

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA23031400703

FCC ID.....: XR3-POKE5

Compiled by

(position+printed name+signature) .: File administrators Zoey Cao

Supervised by

(position+printed name+signature) .: Project Engineer Amy Wen

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Mar. 31, 2023

Testing Laboratory Name...... Shenzhen CTA Testing Technology Co., Ltd.

Address....... Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... ONYX INTERNATIONAL INC.

Guangzhou City, Guangdong Province, China

Test specification:

Standard FCC Part 15.247

TRF Originator...... Shenzhen CTA Testing Technology Co., Ltd.

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description E Ink Tablet, Smart E Ink Tablet, ePaper Tablet, E-bag Tablet,

E-book Tablet, E-reader Tablet, Eyes protection E Ink Tablet,

E-paper Tablet, Color E Ink Tablet, Color ePaper Tablet

Trade Mark: BOOX

Manufacturer ONYX INTERNATIONAL INC.

Model/Type reference Poke5

Poke5 C Pro, Poke5 Color, Poke5 Color Plus, Poke5 Color Pro

CTATESTING

Modulation Type CCK/DSSS/ OFDM

Operation Frequency...... From 2412 - 2462MHz

Rating DC 3.8V From Battery and DC 5.0V From external circuit

Result PASS

Page 2 of 37 Report No.: CTA23031400703

TESTREPORT

E Ink Tablet, Smart E Ink Tablet, ePaper Tablet, E-bag Tablet, E-book **Equipment under Test**

> Tablet, E-reader Tablet, Eyes protection E Ink Tablet, E-paper Tablet, CTATE

Color E Ink Tablet, Color ePaper Tablet

Model /Type Poke5

Poke5S, Poke5 Plus, Poke5 Lite, Poke5 Pro, Poke5 C, Poke5 C Plus, Listed Models

Poke5 C Pro, Poke5 Color, Poke5 Color Plus, Poke5 Color Pro

ONYX INTERNATIONAL INC. **Applicant**

Room 101, Building 4, No. 202 Shiyu Road, Nansha District, Address

Guangzhou City, Guangdong Province, China

ONYX INTERNATIONAL INC. Manufacturer

Room 101, Building 4, No. 202 Shiyu Road, Nansha District, Address

	Guangzhou City, Gua	ngdong Province, China	
_M G	Test Result:	PASS	CTATE

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 37 Report No.: CTA23031400703

Contents

		TATESTING		
		Contents		
	1	TEST STANDARDS		<u>. 4</u>
	<u>2</u>	SUMMARY		. 5
			CIA	
	2.1	General Remarks	(-EVI)	5
	2.2	Product Description		
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment under Test (EU)		5
	2.5	EUT operation mode	.,	
	2.6	Block Diagram of Test Setup	· ·	3
C.	2.7	Related Submittal(s) / Grant (s)		
1	2.8	Modifications	. C.	
	•	TEST ENVIRONMENT		-
	<u>3</u>	TEST ENVIRONMENT		40
			CTATEST!	
	3.1	Address of the test laboratory	TAIL	7
	3.2	Test Facility	G.	7
	3.3	Environmental conditions		7
	3.4	Test Description		3
	3.5	Statement of the measurement uncertainty	8	3
	3.6	Equipments Used during the Test	Ç)
	<u>4</u>	TEST CONDITIONS AND RESULTS	,	10
		TEGT GONDITIONG AND REGGETO		10
		STATE	GTA TESTING	
	4.1	AC Power Conducted Emission	STIN	10
	4.2	Radiated Emission	TATES	13
	4.3	Maximum Peak Conducted Output Power	CIA	19
	4.4	Power Spectral Density	(CAIN)	20
	4.5	6dB Bandwidth	Transmitted in the state of the	23
	4.6	Out-of-band Emissions		26
	4.7	Antenna Requirement		35
	S / ''			
CTATE	<u>5</u>	TEST SETUP PHOTOS OF THE EUT	<u></u>	<u>36</u>
		ESTIN		
	<u>6</u>	PHOTOS OF THE EUT	a G	3 7
	<u>u</u>	FIIO103 OF FIIE EUT	-6	<u> </u>
		CVI		
		CTA CTA	TESI	
			CTA	
			TESTI.	

