

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for Grant of Equipment Authorization

Industry Canada RSS-Gen Issue 4 / RSS 247 Issue 1 FCC Part 15 Subpart C

Model: FB406

IC CERTIFICATION #: 8542A-FB406 FCC ID: XRAFB406

> APPLICANT: Fitbit, Inc. 405 Howard Street, Suite 550 San Francisco, CA 94105

TEST SITE(S): Nat

IC SITE REGISTRATION #: REPORT DATE: REISSUE DATE: FINAL TEST DATES: TOTAL NUMBER OF PAGES:

National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435

2845B-7

October 27, 2015

December 22, 2015

October 2, 7 and 12, 2015

48

PROGRAM MGR / TECHNICAL REVIEWER:

Mark E Hill Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	October 27, 2015	First release	
1	December 22, 2015	Fixed typo in PSD results	MEH

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS.	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
ANTENNA SYSTEM	8
ENCLOSURE	8
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	10
CONDUCTED EMISSIONS CONSIDERATIONS	10
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	11
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	11
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	12
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	/ 1
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	10
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	10
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	20
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	22
APPENDIX B TEST DATA	
END OF REPORT	
END OF KEPUKI	4ð

SCOPE

An electromagnetic emissions test has been performed on the Fitbit, Inc. model FB406, pursuant to the following rules:

Industry Canada RSS-Gen Issue 4 RSS 247 Issue 1 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2013 FCC DTS Measurement Guidance KDB558074

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label

indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Fitbit, Inc. model FB406 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 4 RSS 247 Issue 1 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Fitbit, Inc. model FB406 and therefore apply only to the tested sample. The sample was selected and prepared by Michelle Turcotte of Fitbit, Inc.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.


TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 247 5.2	Digital Modulation	Systems uses DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 247 5.2 (1)	6dB Bandwidth	745 kHz	>500kHz	Complies
15.247 (b) (3)	RSS 247 5.4 (4)	Output Power (multipoint systems)	3.6 dBm (2.3mW) EIRP = 0.413mW Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	-11.2 dBm/3kHz	8dBm/3kHz	Complies
15.247(d)	RSS 247 5.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	< -20 dBc	< -20dBc	Complies
15.247(d) / 15.209	RSS 247 5.5 / RSS- GEN	Radiated Spurious Emissions 30MHz – 25 GHz	44.0 dBµV/m @ 9918.9 MHz (-10.0 dB)	15.207 in restricted bands, all others < -20dBc	Complies
Note 1: EIRP ca	alculated using ar	ntenna gain of -7.4 dBi for th	e highest EIRP system.		

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antenna is internal	Unique or integral antenna required	Complies
15.207	RSS GEN Table 3	AC Conducted Emissions	27.3 dBµV @ 2.830 MHz (-28.7 dB)	Refer to page 18	Complies
15.247 (b) (5)	RSS 102	RF Exposure Requirements	Refer to SAR exclusion calculations in separate exhibit and RSS 102 declaration	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 6.6	Occupied Bandwidth	1.02MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
· · · · · ·	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Fitbit, Inc. model FB406 is a wireless fitness tracker, which communicates with the user by a Bluetooth Low Energy link. It is powered by an internal, rechargeable battery. The EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 5 VDC.

The sample was received on October 2, 2015 and tested on October 2, 7 and 12, 2015. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Fitbit, Inc.	FB406	Wireless Activity Tracker	Refer to test data	XRAFB406

ANTENNA SYSTEM

Internal Antenna, -7.4dBi

ENCLOSURE

The EUT enclosure is primarily constructed of metal. It measures approximately 3.5 cm wide by 1.5 cm deep by 1 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Nikon	EH-69P	USB charger	-	N/A

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To		Cable(s)	
	Connected To	Description	Shielded or Unshielded	Length(m) 0.3
USB	Charger out	2 wire	Unshielded	0.3

Additional on Support Equipment

Dort	Connected To		Cable(s)	
Port	Connected 10	Description	Shielded or Unshielded	Length(m)
Charger in	AC mains	2 wire	Unshielded	1

EUT OPERATION

During emissions testing the EUT was continuously transmitting at maximum power on the channel called out in the individual test. The modulation used was noted for each test.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Reg	istration Numbers	Location
Olic	FCC	Canada	Location
Chamber 4	US0027	2845B-4	41039 Boyce Road
Chamber 7	US0027	2845B-7	Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 1.5m for measurements above 1GHz, and 0.8m for measurements below 1GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

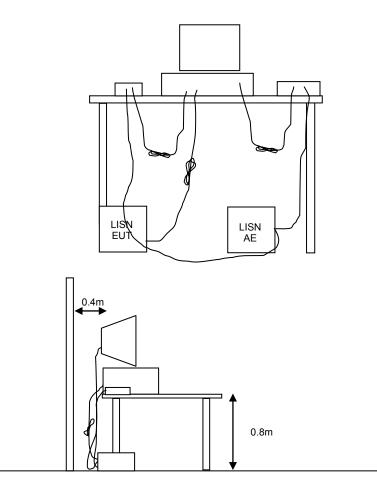
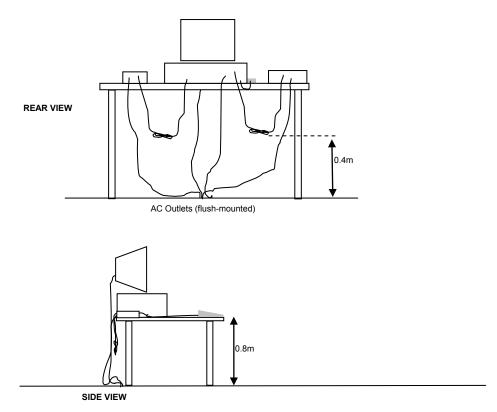
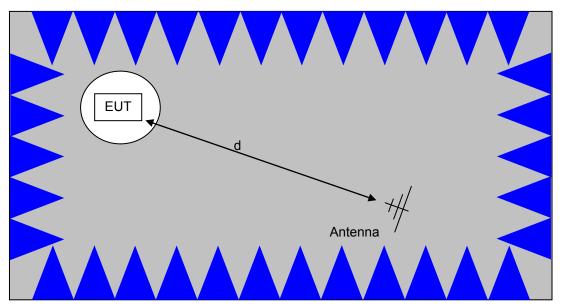


Figure 1 Typical Conducted Emissions Test Configuration

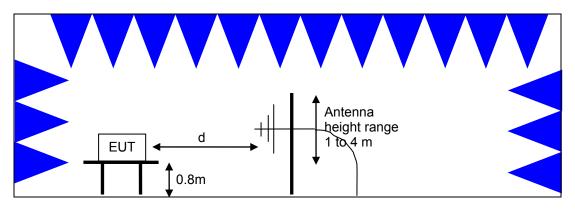
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

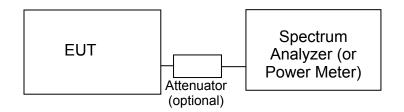

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density.

