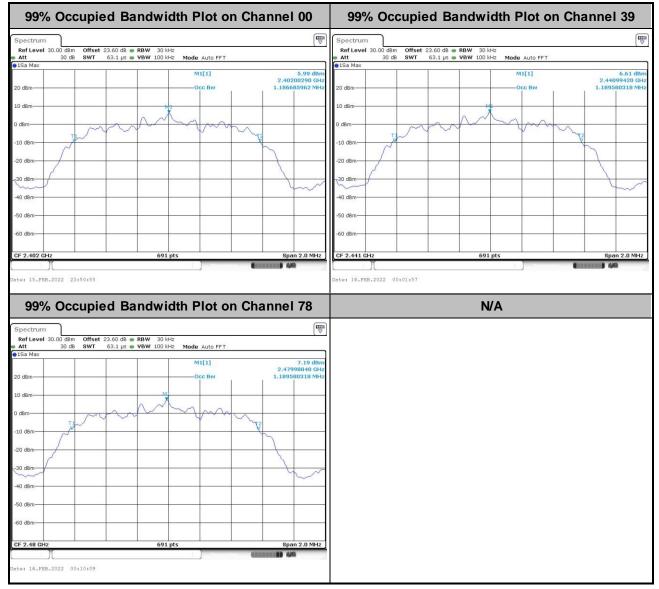
<2Mbps>

<3Mbps>

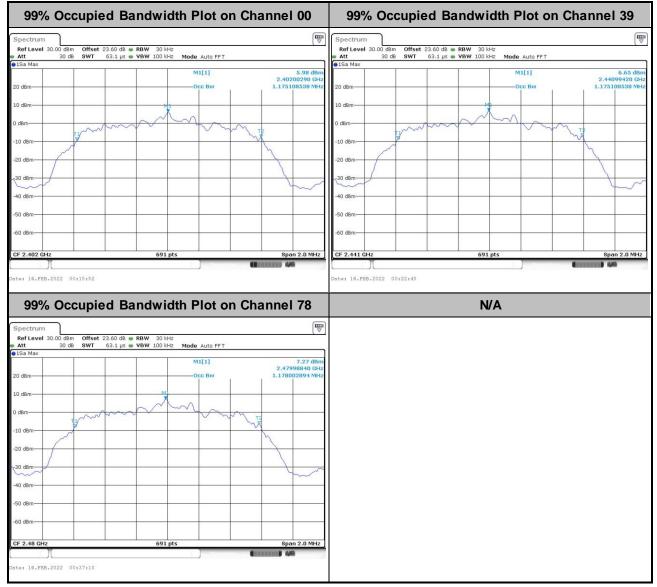


3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

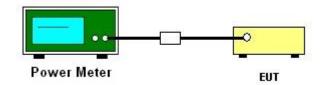
<3Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

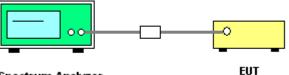
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

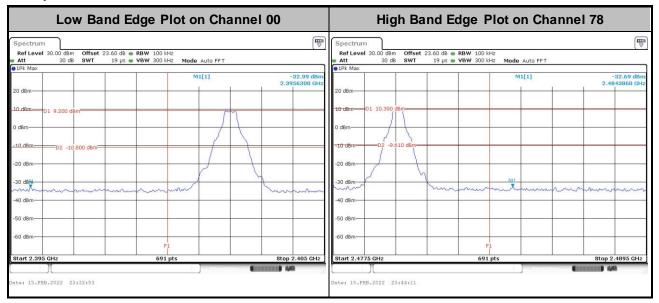

3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup



Spectrum Analyzer

3.6.5 Test Result of Conducted Band Edges

<1Mbps>

<2Mbps>

Low Band	l Edge Plot on Chann	el 00	Hig	h Band Edge	Plot on Chai	nnel 78
	dB ● RBW 100 kHz 1 µs ● VBW 300 kHz Mode Auto FFT	(T)	Spectrum Ref Level 30.00 dBm Att 30 dB	Offset 23.60 dB RBW SWT 19 µs VBW	100 kHz 300 kHz Mode Auto FFT	
20 dBm	M1[1]	-32.89 dBm 2.3963530 GHz	20 dBm		M1[1]	-32.67 dBm 2.4886060 GHz
0 dBm			0 dBm			
-20 dBm		turm	-20 dBm	hann	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m
-40 dBm			-40 dBm			
-60 dBm	F1 691 pts	Stop 2.405 GHz	-60 dBm Start 2.4775 GHz		F1 691 pts	Stop 2.4895 GHz
Date: 15.FEB.2022 23:51:22			Date: 16.FEB.2022 00:	:09:25		

<3Mbps>

Low Band Edge	Plot on Channe	el 00	High Ba	and Edge Plot on Cha	annel 78
Spectrum Ref Level 30.00 dBm Offset 23.60 dB RBW 1 Att 30 dB SWT 19 µs VBW 3 ● IPk Max 20 dBm	00 kHz 00 kHz Mode Auto FFT M1[1]	-32.67 dBm 2.3955140 GHz	Spectrum Ref Level 30.00 dBm Offset Att 30 dB SWT 9 IPk Max 20 dBm	23.60 dB • RBW 100 kHz 19 µs • VBW 300 kHz Mode Auto FFT M1[1]	-32.00 dBm 2.4844730 GHz
10 dBm 01 7,960 dBm 0 0 dBm 02 -12,040 dBm		hanne	10.dBm 01 9.170 dBm 0 dBm 02 -10.830 dBm -10.dBm 02 -10.830 dBm -20 dBm -30 dBm	and man	
-50 dBm	691 pts	Stop 2.405 GHz	-50 dBm	691 pts	Stop 2.4895 GHz

3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>

<2Mbps>

Hopping I	Mode Low Band Edge	Plot	Hopping N	lode High Band Edg	ge Plot
	0 dB ● RBW 100 kHz 9 us ● VBW 300 kHz Mode Auto FFT	E		dB ● RBW 100 kHz µs ● VBW 300 kHz Mode Auto FFT	
PIPK Max	PS • TOR SOUTHE MODE AUTOINT	7	PIPK Max	DO TON SOURCE MODE AUGUIT	
	M1[1]	-33.09 dBm 2.3977860 GHz		M1[1]	-32.48 dBm 2.4835170 GHz
20 dBm			20 dBm		
10 dBm D1 7.210 dBm			10 dBm 01 8.640 dBm		
0 dBm	mm	mm	0 dBm		
-10 dBm			-10 dBmD2 -11.360 dBm		
-20 dBm			-20 dBm-		
-30 dBm M3	mannin		-30 dBm	M1	······································
-40 dBm			-40 dBm-		
-50 dBm			-50 dBm-		
-60 dBm	F1		-60 dBm	F1	
Start 2.395 GHz	691 pts	Stop 2.405 GHz	Start 2.4775 GHz	691 pts	Stop 2.4895 GHz
Ϋ́Υ	Mexicano.	A49		210 - uning.	(IIIIII) 4/4
Date: 15.FEB.2022 23:28:41			Date: 15.FEB.2022 23:29:52		