Page 4 of 37 Report No.: CTA23031400703

TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules. Report No.: CTA23031400703 Page 5 of 37

2 SUMMARY

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample	W	Mar. 14, 2023
Testing commenced on		Mar. 14, 2023
Testing concluded on	:	Mar. 31, 2023

2.2 Product Description

Product Name:	E Ink Tablet, Smart E Ink Tablet, ePaper Tablet, E-bag Tablet, E-book Tablet, E-reader Tablet, Eyes protection E Ink Tablet, E-paper Tablet, Color E Ink Tablet, Color ePaper Tablet
Model/Type reference:	Poke5
Power supply:	DC 3.8V From Battery and DC 5.0V From external circuit
Adapter information (Auxiliary test supplied by test Lab):	Model: GS-551 Input: AC 100-240V 50/60Hz Output: DC 5V 3A
Testing sample ID:	CTA230314007-1# (Engineer sample) CTA230314007-2# (Normal sample)
Software version:	2023.03.23
Hardware Version:	BOOX_M5_POKE5_EMMC_V10
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)/ 802.11n(H40)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/ 802.11n(H40): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40):7
Channel separation:	5MHz
Antenna type:	PIFA antenna
Antenna gain:	1.36 dBi
2.3 Equipment Unde	er Test utilised
Power supply system	utilised

2.3 Equipment Under Test

Power supply system utilised

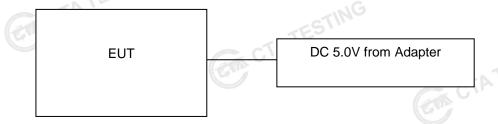
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
TING		0	5 V DC	0	24 V DC
TEST		•	Other (specified in blank bel	ow	

DC 3.8V From Battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is an E Ink Tablet, Smart E Ink Tablet, ePaper Tablet, E-bag Tablet, E-book Tablet, E-reader Tablet, Eyes protection E Ink Tablet, E-paper Tablet, Color E Ink Tablet, Color ePaper Tablet. For more details, refer to the user's manual of the EUT.

Page 6 of 37 Report No.: CTA23031400703


EUT operation mode

The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	100	
6	2437	72 00 41	
7	2442		

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Report No.: CTA23031400703 Page 7 of 37

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

ISED#: 27890 **CAB identifier: CN0127**

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

tadiated Ennicolon.	
Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	25 ° C
STATE	
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission

Temperature:	24 ° C
Humidity:	44 %
-ING	
Atmospheric pressure:	950-1050mbar
CTATE	CTA TESTING

Report No.: CTA23031400703 Page 8 of 37

3.4 Test Description

	FCC PART 15.247				
	FCC Part 15.207	AC Power Conducted Emission	PASS		
	FCC Part 15.247(a)(2)	6dB Bandwidth	PASS		
	FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS		
	FCC Part 15.247(b)	Maximum Peak Conducted Output Power	PASS		
CTATES	FCC Part 15.247(e)	Power Spectral Density	PASS		
	FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS		
	FCC Part 15.247(d)	Band Edge	PASS		
	FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS		

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	
Maximum Peak Conducted Output Power	11b/DSSS	1 Mbps	1/6/11	
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11	
Spurious RF conducted emission	11n(20MHz)/OFDM	6.5Mbps	1/6/11	
Radiated Emission 9KHz~1GHz& Radiated Emission 1GHz~10 th Harmonic	11n(40MHz)/OFDM	13.5Mbps	3/6/9	
(EW)	11b/DSSS	1 Mbps	1/11	
Band Edge	11g/OFDM	6 Mbps	1/11	
Jana Lago	11n(20MHz)/OFDM	6.5Mbps	1/11	-17
	11n(40MHz)/OFDM	13.5Mbps	3/9	