Operating Frequency (MHz)	Output Power	Power Spectral Density
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 247. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_{d} = 20*LOG_{10} (D_{m}/D_{s})$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

- R_c = Corrected Reading in dBuV/m
- L_{S} = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

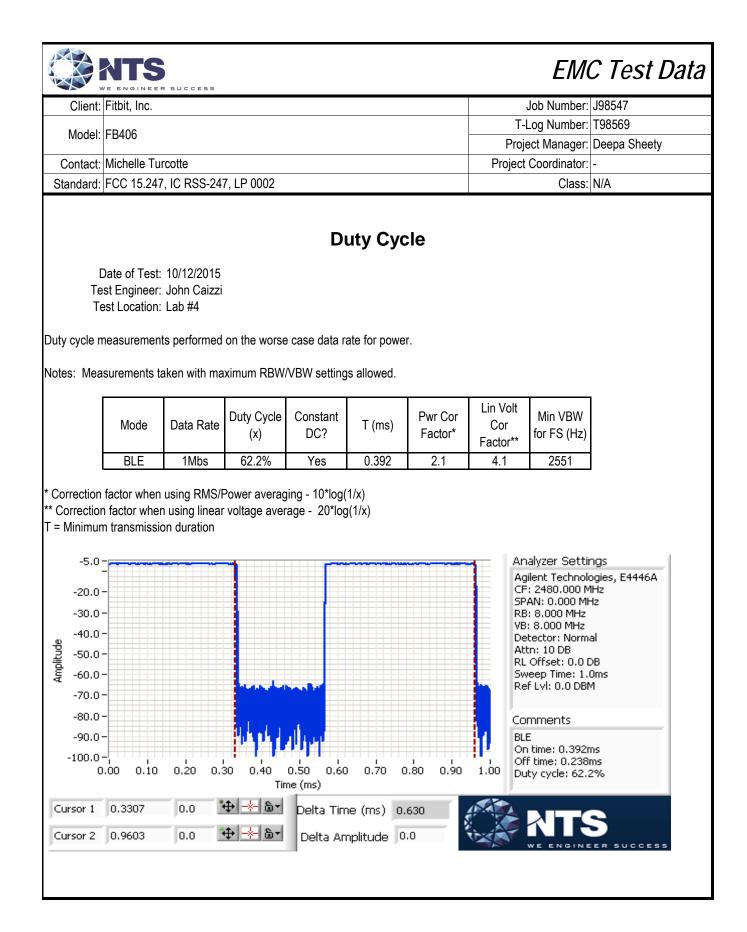
Radiated Spurious E	Emissions, 1000 - 26,000 MHz, ()2-Oct-15			
Manufacturer Hewlett Packard	Description Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 785	<u>Calibrated</u> 10/31/2014	<u>Cal Due</u> 10/31/2015
EMCO Hewlett Packard	Antenna, Horn, 1-18GHz SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	3115 8564E (84125C)	868 1393	6/26/2014 5/2/2015	6/26/2016 5/2/2016
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2238	9/16/2015	9/16/2016
Hewlett Packard A. H. Systems	SA40 Head (Blue) Red System Horn, 18-40GHz	84125C SAS-574, p/n: 2581	1620 2161	6/5/2015 7/16/2015	6/5/2016 7/16/2017
Radiated Spurious E	Emissions, Bandedges, 1000 - 2	2500 MHz, 12-Oct-	15		
Manufacturer EMCO Rohde & Schwarz	Description Antenna, Horn, 1-18GHz EMI Test Receiver, 20 Hz-7 GHz	Model 3115 ESIB7	<u>Asset #</u> 868 1630	<u>Calibrated</u> 6/26/2014 7/6/2015	<u>Cal Due</u> 6/26/2016 7/6/2016
Radiated Emissions	, 30 - 1,000 MHz, 12-Oct-15				
Manufacturer Rohde & Schwarz	<u>Description</u> EMI Test Receiver, 20 Hz-7 GHz	<u>Model</u> ESIB7	<u>Asset #</u> 1630	<u>Calibrated</u> 7/6/2015	<u>Cal Due</u> 7/6/2016
Sunol Sciences Com-Power	Biconilog, 30-3000 MHz Preamplifier, 1-1000 MHz	JB3 PAM-103	2237 2885	8/29/2014 10/13/2015	8/29/2016 10/13/2016
Radio Antenna Port	(Power and Spurious Emission	ns), 12-Oct-15			
Manufacturer	Description	Model	Asset #	<u>Calibrated</u>	Cal Due
NTS NTS	NTS EMI Software (rev 2.10) NTS Capture Analyzer Software (rev 3.8)	N/A N/A	0 0		N/A N/A
Rohde & Schwarz	Power Meter, Single Channel, +1795+1796	NRVS	1534	7/20/2015	7/20/2016
Rohde & Schwarz	Peak Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRV-Z32	1536	1/15/2015	1/15/2016
Agilent Technologies	3Hz -44GHz PSA Spectrum Analyzer	E4446A	2796	3/31/2015	3/31/2016
	ns - AC Power Ports, 07-Oct-15				
<u>Manufacturer</u> EMCO Rohde & Schwarz Rohde & Schwarz	<u>Description</u> LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	<u>Model</u> 3825/2 ESH3 Z2 ESIB7	<u>Asset #</u> 1292 1594 1756	Calibrated 7/24/2015 5/14/2015 6/20/2015	<u>Cal Due</u> 7/24/2016 5/14/2016 6/20/2016

Appendix B Test Data

T98569 Pages 24 – 47

Client:	Fitbit, Inc.	Job Number:	J98547
Product	FB406	T-Log Number:	T98569
		Project Manager:	Deepa Sheety
Contact:	Michelle Turcotte	Project Coordinator:	-
Emissions Standard(s):	FCC 15.247, IC RSS-247, LP 0002	Class:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data


For The

Fitbit, Inc.

Product

FB406

Date of Last Test: 10/12/2015

	NTS VE ENGINEER SUCCESS	EMC Test Dat				
Client:	Fitbit, Inc.	Job Number:	J98547			
Madal	FB406	T-Log Number:	T98569			
wouer.	FB400	Project Manager:	Deepa Sheety			
Contact:	Michelle Turcotte	Project Coordinator:	-			
Standard:	FCC 15.247, IC RSS-247, LP 0002	Class:	N/A			
	RSS 247 and FCC 15.247 (DTS) Radiated Sp	ourious Emissior	IS			

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	24 °C
Rel. Humidity:	31 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
1	BLE	2402MHz	13	10	Restricted Band Edge (2390 MHz)	FCC Part 15.209 /	35.9 dBµV/m @ 2386.0 MHz (-18.1 dB)
	DLE	2480MHz	13	13	Restricted Band Edge (2483.5 MHz)	15.247(c)	37.6 dBµV/m @ 2483.6 MHz (-16.4 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

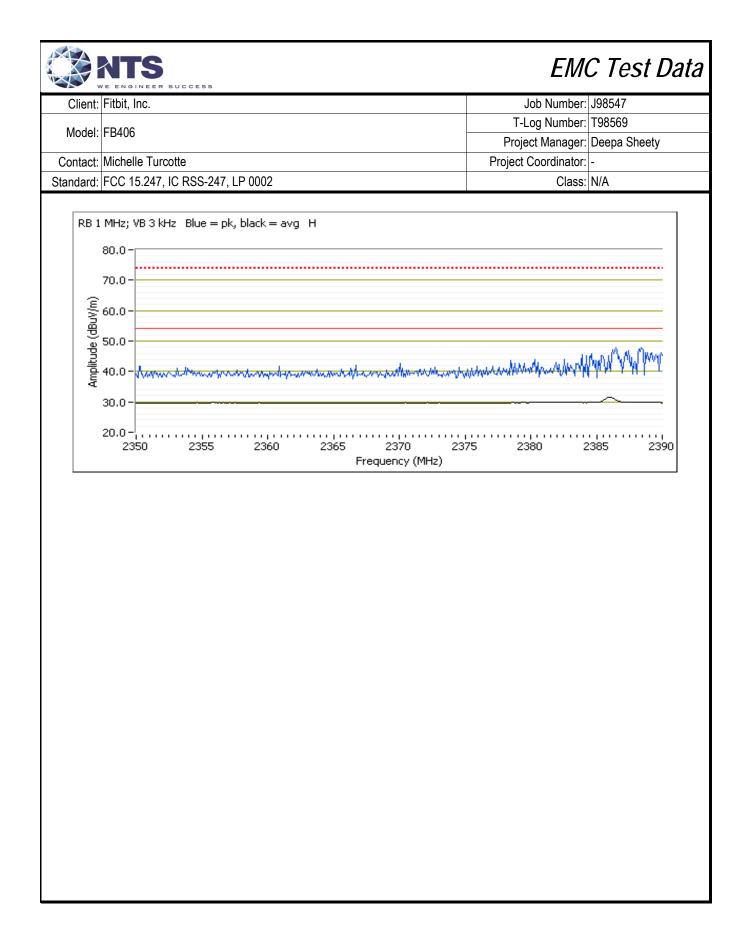
Sample S/N: FM15619 MB04653 (internal S/N: 0X1560141EE0A2) Driver: 21.21 September 27, 2015 Antenna: internal