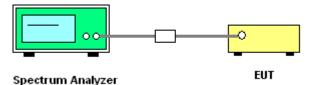
<3Mbps>

Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot		
Spectrum Ref Level 30.00 dBm Offset 23.60 dB • RBW 100 kHz Att 30 dB SWT 19 µs • VBW 300 kHz Mode Auto FFT OPF.Max	Spectrum Image: Weight of the sector of the		
20 dBm M1[1] -33,82 20 dBm 2.3984951 2.3984951 10 dBm 01 7.390 dBm 0 0 -10 dBm 02 -12,610 dBm 0 0 -20 dBm -02 -12,610 dBm 0 0	CH2 20 dBm 2.44886580 CH2 20 dBm 2.44886580 CH2		
40 dBm -50 dBm <td< td=""><td>-60 d8m</td></td<>	-60 d8m		

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

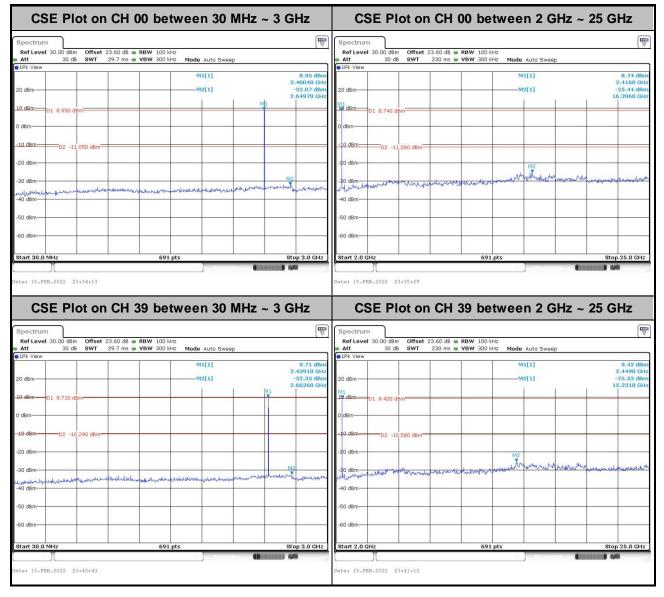

3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

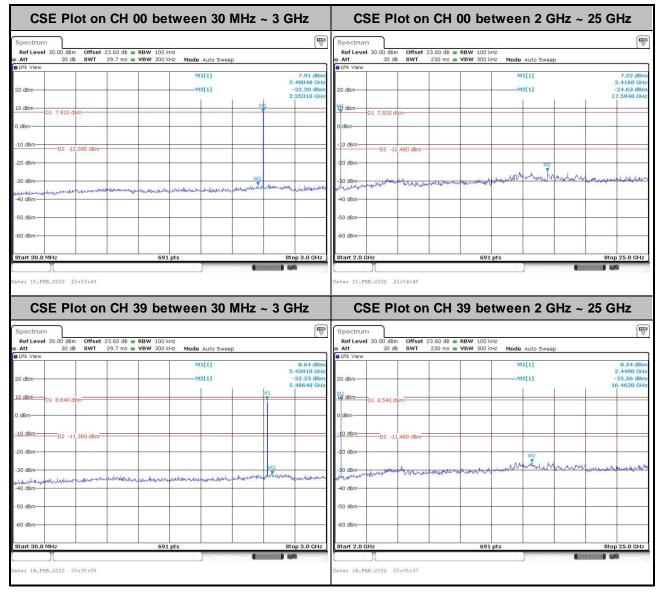
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

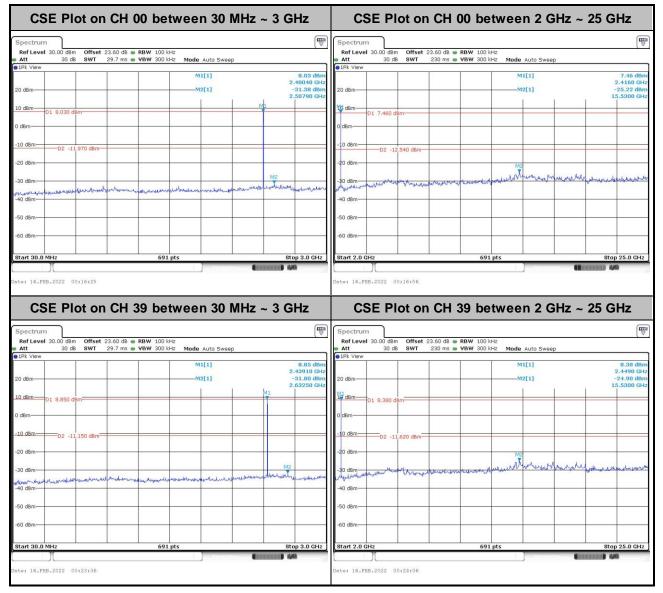


TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

		Spectrum		
VBW 300 kHz Mode Auto Sweep		Att 30 dB SWT		
M1[1] M2[1]	10.51 dBm 2.48210 GHz -32.43 dBm 2.50790 GHz	20 dBm	MI[1] M2[1]	10.11 dBn 2.4830 GH: -24.35 dBn 15.5300 GH:
		0 dBm-01 10.110 dBm- 0 dBm-02 -9.890 dBm-		
	42 saidlesguttingsom consolable sources		reconstruction and the same by an Ash	March Bour Alberton
		-50 dBm		
		-60 dBm-		Stop 25.0 GHz
	MI[1] M2[1]	RBW 100 kHz Mode Auto Sweep VBW 300 kHz Mode Auto Sweep M1[1] 10.51 dBm	Number of the second	Number of the second