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

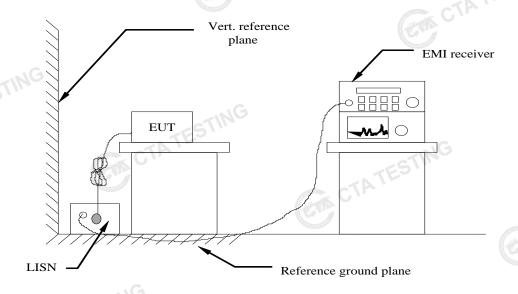
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 37 Report No.: CTA23031400703

Equipments Used during the Test


	1.0.1	(3)				
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
. TE	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02
CTA.	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
,	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02
(G	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
TE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
CTATE	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
1	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02
	(cm)	Co	CTP CTP	TESTING	CT CT	ATESTING

Report No.: CTA23031400703 Page 10 of 37

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

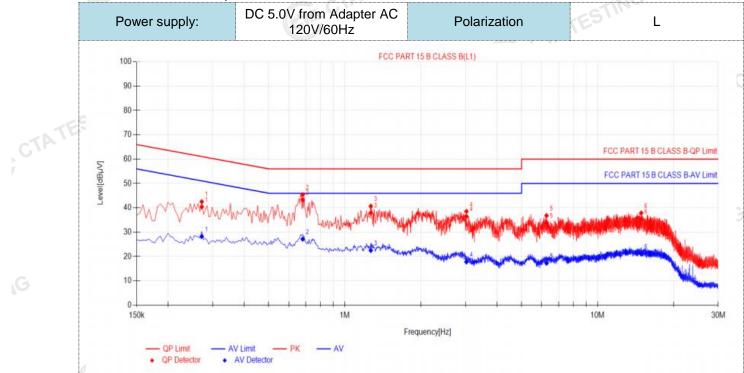
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load: the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit	(dBuV)
Frequency range (IVII 12)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ency.	
TEST RESULTS	(A.	TATESTING

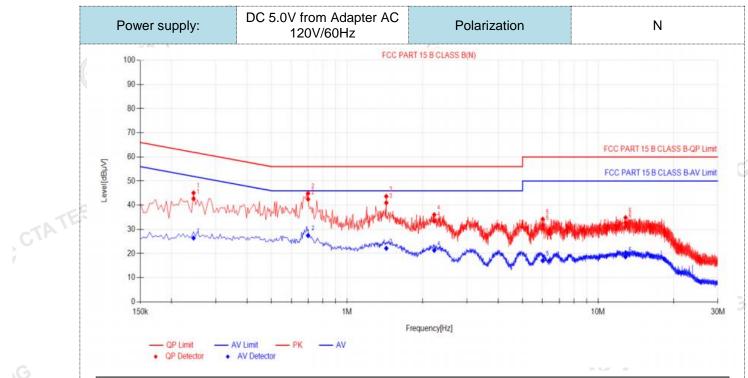

TEST RESULTS

Page 11 of 37 Report No.: CTA23031400703

Remark:

1. All modes of 802.11b/g/nHT20/nHT40 were tested at Low, Middle, and High channel; only the worst result of 802.11b CH11 was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Final	Final Data List													
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict			
1	0.2715	10.50	29.91	40.41	61.07	20.66	17.73	28.23	51.07	22.84	PASS			
2	0.681	10.50	32.78	43.28	56.00	12.72	16.65	27.15	46.00	18.85	PASS			
3	1.266	10.50	27.44	37.94	56.00	18.06	12.00	22.50	46.00	23.50	PASS			
4	3.0255	10.50	26.00	36.50	56.00	19.50	7.31	17.81	46.00	28.19	PASS			
5	6.279	10.50	23.38	33.88	60.00	26.12	6.76	17.26	50.00	32.74	PASS			
6	14.8695	10.50	24.92	35.42	60.00	24.58	10.52	21.02	50.00	28.98	PASS			