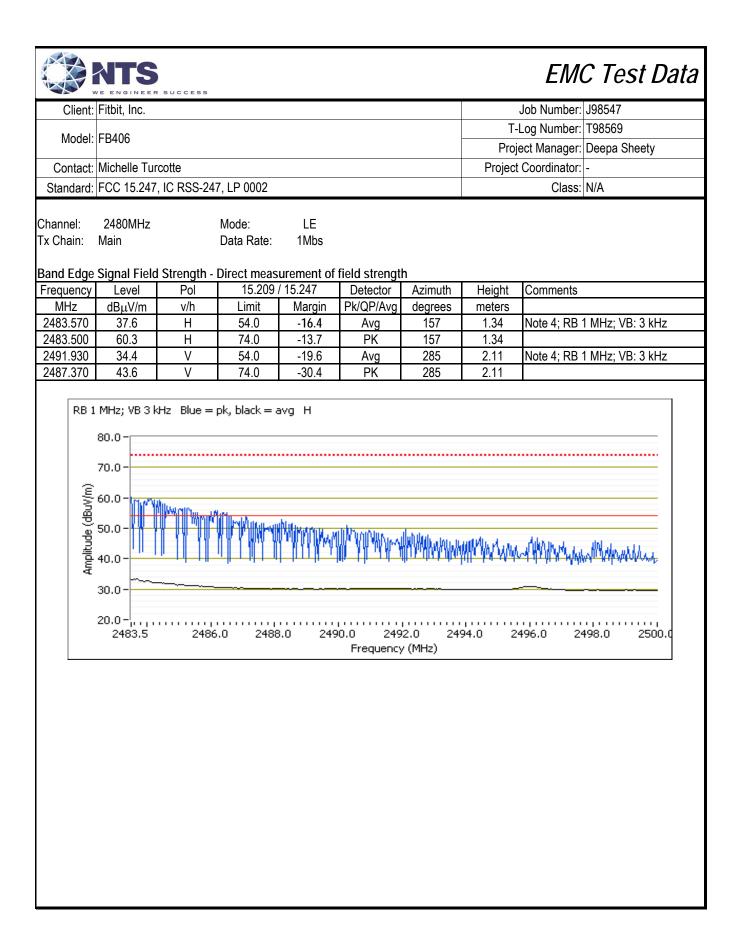
Client:	Fitbit, Inc.	Job Number:	J98547
Model:	EB406	T-Log Number:	T98569
wouer.	1 0400	Project Manager:	Deepa Sheety
Contact:	Michelle Turcotte	Project Coordinator:	-
Standard:	FCC 15.247, IC RSS-247, LP 0002	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time


Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.


Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
BLE	1Mbs	62.2%	Yes	0.392	2.1	4.1	2551

Measurement Specific Notes:

	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz.
	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 4:	peak detector, linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear voltage correction
	factor
Note 6:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
Note 0.	measurements.

EMC Test Data									
Client:	Fitbit, Inc.							Job Number:	J98547
Marta	ED 400						T-	Log Number:	T98569
Model:	FB406						Proj	ect Manager:	Deepa Sheety
Contact:	Michelle Tur	rcotte					Project	Coordinator:	-
Standard:	FCC 15.247	, IC RSS-24	7, LP 0002				Class:	N/A	
Run #1: Ra	idiated Band	dedge Meas	urements						
Г	Date of Test:	10/12/2015	0.00		C	onfig. Used:	1		
	st Engineer:					ifig Change:			
	est Location:					UT Voltage:		tery	
						Ũ		,	
Channel:	2402MHz		Mode:	LE					
Tx Chain:	Main		Data Rate:	1Mbs					
Pand Edga	Signal Field	Strongth	Direct meas	uromont of	field strongt	h			
Frequency	Level	Pol		/ 15.247	field strengt Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commento	
EUT side ho		.,							
2379.900	34.1	V	54.0	-19.9	Avg	213	1.84	Note 4; RB	1 MHz; VB: 3 kHz
2385.190	42.4	V	74.0	-31.6	PK	213	1.84		
2385.990	35.9	Н	54.0	-18.1	Avg	129	1.26	Note 4; RB	1 MHz; VB: 3 kHz
2388.320	48.9	Н	74.0	-25.1	PK	129	1.26		
EUT side ve									
2385.910	34.9	Н	54.0	-19.1	Avg	276	2.05	Note 4; RB	1 MHz; VB: 3 kHz
2389.600	46.6	H	74.0	-27.4	PK	276	2.05		
2385.830 2385.670	34.8 46.0	V V	54.0 74.0	-19.2 -28.0	Avg PK	80 80	1.57 1.57	Note 4; RB	1 MHz; VB: 3 kHz
EUT flat	40.0	V	74.0	-20.0	۳٨	00	1.37		
2386.070	34.7	V	54.0	-19.3	Avg	144	1.77	Note 4. RB	1 MHz; VB: 3 kHz
2388.960	44.3	V	74.0	-29.7	PK	144	1.77		
2385.990	35.0	H	54.0	-19.0	Avg	86	1.76	Note 4; RB	1 MHz; VB: 3 kHz
2389.120	45.3	Н	74.0	-28.7	PK	86	1.76	,	,

	VE ENGINEER SUCCESS		
Client:	Fitbit, Inc.	Job Number:	J98547
Model:	ED406	T-Log Number:	T98569
	F B400	Project Manager:	Deepa Sheety
Contact:	Michelle Turcotte	Project Coordinator:	-
Standard:	FCC 15.247, IC RSS-247, LP 0002	Class:	N/A

RSS 247 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

NTS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:	Temperature:	24 °C
	Rel. Humidity:	35 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
	BLE	2402 MHz	13	13	Radiated Emissions, 1 - 25 GHz	FCC Part 15.209 / 15.247(c)	40.6 dBµV/m @ 4803.5 MHz (-13.4 dB)
1	BLE	2442 MHz	13	13	Radiated Emissions, 1 - 25 GHz	FCC Part 15.209 / 15.247(c)	39.6 dBµV/m @ 4884.2 MHz (-14.4 dB)
	BLE	2480 MHz	13	13	Radiated Emissions, 1 - 25 GHz	FCC Part 15.209 / 15.247(c)	44.0 dBµV/m @ 9918.9 MHz (-10.0 dB)
2	BLE	2440 MHz	13	13	Radiated Emissions, 30 - 1000 MHz	FCC Part 15.209 / 15.247(c)	28.7 dBμV/m (27.2 μV/m) @ 39.72 MHz (- 11.3 dB)