<2Mbps>

Spectrum		B	Spectrum		[Ţ Ţ
Ref Level 30.00 dBm Offset 23.60 dB @		(*)	Ref Level 30.00 dBm Offset	23.60 dB 🖷 RBW 100 kHz	(•
Att 30 dB SWT 29.7 ms	VBW 300 kHz Mode Auto Sweep		Att 30 dB SWT	230 ms VBW 300 kHz Mode Auto Sweep	
20 dBm-	M1[1] M2[1]	9.33 dBm 2.48210 GHz -31.59 dBm 2.64110 GHz	20 dBm	M1[1] M2[1]	9.00 dBr 2.4830 GH -25.00 dBr 15.5300 GH
10 dBm 01 9.330 dBm		M1	19 dBm D1 9.000 dBm		
0 dBm			0 dBm		
-10.dBm D2 -10.670 dBm			-10 dBmD2 -11.000 dBm		
-20 dBm		M2	-20 dBm-	and the second and th	yuna makala ana de
personal and the second s	had the rail of a strend streacher the	our water war war war war war war war war war wa	-40 dBm		
-50 dBm			-50 dBm		
-60 dBm			-60 dBm		
Start 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 GHz	691 pts	Stop 25.0 GHz
- π	200 s cordinida-	480 mm 444			AM

<3Mbps>

Spectrum			Spectrum		
	B 🖷 RBW 100 kHz s 🖷 VBW 300 kHz 🛛 Mode Auto Sweep		Ref Level 30.00 dBm Offset	23.60 dB RBW 100 kHz 230 ms VBW 300 kHz Mode Auto Sweep	
1Pk View	S W YOW SOO KHZ MUDE AUTO Sweep		1Pk View	230 ms • • • • • • 500 km2 Made Auto Sweep	
20 dBm	M1[1] M2[1]	9.06 dBm 2.48210 GHz -31.85 dBm 2.28010 GHz	20 dBm	M1[1] M2[1]	8.97 dBr 2.4830 GH -24.19 dBr 15.5300 GH
D1 9.060 dBm		M1	18 dBm D1 8.970 dBm		
) dBm			0 dBm		
10.dBm D2 -10.940 dBm			-10 dBm 02 -11.030 dBm		
20 dBm		M2	-20 dBm	ma man and present may the most	where making way have a south
new manuscrature burnshelmen here	and and a should be a should be and a should be an	is marked a her on a new barder	-40 dBm		
50 dBm			-50 dBm-		
60 dBm			-60 dBm		
Start 30.0 MHz	691 pts	Stop 3.0 GHz	Start 2.0 GHz	691 pts	Stop 25.0 GHz
- N	Moximitio	(Internet) 4/4	Г I П	Moscutine	480 million (199

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

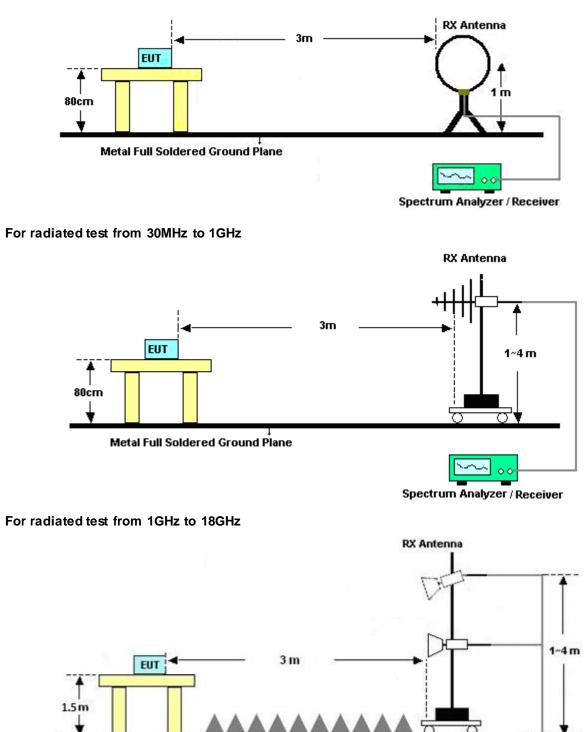
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

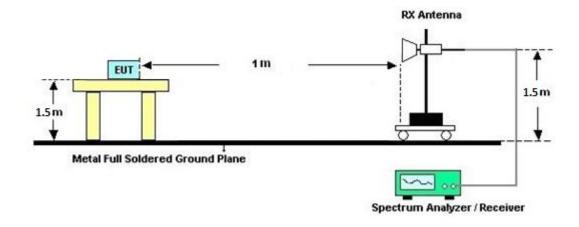
Please refer to the measuring equipment list in this test report.

3.8.3 Test Procedures


- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log (Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup


For radiated test below 30MHz

Metal Full Soldered Ground Plane

For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Results of Radiated Spurious Emissions (above 18 GHz)

For frequency above 18GHz, the pre-scanned result is 20dB lower than the limit line is not reported.

3.8.7 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.8 Duty Cycle

Please refer to Appendix E.

3.8.9 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.9 AC Conducted Emission Measurement