GM CTATESTING

CTATE Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

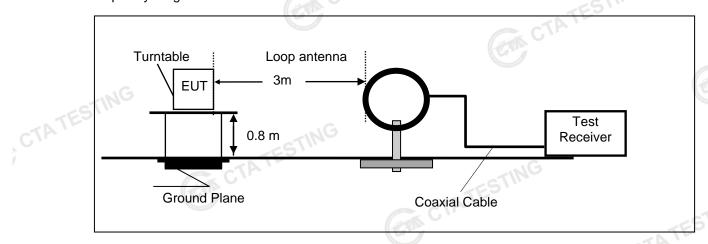
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Report No.: CTA23031400703 Page 12 of 37

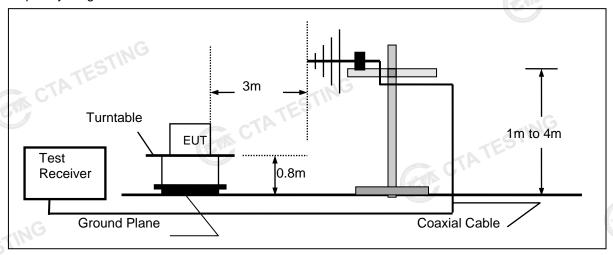
Fina	l Data Lis	t										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.2445	10.50	32.21	42.71	61.94	19.23	15.93	26.43	51.94	25.51	PASS	
2	0.699	10.50	32.01	42.51	56.00	13.49	16.95	27.45	46.00	18.55	PASS	
3	1.4325	10.50	30.51	41.01	56.00	14.99	11.66	22.16	46.00	23.84	PASS	
4	2.2245	10.50	22.88	33.38	56.00	22.62	10.81	21.31	46.00	24.69	PASS	
5	6.0135	10.50	21.19	31.69	60.00	28.31	6.58	17.08	50.00	32.92	PASS	
6	12.8625	10.50	22.27	32.77	60.00	27.23	8.14	18.64	50.00	31.36	PASS	
2). Fact	.QP Value tor (dB)=ins Margin(dB)	sertion lo	oss of LIS	SN (dB) -	+ Cable	loss (dB)	,				PASS	۲ ^۲ ,2

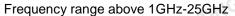
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)

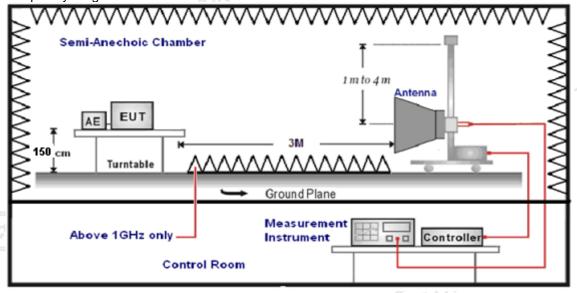
CTATES


4). $AVMargin(dB) = AV Limit (dB\mu V) - AV Value (dB\mu V)$

Report No.: CTA23031400703 Page 13 of 37


4.2 Radiated Emission


TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Report No.: CTA23031400703 Page 14 of 37

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving 3. antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

FS = RA + AF + CL - AG	CTATESTING
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

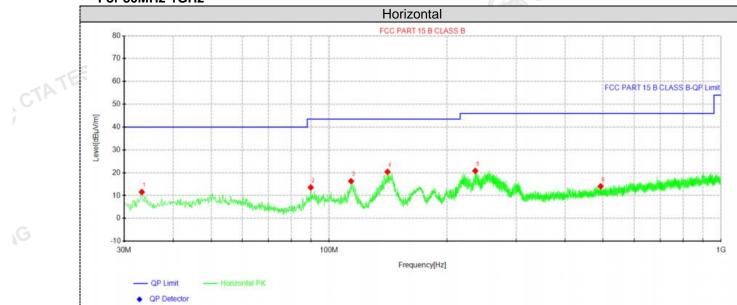
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance	Radiated (dBµV/m)	Radiated (µV/m)
	(Meters)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