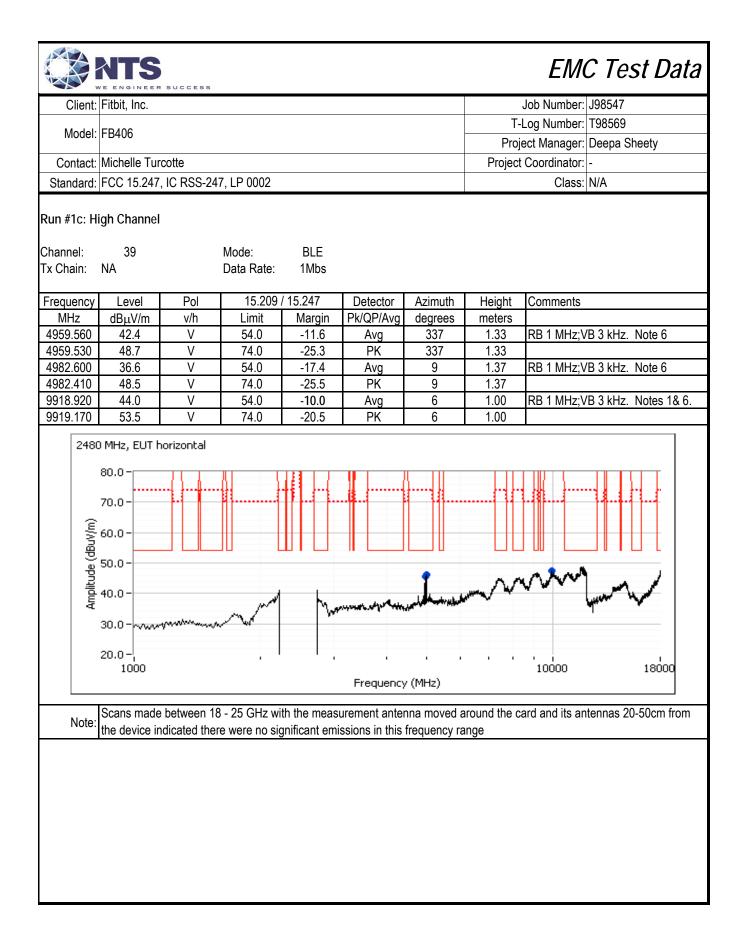
Modifications Made During Testing

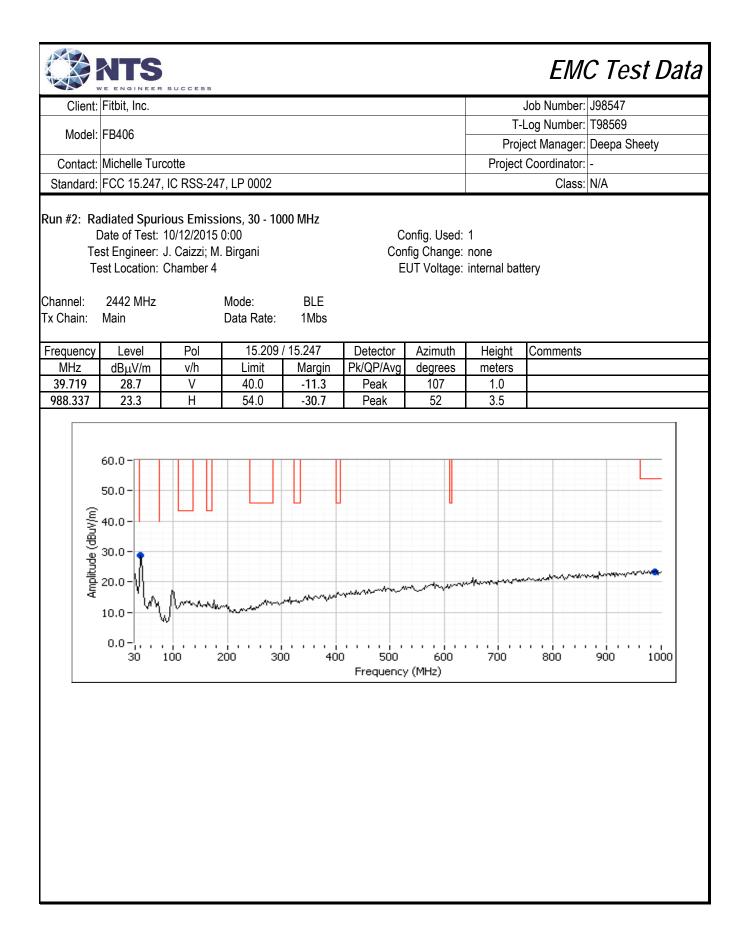
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes


Sample S/N: FM15619 MB04653 (internal S/N: 0X1560141EE0A2) Driver: 21.21 September 27, 2015 Antenna: internal



VE ENGINEER	RSUCCESS									
Fitbit, Inc.							Job Number:	J98547		
: FB406							Log Number:	T98569		
							ect Manager:	Deepa Sheety		
Michelle Tu	rcotte	Project	Coordinator:	-						
Standard: FCC 15.247, IC RSS-247, LP 0002 Class: N										
nts performe irements per rwise stated/ de, auto swe	ed in accordan formed with: /noted, emiss eep time, max	RBW=1MHz ion has duty	, VBW=3MH	lz, peak dete			•	lz, peak detector, linear		
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)			
BLE	1Mbs	62.2%	Yes	0.392	2.1	4.1	2551			
Emission in Emission ha average mo Plots of the	non-restricte as constant d ode, sweep tir average and	d band, the li uty cycle < 98 me auto, max	mit was set 3 3%, average hold. Max h	30dB below t measureme hold for 50*(1	nt performed 1/DC) traces	: RBW=1MF	lz, VBW> 1/T	, peak detector, linear		
measureme	ents.									
	Fitbit, Inc. FB406 Michelle Tu FCC 15.247 re Comme nts performe urements per rwise stated, de, auto swed dreject filter Mode BLE ment Spec Emission in Emission ha average mo Plots of the	FB406 Michelle Turcotte FCC 15.247, IC RSS-24 e Comments: nts performed in accorda urements performed with: rwise stated/noted, emiss de, auto sweep time, may d reject filter used Mode Data Rate BLE 1Mbs ment Specific Notes Emission in non-restricte Emission in non-restricte Emission has constant d average mode, sweep tim	Fitbit, Inc. FB406 Michelle Turcotte FCC 15.247, IC RSS-247, LP 0002 e Comments: nts performed in accordance with FCC urements performed with: RBW=1MHz rwise stated/noted, emission has duty de, auto sweep time, max hold. d reject filter used Mode Data Rate Mode Data Rate Mode Data Rate Mode 1Mbs 62.2% ment Specific Notes: Emission in non-restricted band, but li Emission in non-restricted band, the li Emission has constant duty cycle < 98	Fitbit, Inc. FB406 Michelle Turcotte FCC 15.247, IC RSS-247, LP 0002 e Comments: nts performed in accordance with FCC KDB 55807 urements performed with: RBW=1MHz, VBW=3MH rwise stated/noted, emission has duty cycle ≥ 98% de, auto sweep time, max hold. d reject filter used Mode Data Rate Duty Cycle Constant DC? BLE 1Mbs 62.2% Yes ment Specific Notes: Emission in non-restricted band, but limit of 15.209 Emission has constant duty cycle < 98%, average	Fitbit, Inc. FB406 Michelle Turcotte FCC 15.247, IC RSS-247, LP 0002 e Comments: nts performed in accordance with FCC KDB 558074 urements performed with: RBW=1MHz, VBW=3MHz, peak deterwise stated/noted, emission has duty cycle \geq 98% and was mede, auto sweep time, max hold. d reject filter used Mode Data Rate Duty Cycle Constant DC? T (ms) BLE 1Mbs 62.2% Yes 0.392 ment Specific Notes: Emission in non-restricted band, but limit of 15.209 used. Emission has constant duty cycle < 98%, average measureme average mode, sweep time auto, max hold. Max hold for 50*("	Fitbit, Inc. FB406 Michelle Turcotte FCC 15.247, IC RSS-247, LP 0002 e Comments: nts performed in accordance with FCC KDB 558074 urements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hc rwise stated/noted, emission has duty cycle ≥ 98% and was measured using de, auto sweep time, max hold. d reject filter used Mode Data Rate Duty Cycle Constant Mode Data Rate Duty Cycle Constant DC? T (ms) Pwr Cor Factor* BLE 1Mbs 62.2% Yes 0.392 2.1 ment Specific Notes: Emission in non-restricted band, but limit of 15.209 used. Emission in non-restricted band, the limit was set 30dB below the level of tt Emission has constant duty cycle < 98%, average measurement performed average mode, sweep time auto, max hold. Max hold for 50*(1/DC) traces	Fitbit, Inc. T-I FB406 T-I Michelle Turcotte Project FCC 15.247, IC RSS-247, LP 0002 Project e Comments: nts performed in accordance with FCC KDB 558074 urements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto swee wise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHde, auto sweep time, max hold. T (ms) Mode Data Rate Duty Cycle Constant DC? T (ms) Mode Data Rate Duty Cycle Constant DC? T (ms) Pwr Cor Factor* BLE 1Mbs 62.2% Yes 0.392 2.1 4.1 ment Specific Notes: Emission in non-restricted band, but limit of 15.209 used. Emission in non-restricted band, but limit was set 30dB below the level of the fundament Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHaverage mode, sweep time auto, max hold. Max hold for 50*(1/DC) traces	Fitbit, Inc. Job Number: FB406 T-Log Number: Michelle Turcotte Project Coordinator: FCC 15.247, IC RSS-247, LP 0002 Class: e Comments: nts performed in accordance with FCC KDB 558074 urements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time rwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10H de, auto sweep time, max hold. d reject filter used Mode Data Rate Duty Cycle Constant DC? T (ms) Pwr Cor Factor* Kin VBW for FS (Hz) BLE 1Mbs 62.2% Yes 0.392 2.1 4.1 2551 ment Specific Notes: Emission in non-restricted band, but limit of 15.209 used. Emission in non-restricted band, but limit was set 30dB below the level of the fundamental and meas Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW> 1/T average mode, sweep time auto, max hold. Max hold for 50*(1/DC) traces Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the to the fundamental and meas		