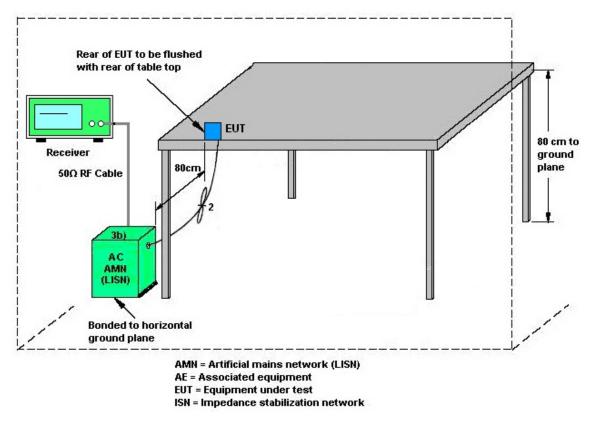
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MUT)	Conducted	limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35419 & 03	30MHz~1GHz	Apr. 28, 2021	Feb. 10, 2022~ Feb. 12, 2022	Apr. 27, 2022	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 03, 2021	Feb. 10, 2022~ Feb. 12, 2022	Dec. 02, 2022	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schw arz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 07, 2022	Feb. 10, 2022~ Feb. 12, 2022	Jan. 06, 2023	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 22, 2021	Feb. 10, 2022~ Feb. 12, 2022	Apr. 21, 2022	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	Oct. 04, 2021	Feb. 10, 2022~ Feb. 12, 2022	Oct. 03, 2022	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Oct. 04, 2021	Feb. 10, 2022~ Feb. 12, 2022	Oct. 03, 2022	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	~44GHz Jul. 22, 2021 Feb. 10, 2022~ Jul. 21, 2		Jul. 22, 2022	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY 52350276	3Hz~44GHz	Jul. 22, 2021	Feb. 10, 2022~ Feb. 12, 2022	Jul. 21, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY 15682-4	30MHz to 18GHz	Feb. 24, 2021	Feb. 10, 2022~ Feb. 12, 2022	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971-4	9kHz to 18GHz	Feb. 24, 2021	Feb. 10, 2022~ Feb. 12, 2022	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY 28655-4	9kHz to 18GHz	Feb. 24, 2021	Feb. 10, 2022~ Feb. 12, 2022	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2,80 1606/2	18GHz~40GHz	Feb. 24, 2021	Feb. 10, 2022~ Feb. 12, 2022	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 17, 2021	Feb. 10, 2022~ Feb. 12, 2022	Sep. 16, 2022	Radiation (03CH07-HY)
Controller	EMEC	EM1000	N/A	Control Ant Mast	N/A	Feb. 10, 2022~ Feb. 12, 2022	N/A	Radiation (03CH07-HY)
Controller	MF	MF-7802	N/A	Control Turn table	N/A	Feb. 10, 2022~ Feb. 12, 2022	N/A	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	N/A	Feb. 10, 2022~ Feb. 12, 2022	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Feb. 10, 2022~ Feb. 12, 2022	N/A	Radiation (03CH07-HY)
Attenuator	HONOVA	5910 SMA-50-005-1 9-NE	ATT-36	N/A	Oct. 30, 2021	Feb. 10, 2022~ Feb. 12, 2022	Oct. 29, 2022	Radiation (03CH07-HY)
Softw are	Audix	E3	N/A	N/A	N/A	Feb. 10, 2022~ Feb. 12, 2022	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB2495	N/A	Mar. 09, 2021	Feb. 10, 2022~ Feb. 12, 2022	Mar. 08, 2022	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917025 1	18GHz~40GHz	Nov. 30, 2021	Feb. 10, 2022~ Feb. 12, 2022	Nov. 29, 2022	Radiation (03CH07-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 16, 2021	Feb. 06, 2022~ Feb. 16, 2022	Nov. 15, 2022	Conducted (TH02-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Aug. 01, 2021	Feb. 06, 2022~ Feb. 16, 2022	Jul. 31, 2022	Conducted (TH02-HY)
Pow er Sensor	Anritsu	MA2411B	1027253	300MHz~40GH z	Aug. 01, 2021	Feb. 06, 2022~ Feb. 16, 2022	Jul. 31, 2022	Conducted (TH02-HY)
Signal Analyzer	Rohde & Schw arz	FSV40	101566	10Hz~40GHz	Aug. 30, 2021	Feb. 06, 2022~ Feb. 16, 2022	Aug. 29, 2022	Conducted (TH02-HY)
Switch Control Manframe	E-IUSTRUME NT	ETF-1405-0	EC1900067 (BOX7)	N/A	Aug. 12, 2021	Feb. 06, 2022~ Feb. 16, 2022	Aug. 11, 2022	Conducted (TH02-HY)
AC Pow er Source	ChainTek	APC-1000W	N/A	N/A	N/A	Feb. 12, 2022	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schw arz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2021	Feb. 12, 2022	Nov. 30, 2022	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 17, 2021	Feb. 12, 2022	Nov. 16, 2022	Conduction (CO05-HY)
LISN	Rohde & Schw arz	ENV216	100080	9kHz~30MHz	Dec. 03, 2021	Feb. 12, 2022	Dec. 02, 2022	Conduction (CO05-HY)
LISN	Rohde & Schw arz	ENV216	100081	9kHz~30MHz	Nov. 16, 2021	Feb. 12, 2022	Nov. 15, 2022	Conduction (CO05-HY)
Softw are	Rohde & Schw arz	EMC32	N/A	N/A	N/A	Feb. 12, 2022	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 28, 2021	Feb. 12, 2022	Jul. 27, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N⁄A	Dec. 30, 2021	Feb. 12, 2022	Dec. 29, 2022	Conduction (CO05-HY)

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	3.1 dB
of 95% (U = 2Uc(y))	5.T UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1 dB
of 95% (U = 2Uc(y))	5.1 00

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.8 dB
of 95% (U = 2Uc(y))	5.8 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.0 dB
of 95% (U = 2Uc(y))	4:0 dB

Report Number : FR101321A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Shiming Liu/Derek Hsu	Temperature:	21~25	°C
Test Date:	2022/2/6~2022/2/16	Relative Humidity:	51~54	%

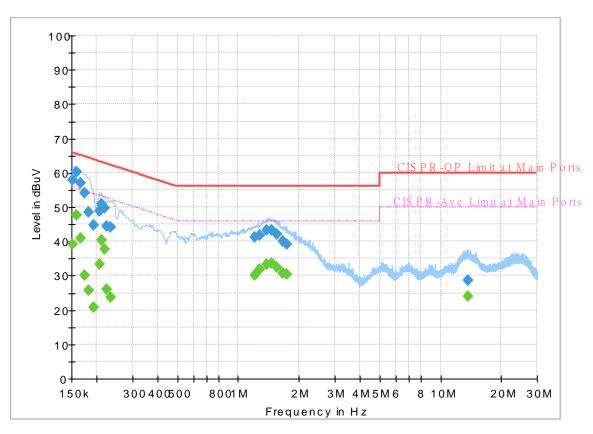
			20dB a	and 99	% Occup	-	<u>SULTS DATA</u> Ith and Hopping	Channel Separ	ration
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	1.036	0.929	0.999	0.6908	Pass
DH	1Mbps	1	39	2441	1.036	0.929	1.003	0.6908	Pass
DH	1Mbps	1	78	2480	1.036	0.935	0.999	0.6908	Pass
2DH	2Mbps	1	0	2402	1.329	1.187	1.003	0.8857	Pass
2DH	2Mbps	1	39	2441	1.333	1.190	0.999	0.8886	Pass
2DH	2Mbps	1	78	2480	1.342	1.190	0.994	0.8943	Pass
3DH	3Mbps	1	0	2402	1.272	1.175	0.999	0.8481	Pass
3DH	3Mbps	1	39	2441	1.272	1.175	0.999	0.8481	Pass
3DH	3Mbps	1	78	2480	1.272	1.178	0.999	0.8481	Pass