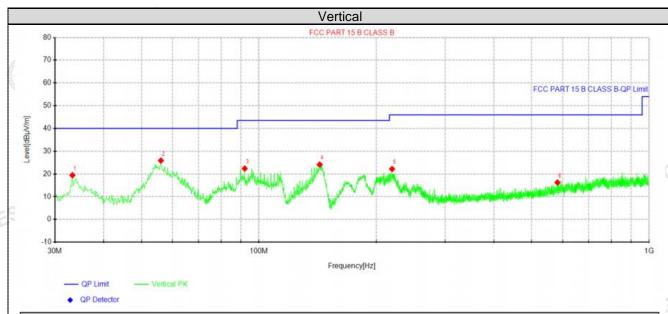

Page 15 of 37 Report No.: CTA23031400703

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Susp	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Foranty
1	33.2738	29.71	11.55	-18.16	40.00	28.45	100	240	Horizontal
2	89.7762	33.51	13.55	-19.96	43.50	29.95	100	350	Horizontal
3	113.783	35.71	16.31	-19.40	43.50	27.19	100	200	Horizontal
4	140.943	42.19	20.40	-21.79	43.50	23.10	100	270	Horizontal
5	236.003	39.19	20.84	-18.35	46.00	25.16	100	140	Horizontal
6	493.175	28.48	14.05	-14.43	46.00	31.95	100	70	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TESTING

Report No.: CTA23031400703 Page 16 of 37

Suspe	Suspected Data List												
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorita				
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
1	33.2738	37.61	19.45	-18.16	40.00	20.55	100	100	Vertical				
2	56.0688	43.24	25.88	-17.36	40.00	14.12	100	0	Vertical				
3	91.9588	42.00	22.38	-19.62	43.50	21.12	100	130	Vertical				
4	143.126	45.90	24.12	-21.78	43.50	19.38	100	240	Vertical				
5	219.392	41.00	22.17	-18.83	46.00	23.83	100	50	Vertical				
6	582.293	28.96	16.23	-12.73	46.00	29.77	100	180	Vertical				

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA23031400703 Page 17 of 37

For 1GHz to 25GHz

Note: 802.11b/802.11g/802.11n (H20)/ 802.11n (H40) Mode all have been tested, only worse case 802.11b mode is reported

(above 1GHz)

Freque	Frequency(MHz):			12	Pola	arity:	HORIZONTAL			
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4824.00	60.75	PK	74	13.25	65.11	32.4	5.11	41.87	-4.36	
4824.00	46.35	AV	54	7.65	50.71	32.4	5.11	41.87	-4.36	
7236.00	55.47	PK	74	18.53	56.10	36.58	6.43	43.64	-0.63	
7236.00	43.78	AV	54	10.22	44.41	36.58	6.43	43.64	-0.63	

TING								1	The Pas was with	
Freque	Frequency(MHz):			12	Pola	arity:	VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4824.00	59.06	PK	74	14.94	63.42	32.4	5.11	41.87	-4.36	
4824.00	45.92	AV	54	8.08	50.28	32.4	5.11	41.87	-4.36	
7236.00	54.97	PK	74	19.03	55.60	36.58	6.43	43.64	-0.63	
7236.00	42.60	AV	54	11.40	43.23	36.58	6.43	43.64	-0.63	

Frequency(MHz):		2437		Pola	arity:	HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	61.61	PK	74	12.39	65.56	32.56	5.34	41.85	-3.95
4874.00	46.19	AV	54	7.81	50.14	32.56	5.34	41.85	-3.95
7311.00	53.30	PK	74	20.70	53.66	36.54	6.81	43.71	-0.36
7311.00	43.43	AV	54	10.57	43.79	36.54	6.81	43.71	-0.36
							LES.		