Client	Fitbit, Inc.							Job Number:	J98547
M. 1.1	50400						T-	Log Number:	T98569
Model	FB406			Proj	ect Manager:	Deepa Sheety			
Contact	Michelle Tu	rcotte		Project Coordinator: -					
Standard	FCC 15.247	, IC RSS-24	7, LP 0002				,	Class:	
	adiated Spur ₋ow Channe 1		sions, 1,000 - Mode:	25000 MHz BLE	. Operating	Mode: BLE			
Tx Chain:	NA		Data Rate:	1Mbs					
Frequency	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments	
Frequency MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
EUT side h		4/11	Lann	margin	i wat <i>ir</i> wy	uogrooo	110(013	1	
4803.500	40.6	V	54.0	-13.4	Avg	4	2.02	RB 1 MHz:V	B 3 kHz. Note 6
4804.550	46.6	V	74.0	-27.4	PK	4	2.02		,
EUT side ve		·	<u> </u>		·			·	
4803.580	38.4	V	54.0	-15.6	Avg	360	1.71	RB 1 MHz;V	B 3 kHz. Note 6
4804.480	45.5	V	74.0	-28.5	PK	360	1.71		
4803.530	39.6	Н	54.0	-14.4	Avg	7	2.01	RB 1 MHz;V	B 3 kHz. Note 6
4803.720	46.2	Н	74.0	-27.8	PK	7	2.01		
EUT flat		· · ·						<u> </u>	
4803.680	38.9	V	54.0	-15.1	Avg	315	2.24	RB 1 MHz;V	B 3 kHz. Note 6
4803.530	46.0 36.7	V H	74.0	-28.0 -17.3	PK	315 222	2.24		
4803.870 4803.900	44.5	н Н	54.0 74.0	-17.5	Avg PK	222	1.29 1.29	KD I IVINZ,V	B 3 kHz. Note 6
	2 MHz, EUT		74.0	-29.0	PK	222	1.29		
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 -								
Amplitude	40.0 - 30.0 -	, And Marine	~~~~	~~~	ym what				
	20.0 - 1000		.		, Frequency	/ (MHz)		10000	18000

Client: Fibilit, Inc. Job Number: Job Number: Job Start Model: FB406 T-Log Number: T98569 Project Manager: Deepa Sheety Standard: FCC 15.247, IC RSS-247, LP 0002 Class: N/A un #1b: Center Channel requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBjLV/m V/h Limit Margin Pk/QP/Avg degrees meters 4884.160 39.6 V 54.0 -14.4 Avg 355 1.75 RB 1 MHz;VB 3 kHz. Note 6 4883.330 47.0 V 74.0 -27.0 PK 355 1.75 2442 MHz, EUT horizontal 80.0 - - - - - 0.000 18000 90 -			RSUCCESS						EMC Test Data		
Model: FH406 Project Manager: Deepa Sheety Contact: Michelle Turcotte Project Coordinator: - Standard: FCC 15.247, IC RSS-247, LP 0002 Class: N/A un #1b: Center Channel Comments N/A thannel: 20 Mode: BLE N/A requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 4884.160 39.6 V 54.0 -14.4 Avg 355 1.75 RB 1 MHz; VB 3 kHz. Note 6 4883.330 47.0 V 74.0 -27.0 PK 355 1.75 2442 MHz, EUT horizontal 0.0 -0 -0 -14.4 Avg 355 1.75 2442 MHz, EUT horizontal 0.0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 0000 18000 -0 -0	Client:	Fitbit, Inc.							Job Number: J98547		
Project Manager: Deepa Sheety Contact: Michelle Turcotte Project Coordinator: - Standard: FCC 15.247, IC RSS-247, LP 0002 Class: N/A un #1b: Center Channel hannel: 20 Mode: BLE x Chain: NA Data Rate: 1Mbs Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµ/m v/h Limit Margin PK/QP/Avg degrees meters 4884.160 39.6 V 54.0 -14.4 Avg 355 1.75 RB 1 MHz; VB 3 kHz. Note 6 4883.330 47.0 V 74.0 -27.0 PK 355 1.75 2442 MHz, EUT horizontal 000 000 000 10000 18000 99 40.0 0.0 0.0 Frequency (MHz) 0000 18000 80.0 0.0 0.0 0.00 18000 18000 18000	Madal										
Standard: FCC 15.247, IC RSS-247, LP 0002 Class: N/A un #1b: Center Channel	wouer.	א: FB40b							Project Manager: Deepa Sheety		
tun #1b: Center Channel thannel: 20 Mode: BLE x Chain: NA Data Rate: 1Mbs Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4884.160 39.6 V 54.0 -14.4 Avg 355 1.75 RB 1 MHz;VB 3 kHz. Note 6 4883.330 47.0 V 74.0 -27.0 PK 355 1.75 2442 MHz, EUT horizontal 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Contact:	Coordinator: -									
thannel: 20 Mode: BLE bata Rate: 1Mbs	Standard:	FCC 15.247	, IC RSS-24	7, LP 0002					Class: N/A		
x Chain: NA Data Rate: 1Mbs <u>Frequency Level Pol 15.209/15.247 Detector Azimuth Height Comments</u> <u>MHz dB₁V/m v/h Limit Margin Pk/QP/Avg degrees meters</u> <u>4884.160 39.6 V 54.0 -14.4 Avg 355 1.75 RB 1 MHz;VB 3 kHz. Note 6</u> <u>4883.330 47.0 V 74.0 -27.0 PK 355 1.75</u> <u>2442 MHz, EUT horizontal</u> <u>60.0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 </u>	tun #1b: C	Center Chan	nel								
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4884.160 39.6 V 54.0 -14.4 Avg 355 1.75 RB 1 MHz; VB 3 kHz. Note 6 4883.330 47.0 V 74.0 -27.0 PK 355 1.75 2442 MHz, EUT horizontal 80.0 -											
4884.160 39.6 V 54.0 -14.4 Avg 355 1.75 RB 1 MHz;VB 3 kHz. Note 6 4883.330 47.0 V 74.0 -27.0 PK 355 1.75 2442 MHz, EUT horizontal 80.0	requency	Level	Pol	15.209 /	15.247	Detector	Azimuth	Height	Comments		
4883.330 47.0 V 74.0 -27.0 PK 355 1.75 2442 MHz, EUT horizontal 80.0 -	MHz							meters			
2442 MHz, EUT horizontal									RB 1 MHz;VB 3 kHz. Note 6		
h_{tri} Scans made between 18 - 25 GHz with the measurement antenna moved around the card and its antennas 20-50cm from	4883.330	47.0	V	74.0	-27.0	PK	355	1.75			
Noto	Amplitude (dBuV/m)	60.0 - 50.0 - 40.0 - 30.0 20.0 - 1000	hetween 18	_	th the measu				10000 18000		