	<u>TEST RESULTS DATA</u> Dwell Time							
Mod.	Hopping Channel	Hops Over	Package Transfer	Dwell Time	Limits	Pass/Fail		
	Number Rate	Occupancy Time(hops)	Time (msec)	(sec)	(sec)			
Nomal	79	106.67	2.90	0.31	0.4	Pass		
AFH	20	53.33	2.90	0.15	0.4	Pass		

<u>TEST RESULTS DATA</u> Peak Power Table									
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result				
	0	1	10.46	20.97	Pass				
DH1	39	1	11.50	20.97	Pass				
	78	1	11.85	20.97	Pass				
	0	1	11.23	20.97	Pass				
2DH1	39	1	12.17	20.97	Pass				
	78	1	12.57	20.97	Pass				
	0	1	11.47	20.97	Pass				
3DH1	39	1	12.49	20.97	Pass				
	78	1	12.86	20.97	Pass				

				Ave	T RESULTS DATA erage Power Table Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	10.04	5.15	
DH1	39	1	11.06	5.15	
	78	1	11.35	5.15	
	0	1	9.06	5.05	
2DH1	39	1	9.90	5.05	
	78	1	10.40	5.05	
	0	1	9.08	5.08	
3DH1	39	1	9.92	5.08	
i i	78	1	10.48	5.08	

TEST RESULTS DATA Number of Hopping Frequency									
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail						
79	20	> 15	Pass						



Appendix B. AC Conducted Emission Test Results

Test Engineer	Colvin Wong	Temperature :	23~26 ℃
Test Engineer :	Calvin Wang	Relative Humidity :	45~55%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 101321 Mode 2 Power From System Line

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250		39.32	55.88	16.56	L1	OFF	19.6
0.152250	57.91		65.88	7.97	L1	OFF	19.6
0.159000		47.77	55.52	7.75	L1	OFF	19.6
0.159000	59.26		65.52	6.26	L1	OFF	19.6
0.165750		41.05	55.17	14.12	L1	OFF	19.6
0.165750	57.11		65.17	8.06	L1	OFF	19.6
0.174750		30.13	54.73	24.60	L1	OFF	19.6
0.174750	54.19		64.73	10.54	L1	OFF	19.6
0.181500		25.66	54.42	28.76	L1	OFF	19.6
0.181500	48.43		64.42	15.99	L1	OFF	19.6
0.192750		20.89	53.92	33.03	L1	OFF	19.6
0.192750	44.62		63.92	19.30	L1	OFF	19.6
0.206250		33.35	53.36	20.01	L1	OFF	19.6
0.206250	48.97		63.36	14.39	L1	OFF	19.6
0.210750		40.32	53.18	12.86	L1	OFF	19.6
0.210750	50.97		63.18	12.21	L1	OFF	19.6
0.217500		37.70	52.91	15.21	L1	OFF	19.6
0.217500	49.61		62.91	13.30	L1	OFF	19.6
0.224250		25.97	52.66	26.69	L1	OFF	19.6
0.224250	44.43		62.66	18.23	L1	OFF	19.6
0.233250		23.64	52.33	28.69	L1	OFF	19.6

0.233250	44.26		62.33	18.07	L1	OFF	19.6
1.203000		30.13	46.00	15.87	L1	OFF	19.6
1.203000	41.15		56.00	14.85	L1	OFF	19.6
1.284000		31.80	46.00	14.20	L1	OFF	19.6
1.284000	41.70		56.00	14.30	L1	OFF	19.6
1.378500		33.36	46.00	12.64	L1	OFF	19.6
1.378500	43.28		56.00	12.72	L1	OFF	19.6
1.466250		33.52	46.00	12.48	L1	OFF	19.6
1.466250	43.16		56.00	12.84	L1	OFF	19.6
1.551750		32.34	46.00	13.66	L1	OFF	19.6
1.551750	42.10		56.00	13.90	L1	OFF	19.6
1.664250		30.71	46.00	15.29	L1	OFF	19.6
1.664250	40.00		56.00	16.00	L1	OFF	19.6
1.731750		30.30	46.00	15.70	L1	OFF	19.6
1.731750	39.12		56.00	16.88	L1	OFF	19.6
13.672500		24.08	50.00	25.92	L1	OFF	19.8
13.672500	28.74		60.00	31.26	L1	OFF	19.8

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 1O1321 Mode 2 Power From System Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.156750		45.53	55.63	10.10	N	OFF	19.6
0.156750	59.58		65.63	6.05	Ν	OFF	19.6
0.163500		45.92	55.28	9.36	Ν	OFF	19.6
0.163500	58.71		65.28	6.57	Ν	OFF	19.6
0.174750		29.75	54.73	24.98	Ν	OFF	19.6
0.174750	53.47		64.73	11.26	Ν	OFF	19.6
0.183750		21.27	54.31	33.04	Ν	OFF	19.6
0.183750	44.77		64.31	19.54	Ν	OFF	19.6
0.199500		19.75	53.63	33.88	Ν	OFF	19.6
0.199500	41.63		63.63	22.00	Ν	OFF	19.6
0.215250		38.60	53.00	14.40	Ν	OFF	19.6
0.215250	49.10		63.00	13.90	Ν	OFF	19.6
1.293000		31.00	46.00	15.00	Ν	OFF	19.6
1.293000	40.71		56.00	15.29	Ν	OFF	19.6
1.374000		31.81	46.00	14.19	Ν	OFF	19.6
1.374000	41.87		56.00	14.13	Ν	OFF	19.6
1.477500		31.96	46.00	14.04	Ν	OFF	19.6
1.477500	41.52		56.00	14.48	Ν	OFF	19.6
1.565250		31.83	46.00	14.17	Ν	OFF	19.6
1.565250	41.47		56.00	14.53	Ν	OFF	19.6
1.691250		30.43	46.00	15.57	Ν	OFF	19.6