Freque	Frequency(MHz):		2437		Pola	Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4874.00	60.43	PK	74	13.57	64.38	32.56	5.34	41.85	-3.95	
4874.00	45.76	AV	54	8.24	49.71	32.56	5.34	41.85	-3.95	
7311.00	53.78	PK	74	20.22	54.14	36.54	6.81	43.71	-0.36	
7311.00	41.73	AV	54	12.27	42.09	36.54	6.81	43.71	-0.36	

						JAIG			
Freque	Frequency(MHz):		2462		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	61.56	PK	74	12.44	65.02	32.73	5.64	41.83	-3.46
4924.00	46.39	AV	54	7.61	49.85	32.73	5.64	41.83	-3.46
7386.00	54.46	PK	74	19.54	54.52	36.5	7.23	43.79	-0.06
7386.00	42.35	PK	54	11.65	42.41	36.5	7.23	43.79	-0.06
	711	No	·	·		·	·	·	

Frequency(MHz):		2462		Polarity:		VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	59.09	PK	74	14.91	62.55	32.73	5.64	41.83	-3.46
4924.00	44.34	AV	54	9.66	47.80	32.73	5.64	41.83	-3.46
7386.00	52.51	PK	74	21.49	52.57	36.5	7.23	43.79	-0.06
7386.00	42.42	PK	54	11.58	42.48	36.5	7.23	43.79	-0.06

Report No.: CTA23031400703 Page 18 of 37

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20)/ 802.11n (H40) Mode all have been tested, only worse case 802.11b mode is reported

Frequency(MHz):		24	12	Polarity: HORIZONTAI		L			
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.33	PK	74	13.67	70.75	27.42	4.31	42.15	-10.42
2390.00	44.54	AV	54	9.46	54.96	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	12	Pola	Polarity: VERTION		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.08	PK	74	14.92	69.50	27.42	4.31	42.15	-10.42
2390.00	44.20	AV	54	9.80	54.62	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2462		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	61.23	PK	74	12.77	71.34	27.7	4.47	42.28	-10.11
2483.50	40.00								
2400.00	43.09	ΑV	54	10.91	53.20	27.7	4.47	42.28	-10.11
	43.09 ncy(MHz)		54 24			27.7 rity:		42.28 VERTICAL	•
		sion /el							•
Frequency	ncy(MHz) Emis Lev	sion /el	24 Limit	62 Margin	Pola Raw Value	Antenna Factor	Cable Factor	VERTICAL Pre- amplifier	Correction Factor

Note:

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Page 19 of 37 Report No.: CTA23031400703

Maximum Peak Conducted Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

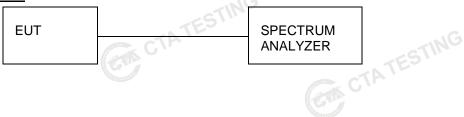
Test Results		CTATESTIN		
Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	7.05	The state of the s	
802.11b	06	8.67	30.00	Pass
TESTING	11	7.82		
CTA	01	6.58		
802.11g	06	7.63	30.00	Pass
	11	6.55	TESTIN	
	01	6.13	CIR	
802.11n(HT20)	06	6.43	30.00	Pass
~1G	11	6.61		(EVI)
STIN	01	7.71		V2 until
802.11n(HT40)	06 NG	8.43	30.00	Pass
	11	8.02		

Note:

- Measured output power at difference data rate for each mode and recorded worst case for each mode. 1)
- Test results including cable loss. 2)
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 3) 13.5Mbps at IEEE 802.11n HT40;