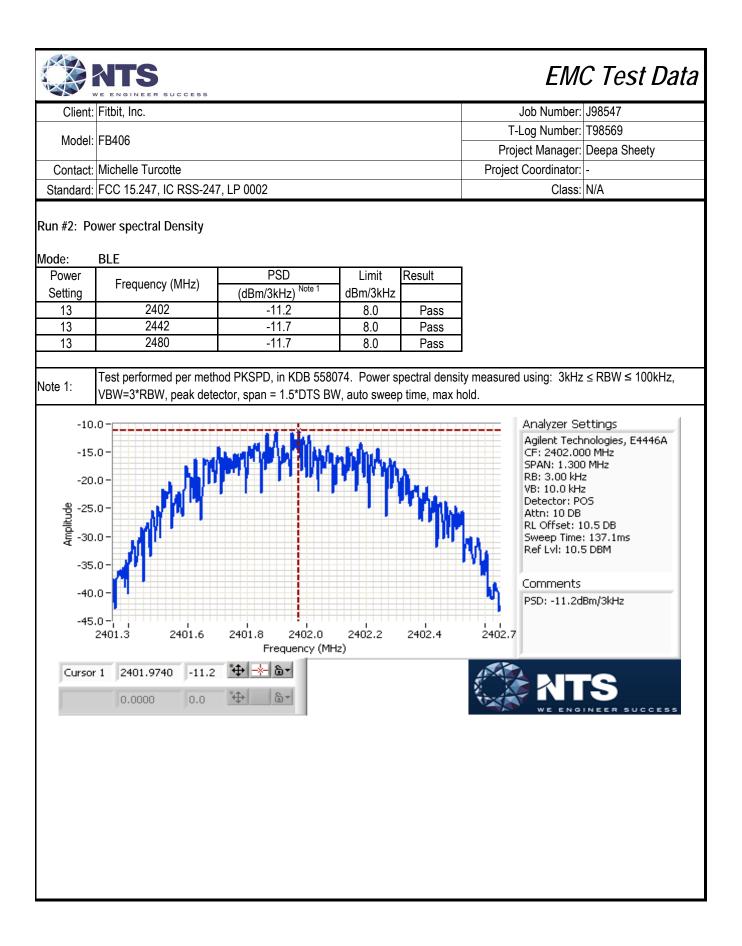
		SUCCESS			E	M	C Test Data
Client:	Fitbit, Inc.				Job Nu	mber	J98547
	ED 400				T-Log Nu	mber	T98569
Model:	FB406				Project Mar	ager	Deepa Sheety
Contact:	Michelle Tur	cotte			Project Coordi	nator	-
Standard:	FCC 15.247	, IC RSS-247	7, LP 0002		(Class	N/A
ו דנ ספחפרמו ז	Cific Detail Objective: Date of Test: est Engineer: est Location: Fest Config	Is The objectiv specification 10/12/2015 M. Birgani Lab 4 guration	and FCC 15.247 (DTS Power, PSD, Bandwidth a e of this test session is to perfor listed above.	m final qualification Config. Used: Config Change: Host EUT Voltage:	Emissions In testing of the EUT Conducted - 120V/60Hz	with	respect to the
	irements hav		•	enuators used. 18-20 °C 30-35 %			
Summary	/ of Result	S					
Run #	Pwr setting		Test Performed	Li	mit Pass	/ Fail	Result / Margin
1	13		Output Power		47(b) Pa	SS	3.6 dBm
2	13		Power spectral Density (PS	/	47(d) Pa		-11.2 dBm/3kHz
3	13		Minimum 6dB Bandwidth		47(a) Pa	SS	0.745 MHz
3	13 13		99% Bandwidth Spurious emissions		GEN	00	1.082 MHz All below the limit
No modifi Deviatior	ions Made cations were	made to the	e sting EUT during testing				

Client: Fibit, Inc. Job Number: J98547 Model: FB406 T-Log Number: T98569 Contact: Michelle Turcotte Project Manager: Deepa Sheety Standard: FCC 15.247, IC RSS-247, LP 0002 Class: N/A

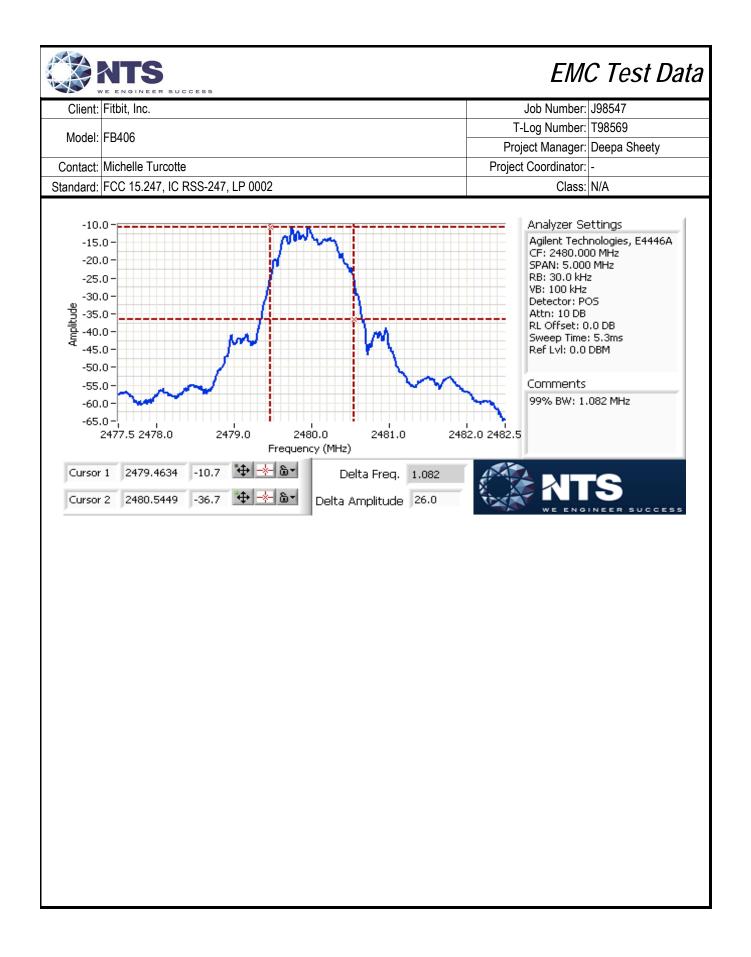
Procedure Comments:

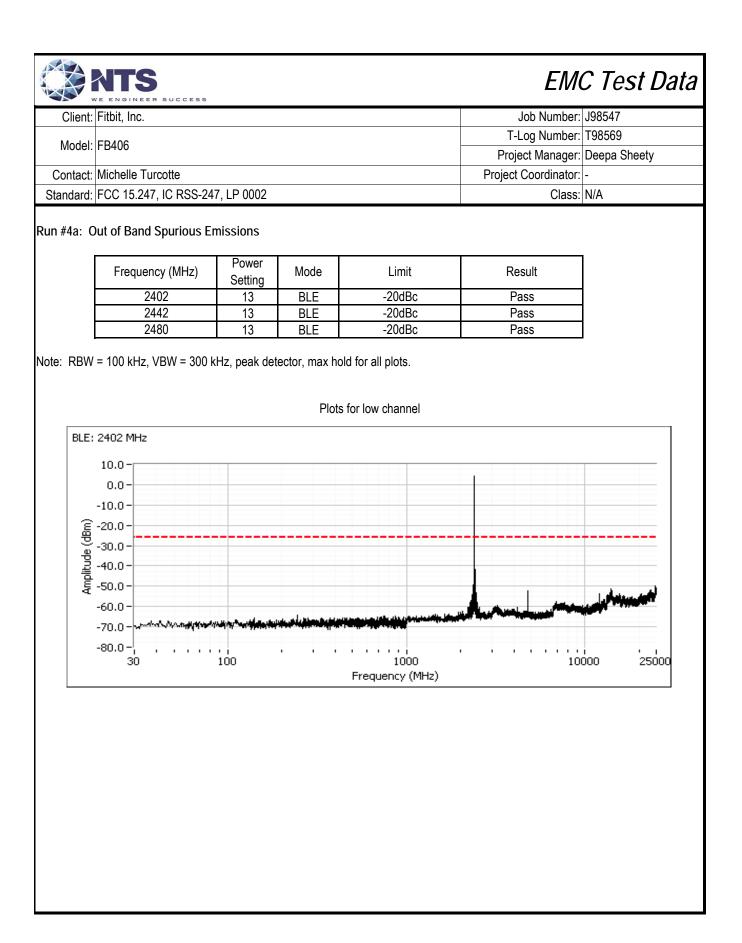
Measurements performed in accordance with FCC KDB 558074