1.691250	40.44		56.00	15.56	Ν	OFF	19.6
14.577000		26.39	50.00	23.61	Ν	OFF	19.9
14.577000	32.39		60.00	27.61	Ν	OFF	19.9

Appendix C. Radiated Spurious Emission

Test Engineer :	Jesse Wang, Stan Hsieh and Ken Wu	Temperature :	19.5~20.3°C
rest Engineer .	Jesse Wang, Stan risien and Ken Wu	Relative Humidity :	63.4~68.2%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2384.865	44.12	-29.88	74	40.07	31.4	8.06	35.41	348	0	Ρ	Н
		2384.865	19.36	-34.64	54	-	-	-	-	-	-	А	Н
	*	2402	100.08	-	-	95.96	31.42	8.12	35.42	348	0	Р	н
	*	2402	75.32	-	-	-	-	-	-	-	-	А	н
вт													H H
CH00		2354.205	43.31	-30.69	74	39.37	31.4	7.94	35.4	349	236	Р	V
2402MHz		2354.205	18.55	-35.45	54	-	-	-	-	-	-	А	V
	*	2402	95.48	-	-	91.36	31.42	8.12	35.42	349	236	Р	V
	*	2402	70.72	-	-	-	-	-	-	-	-	А	V
													V V
		2357.18	43.54	-30.46	74	39.59	31.4	7.95	35.4	265	0	Р	H
		2357.18	18.78	-35.22	54	-	-	-	-	-	-	А	Н
	*	2441	101.25	-	-	96.78	31.73	8.18	35.44	265	0	Р	Н
	*	2441	76.49	-	-	-	-	-	-	-	-	А	Н
		2493.63	44.02	-29.98	74	39.08	32.15	8.25	35.46	265	0	Р	н
BT		2493.63	19.26	-34.74	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		2356.76	44.2	-29.8	74	40.25	31.4	7.95	35.4	193	1	Р	V
244 111172		2356.76	19.44	-34.56	54	-	-	-	-	-	-	А	V
	*	2441	99.37	-	-	94.9	31.73	8.18	35.44	193	1	Р	V
	*	2441	74.61	-	-	-	-	-	-	-	-	А	V
		2485.51	44.47	-29.53	74	39.6	32.08	8.24	35.45	193	1	Ρ	V
		2485.51	19.71	-34.29	54	-	-	-	-	-	-	А	V

	*	2480	100.85	-	-	96.03	32.04	8.23	35.45	201	0	Ρ	Н
	*	2480	76.09	-	-	-	-	-	-	-	-	А	Н
		2496.4	44.79	-29.21	74	39.83	32.17	8.25	35.46	201	0	Ρ	Н
		2496.4	20.03	-33.97	54	-	-	-	-	-	-	А	Н
DT													Н
ВТ СН 78													Н
2480MHz	*	2480	97.99	-	-	93.17	32.04	8.23	35.45	384	0	Р	V
24001112	*	2480	73.23	-	-	-	-	-	-	-	-	А	V
		2489.8	44.91	-29.09	74	39.99	32.12	8.25	35.45	384	0	Р	V
		2489.8	20.15	-33.85	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lin	nit line.							

2.4GHz 2400~2483.5MHz

	r	r		•	BI (Harmo		,,	-	r	Γ	Ī	ſ	-
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
			(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	42.47	-31.53	74	53.54	34.01	12.91	57.99	-	-	Р	Н
		4804	17.71	-36.29	54	-	-	-	-	-	-	Α	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
вт													Н
CH 00													Н
2402MHz		4804	43.78	-30.22	74	54.85	34.01	12.91	57.99	-	-	Р	V
		4804	19.02	-34.98	54	-	-	-	-	-	-	А	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		4882	43.15	-30.85	74	54.15	34.04	12.86	57.9	-	-	Р	Н
		4882	18.39	-35.61	54	-	-	-	-	-	-	А	Н
		7323	42.16	-31.84	74	49.48	35.69	14.91	57.92	-	-	Ρ	Н
		7323	17.4	-36.6	54	-	-	I	-	-	-	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
рт													Н
ВТ СН 39													Н
2441MHz		4882	43.6	-30.4	74	54.6	34.04	12.86	57.9	-	-	Р	V
24410012		4882	18.84	-35.16	54	-	-	-	-	-	-	А	V
		7323	42.57	-31.43	74	49.89	35.69	14.91	57.92	-	-	Р	V
		7323	17.81	-36.19	54	-	-	-	-	-	-	А	V
													V
													V
													V
													V
													V
													V
													V
													V

BT	Not	e Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	41.58	-32.42	74	52.47	34.1	12.82	57.81	-	-	Р	Н
		4960	16.82	-37.18	54	-	-	-	-	-	-	Α	Н
		7440	41.48	-32.52	74	48.73	35.82	14.97	58.04	-	-	Р	Н
		7440	16.72	-37.28	54	-	-	-	-	-	-	Α	Н
													н
													н
													Н
													н
													н
													н
													Н
BT													н
CH 78		4960	43.01	-30.99	74	53.9	34.1	12.82	57.81	-	-	Р	V
2480MHz		4960	18.25	-35.75	54	-	-	-	-	-	-	А	V
		7440	41.49	-32.51	74	48.74	35.82	14.97	58.04	-	-	Р	V
		7440	16.73	-37.27	54	-	-	-	-	-	-	Α	V
													V
													V
													V
													V
													V
													V
													V
								<u> </u>					V
	1.	No other spurio	us found.		1	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1	1
	2.	All results are P	ASS against F	Peak and	Average lim	it line.							
Remark	3.	The emission po	sition marked	las "-" m	ieans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
		floor only.											

Emission below 1GHz

DT		-				BT (LF)		D. d	2		T .11		
BT	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)			
		30	22.85	-17.15	40	27.49	24.57	0.9	30.11	-	-	Р	Н
		50.79	18.87	-21.13	40	33.66	13.95	1.29	30.03	-	-	Р	н
		163.38	20.28	-23.22	43.5	31.81	16.2	2.13	29.86	-	-	Р	н
		920.2	31.92	-14.08	46	27	28.93	4.74	28.75	-	-	Р	н
		946.1	32.52	-13.48	46	26.35	29.98	4.85	28.66	-	-	Р	н
		957.3	33.26	-12.74	46	26.32	30.67	4.9	28.63	-	-	Р	н
													н
													н
													н
													н
2.4GHz													Н
BT													Н
LF		30	33.49	-6.51	40	38.13	24.57	0.9	30.11	-	-	Ρ	V
		44.58	25.7	-14.3	40	37.49	17.07	1.19	30.05	-	-	Ρ	V
		61.05	19.92	-20.08	40	36.81	11.78	1.37	30.04	-	-	Ρ	V
		918.8	32.16	-13.84	46	27.25	28.92	4.74	28.75	-	-	Р	V
		937	32.22	-13.78	46	26.57	29.52	4.82	28.69	-	-	Ρ	V
		952.4	33.4	-12.6	46	26.73	30.43	4.88	28.64	-	-	Р	V
													V
													V
													V
													V
													V
													V
		o other spurious											
Remark		results are PA	-										
		e emission pos				pected err	ission foun	d and em	ission leve	el has at	least 60	dB ma	rgin
	ag	ainst limit or er	nission is noi	se floor	only.								