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
BLE	1Mbs	62.2%	Yes	0.392	2.1	4.1	2551

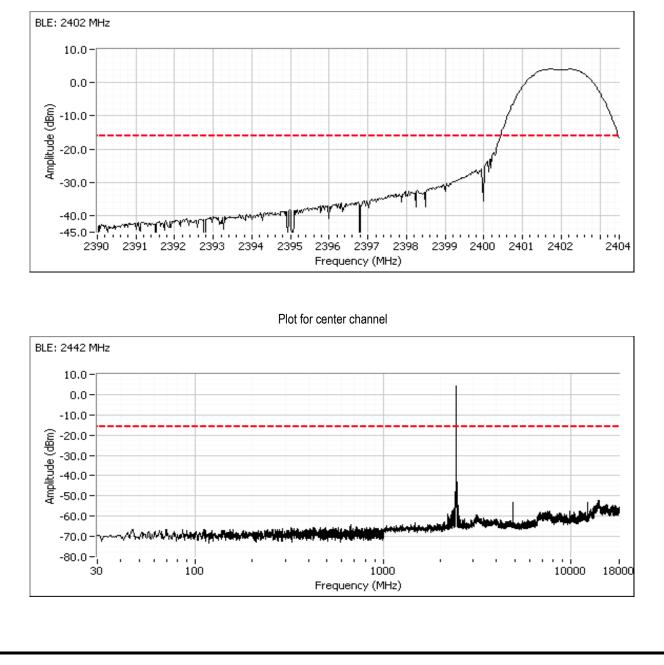

Sample Notes

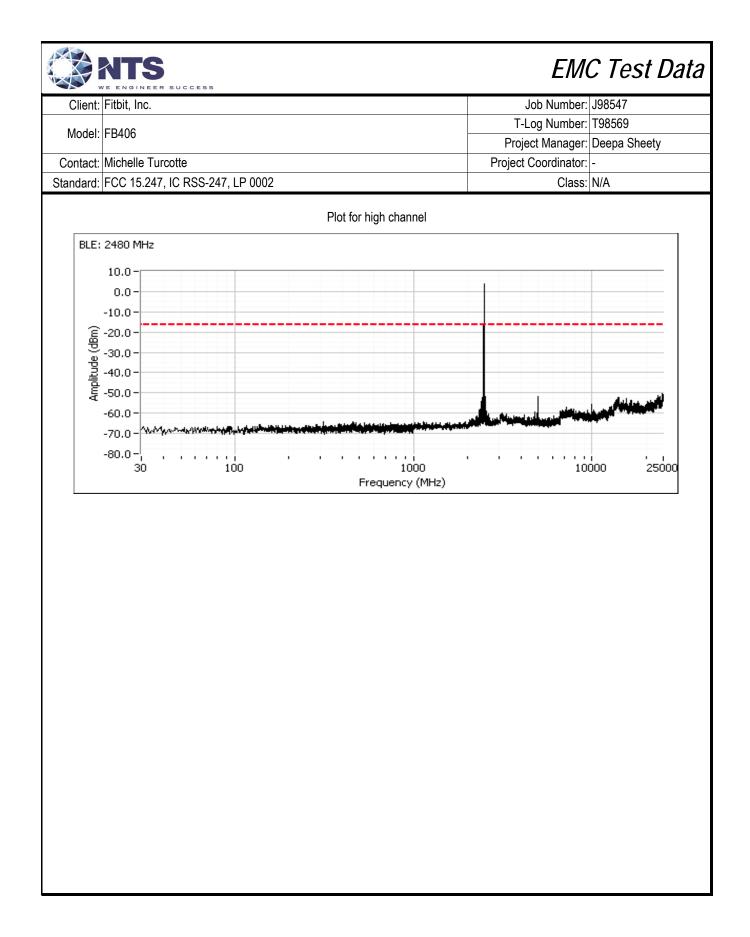
Sample S/N: 0x155d6a9ee0a2 Driver: 21.21 Build 0x0000000A

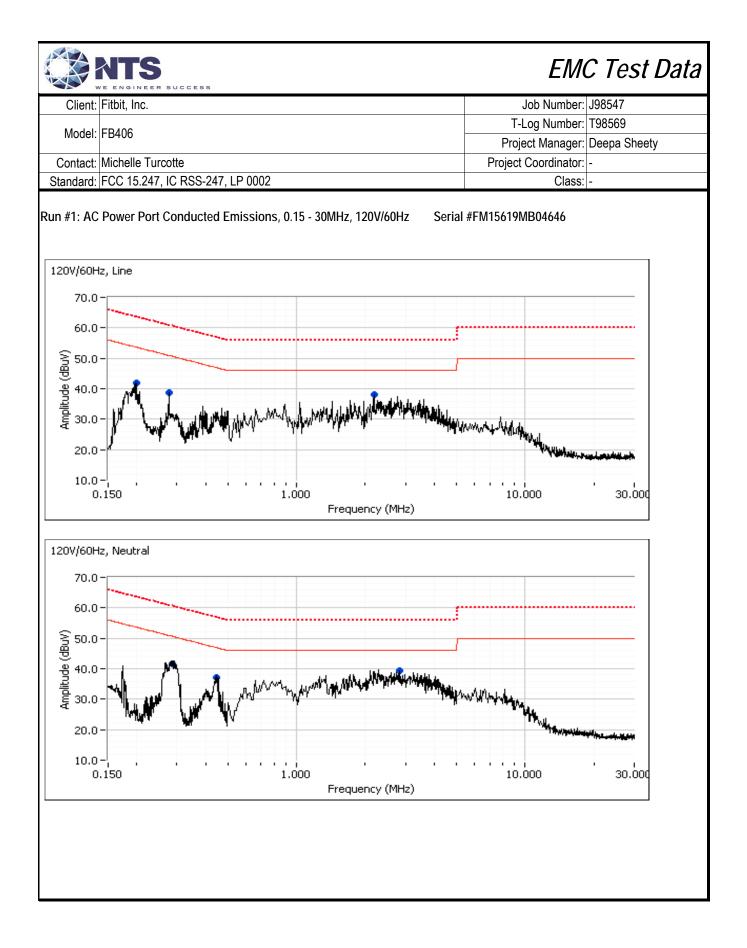

Run #1: Output Power


Mode: BLE

Mode:	BLE								
Power	Frequency (MHz)	Output	Power	Antenna	Result	Ell	RP	Output	Power
Setting ²	Frequency (MITZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	mW	(dBm) ³	mW
13	2402	3.6	2.3	-7.4	Pass	-3.8	0.413		
13	2442	3.5	2.2	-7.4	Pass	-3.9	0.404		
13	2480	3.3	2.1	-7.4	Pass	-4.1	0.385		
Note 1:	Output power measured								
Note 2:	Power setting - the softw								
Note 3:	Power measured using average power meter (non-gated) and is included for reference only.								