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

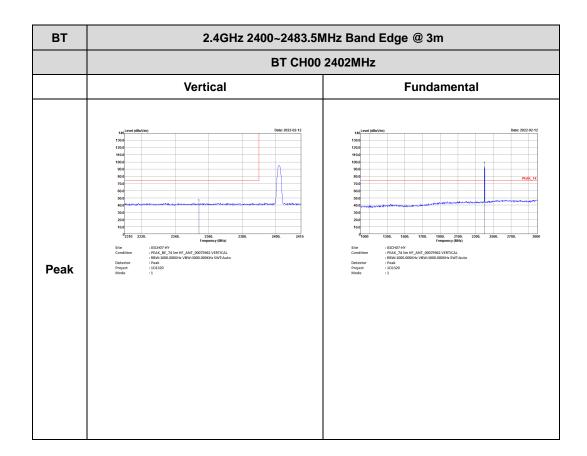
3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

For Peak Limit @ 2390MHz:

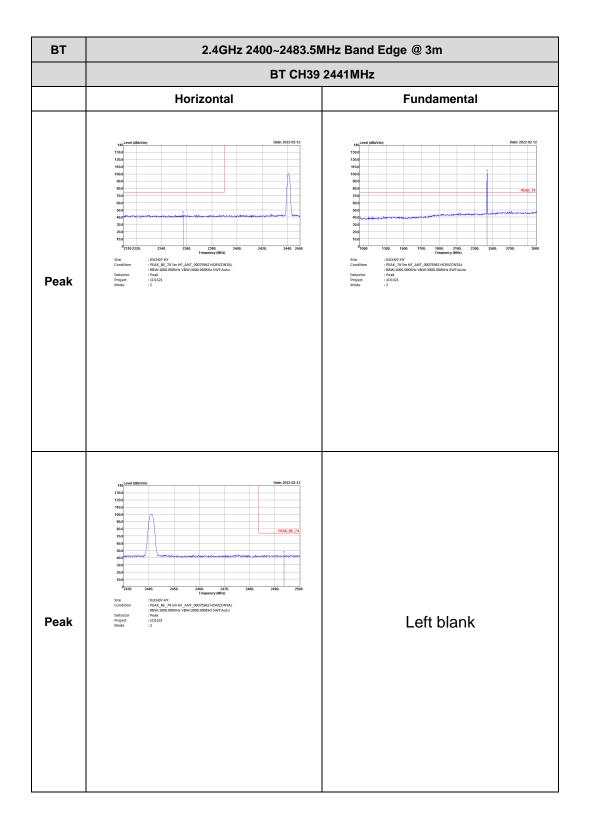
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

Both peak measured complies with the limit line, so test result is "PASS".

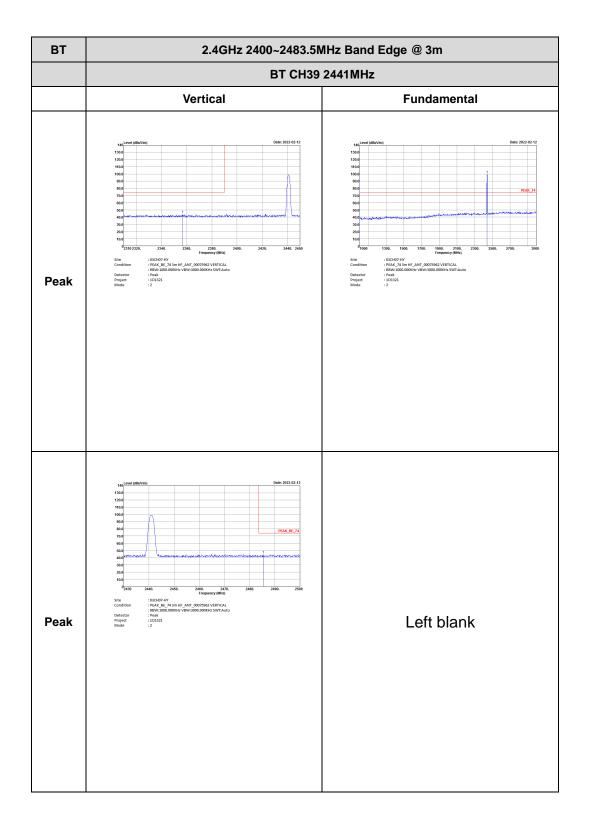
Appendix D. Radiated Spurious Emission Plots

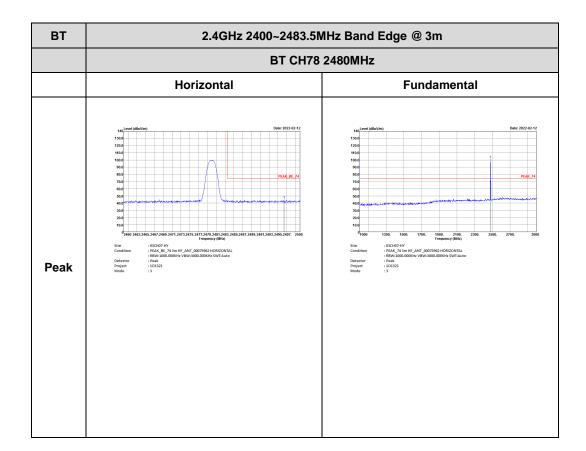

Test Engineer :	Jesse Wang, Stan Hsieh and Ken Wu	Temperature :	19.5~20.3°C
Test Engineer :	Jesse Wang, Stan Esten and Ken Wu	Relative Humidity :	63.4~68.2%