	ATS	EMO	C Test Data
Client:	Fitbit, Inc.	Job Number:	J98547
Model:	ED406	T-Log Number:	T98569
	FB400	Project Manager:	Deepa Sheety
Contact:	Michelle Turcotte	Project Coordinator:	-
Standard:	FCC 15.247, IC RSS-247, LP 0002	Class:	N/A

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

	NTS					EM	C Test Data
Client:	Fitbit, Inc.	SUCCESS				Job Number:	J98547
						Log Number:	
Model:	FB406					-	Deepa Sheety
Contact:	Michelle Tur	cotte			-	Coordinator:	
Standard:	FCC 15.247	, IC RSS-247, LP 0002				Class:	-
Test Spec	cific Detail	(NTS Silicon Valle	Conducted ay, Fremont Fac		-	per)	
·	Objective:	The objective of this test sess specification listed above.	sion is to perfor	m final qualifica	ation testing of t	he EUT with r	espect to the
Te	-	10/7/2015 Eddie Mariscal Fremont Chamber #7		Config. Us Config Chan EUT Volta			
For tabletop and 80cm fr		he EUT was located on a wo The EUT is operating on a c S: Temp					
Summary	of Result	S					
Ru	n #	Test Performed		Limit	Result	Margin	
·		CE, AC Power,120V/60	Hz	15.207	Pass	27.3 dBµV	@ 2.830 MHz (-28.7 dB
No modificat Deviation No deviatior	tions were m s From Th is were made	E During Testing ade to the EUT during testing the Standard from the requirements of the nsmitting continuously on 244	e standard.	m power			

Client	Fitbit, Inc.						Job Number:	J98547
	55.400						T-Log Number:	T98569
Model	FB406					_	Project Manager:	Deepa Sheety
Contact	Michelle Tu	rcotte					Project Coordinator:	-
Standard	FCC 15.247	, IC RSS-24	7, LP 0002				Class:	
Preliminar	y peak readi	ngs capture	d during pre	e-scan (peak	readings v	vs. average lin	nit)	
Frequency	Level	AC	Clas	ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.200	42.0	Line 1	53.6	-11.6	Peak			
0.277	38.6	Line 1	50.9	-12.3	Peak			
2.189	38.1	Line 1	46.0	-7.9	Peak			
0.286	41.7	Neutral	50.7	-9.0	Peak			
0.448	37.2	Neutral	46.9	-9.7	Peak			
2.830	39.3 -peak and a	Neutral verage read	46.0	-6.7	Peak			
2.830 Final quas Frequency	-peak and a Level	verage read AC	ings Clas	ss B	Detector	Comments		
2.830 Final quas Frequency MHz	-peak and a Level dBμV	verage read AC Line	ings Cla: Limit	ss B Margin	Detector QP/Ave			
2.830 Final quas Frequency MHz 2.830	-peak and a Level dBμV 27.3	verage read AC Line Neutral	ings Clas Limit 56.0	ss B Margin -28.7	Detector QP/Ave QP	QP (1.00s)		
2.830 Final quas Frequency MHz 2.830 0.448	-peak and a Level dBμV 27.3 27.2	verage read AC Line Neutral Neutral	ings Clas Limit 56.0 56.9	ss B Margin -28.7 -29.7	Detector QP/Ave QP QP	QP (1.00s) QP (1.00s)		
2.830 Final quas Frequency MHz 2.830 0.448 0.286	-peak and a Level dBμV 27.3 27.2 30.5	verage read AC Line Neutral Neutral Neutral	ings Clas Limit 56.0 56.9 60.6	ss B Margin -28.7 -29.7 -30.1	Detector QP/Ave QP QP QP	QP (1.00s) QP (1.00s) QP (1.00s)		
2.830 Final quas Frequency MHz 2.830 0.448 0.286 2.830	-peak and a Level dBμV 27.3 27.2 30.5 14.4	verage read AC Line Neutral Neutral Neutral Neutral	ings Clas Limit 56.0 56.9 60.6 46.0	ss B Margin -28.7 -29.7 -30.1 -31.6	Detector QP/Ave QP QP QP AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
2.830 Frequency MHz 2.830 0.448 0.286 2.830 0.448	-peak and a Level dBμV 27.3 27.2 30.5 14.4 15.1	verage read AC Line Neutral Neutral Neutral Neutral Neutral	ings Clas Limit 56.0 56.9 60.6 46.0 46.9	ss B Margin -28.7 -29.7 -30.1 -31.6 -31.8	Detector QP/Ave QP QP QP AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
2.830 Frequency MHz 2.830 0.448 0.286 2.830 0.448 2.189	-peak and a Level dBμV 27.3 27.2 30.5 14.4 15.1 24.2	verage read AC Line Neutral Neutral Neutral Neutral Neutral Line 1	ings Clas Limit 56.0 56.9 60.6 46.0 46.9 56.0	ss B <u>Margin</u> -28.7 -29.7 -30.1 -31.6 -31.8 -31.8	Detector QP/Ave QP QP QP AVG AVG QP	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
2.830 Frequency MHz 2.830 0.448 0.286 2.830 0.448 2.189 0.277	-peak and a Level dBμV 27.3 27.2 30.5 14.4 15.1 24.2 28.4	verage read AC Line Neutral Neutral Neutral Neutral Line 1 Line 1	ings Clas Limit 56.0 56.9 60.6 46.0 46.9 56.0 60.9	ss B Margin -28.7 -29.7 -30.1 -31.6 -31.8 -31.8 -32.5	Detector QP/Ave QP QP QP AVG AVG QP QP	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
2.830 Frequency MHz 2.830 0.448 0.286 2.830 0.448 2.189 0.277 2.189	-peak and a Level dBμV 27.3 27.2 30.5 14.4 15.1 24.2 28.4 13.4	verage read AC Line Neutral Neutral Neutral Neutral Line 1 Line 1 Line 1	ings Clas Limit 56.0 56.9 60.6 46.0 46.9 56.0 60.9 46.0	ss B Margin -28.7 -29.7 -30.1 -31.6 -31.8 -31.8 -31.8 -32.5 -32.6	Detector QP/Ave QP QP AVG AVG QP QP AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s)		
2.830 Final quas Frequency MHz 2.830 0.448 0.286 2.830 0.448 2.189 0.277 2.189 0.286	-peak and a Level dBμV 27.3 27.2 30.5 14.4 15.1 24.2 28.4 13.4 16.4	verage read AC Line Neutral Neutral Neutral Neutral Line 1 Line 1 Line 1 Neutral	ings Clas Limit 56.0 56.9 60.6 46.0 46.9 56.0 60.9 46.0 50.6	ss B Margin -28.7 -29.7 -30.1 -31.6 -31.8 -31.8 -32.5 -32.6 -34.2	Detector QP/Ave QP QP AVG AVG QP QP AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
2.830 Final quas Frequency MHz 2.830 0.448 0.286 2.830 0.448 2.189 0.277 2.189 0.286 0.277	-peak and a Level dBμV 27.3 27.2 30.5 14.4 15.1 24.2 28.4 13.4 16.4 15.8	verage read AC Line Neutral Neutral Neutral Neutral Line 1 Line 1 Line 1 Line 1 Line 1 Line 1	ings Clas Limit 56.0 56.9 60.6 46.0 46.9 56.0 60.9 46.0 50.6 50.9	ss B Margin -28.7 -29.7 -30.1 -31.6 -31.8 -31.8 -32.5 -32.6 -32.6 -34.2 -35.1	Detector QP/Ave QP QP AVG AVG QP QP QP AVG AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
2.830 Final quas Frequency MHz 2.830 0.448 0.286 2.830 0.448 2.189 0.277 2.189 0.286	-peak and a Level dBμV 27.3 27.2 30.5 14.4 15.1 24.2 28.4 13.4 16.4	verage read AC Line Neutral Neutral Neutral Neutral Line 1 Line 1 Line 1 Neutral	ings Clas Limit 56.0 56.9 60.6 46.0 46.9 56.0 60.9 46.0 50.6	ss B Margin -28.7 -29.7 -30.1 -31.6 -31.8 -31.8 -32.5 -32.6 -34.2	Detector QP/Ave QP QP AVG AVG QP QP AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		

End of Report

This page is intentionally blank and marks the last page of this test report.