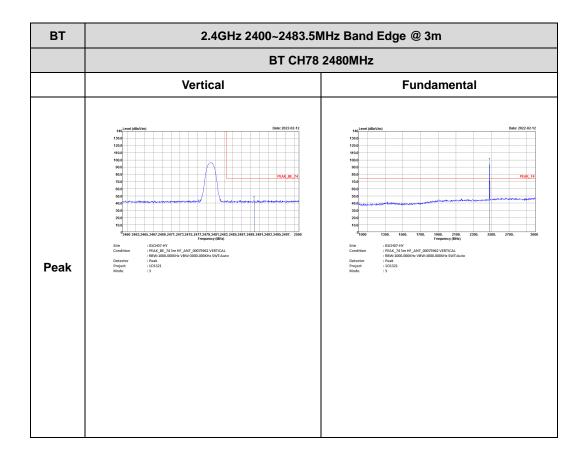
2.4GHz 2400~2483.5MHz

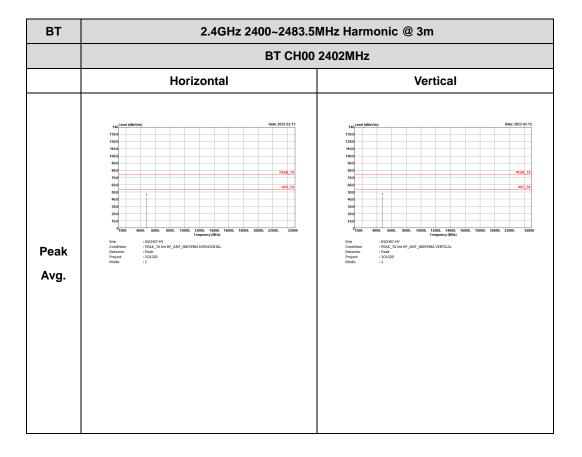

BT (Band Edge @ 3m)

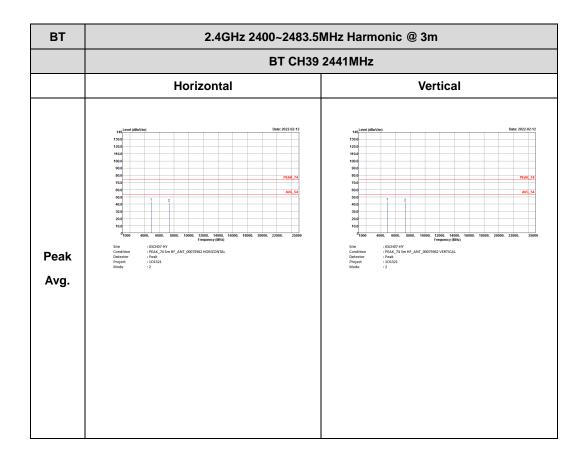
вт	2.4GHz 2400~2483.5MHz Band Edge @ 3m									
	BT CH00	2402MHz								
	Horizontal	Fundamental								
Peak	image: state s	Image: section of the section of t								



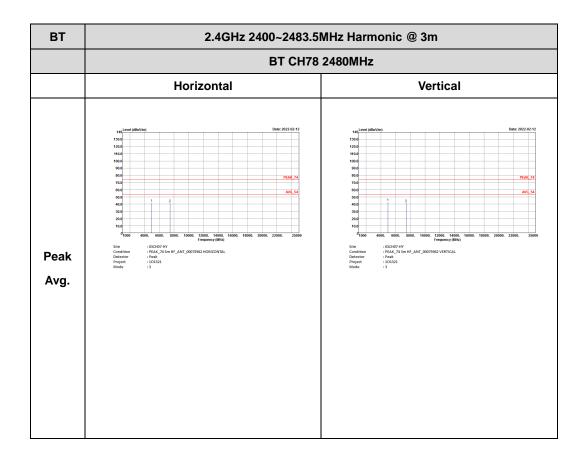


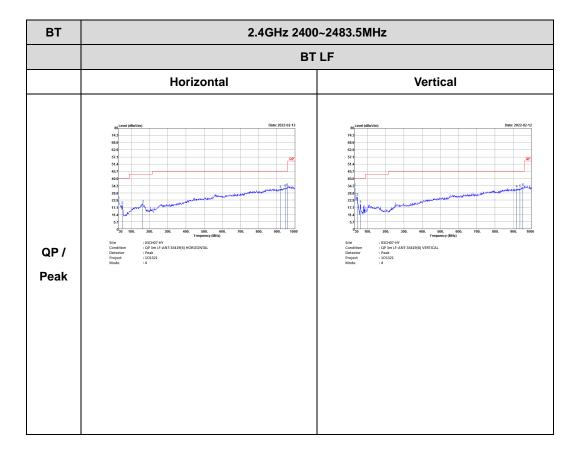






2.4GHz 2400~2483.5MHz


BT (Harmonic @ 3m)



Emission below 1GHz

2.4GHz BT (LF)

Appendix E. Duty Cycle Plots

3DH5 on t	time (One Pul	se) Plot on Chann	on time (Count Pulses) Plot on Channel 39	
Agilent Spectrum Analyzer - Swept SA Ø RL RF 50 & DC Marker 3 ∆ 3.75000 ms	SENSE:BNT PNO: Wide →→ Trig: Free Run	ALIGNAUTO 12:28:02 AM Feb 12, 2022 #Avg Type: RMS TRACE 12 3 4 5 6 Avg Hold: 1/1 TYPE	Marker	Agterit Soutrian Analyzer Swegt SA BUDNINTO 1229297 Mitreb 12,2022 Marker 1 50,7000 ms File Free Run Pilo; Wide → Avg Type: RMS Trig Free Run AvgR/fold: 11 Peak Search Vor Pilo; Wile →
10 dB/div Ref 116.99 dBµ\	IFGain:Low #Atten: 20 dB	ΔMkr3 3.750 ms -0.009 dB	Select Marker 3 [▶]	if Gaint ow #Atien: 20 dB Cert # Minh 10 dB/div Ref 116.99 dBµV Peak Criteria> 10 dB/div Ref 116.99 dBµV 98.002 dBµV
107 97.0	1Δ2 3Δ4		Normal	Peak Table>
57.0 57.0			Delta	87.0 Continuous Peak Search On Off
47.0 37.0 27.0	in the start st	wynawdw	Fixed⊳	
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz	Span 0 Hz Sweep 10.00 ms (1001 pts)	off	Pk-Pk Search
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.890 ms (Δ) 0.931 dB 700.0 μs 94.020 dBμV 3.750 ms (Δ) -0.009 dB 700.0 μs 94.020 dBμV		Properties►	²⁰ - Шилани Алтарадан уларууна каландар каландар каландар каландар каландар каландар каландар каландар каландар 370 - Милани Каландар каландар Мin Search
6 7 8 9 10			More 1 of 2	
11 «	11	>		Res BW 1.0 MHz #VBW 1.0 MHz Sweep 100.0 ms (1001 pts)

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.8 ms] = 2 hops Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.78 \text{ ms}/100 \text{ ms}) = -24.76 \text{ dB}$