Report No.: CTA23031400703 Page 20 of 37

Power Spectral Density

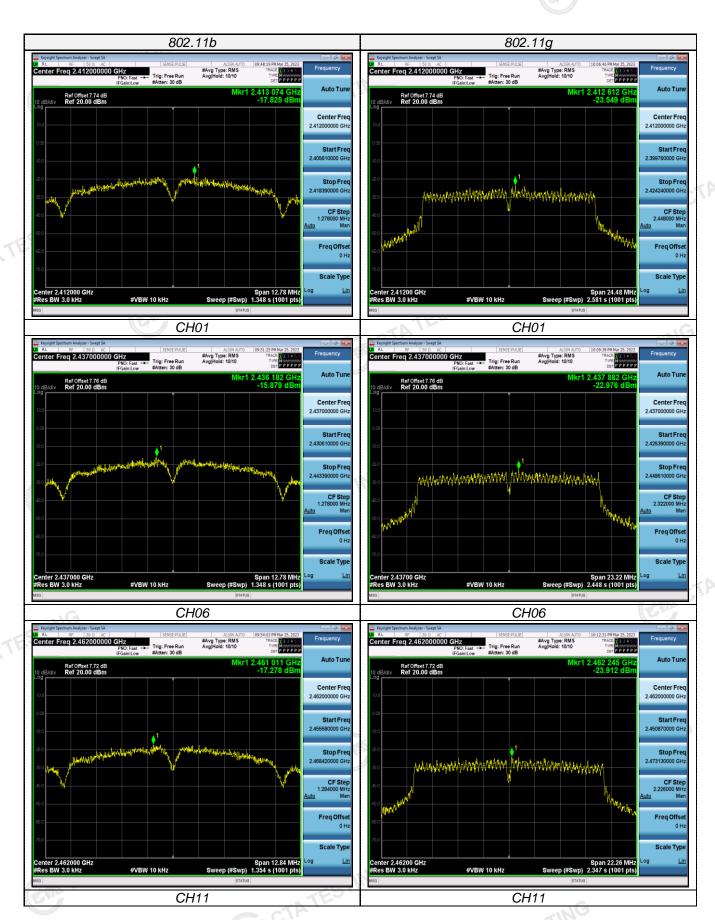

Limit

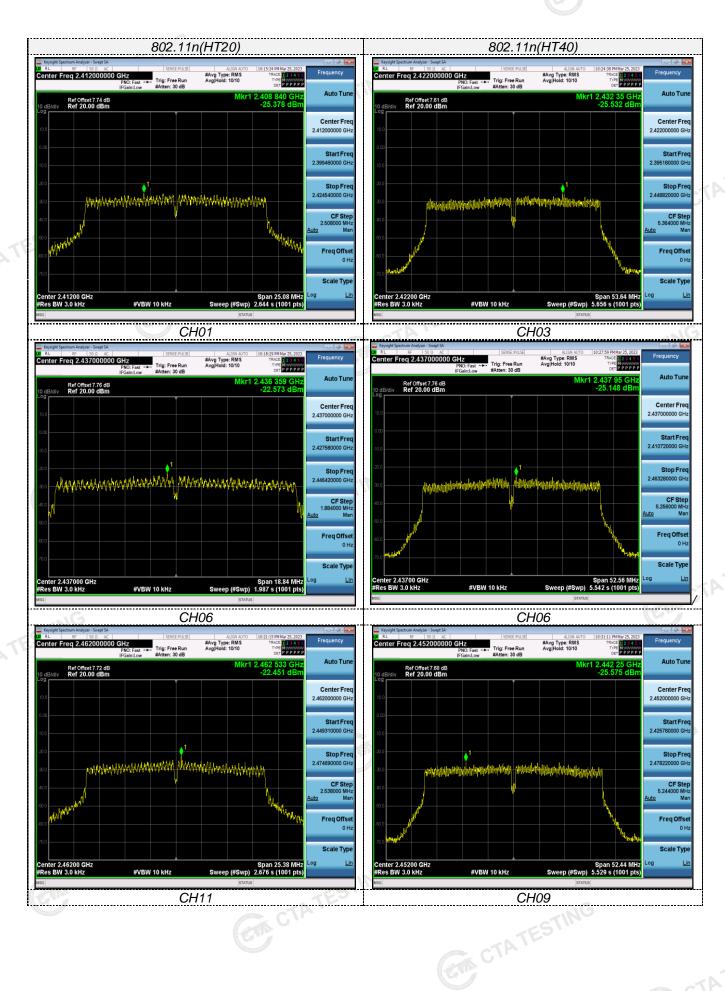
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- Set the RBW ≥ 3 kHz. 2.
- Set the VBW ≥ 3× RBW.
- CTA TESTING Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


Test Results


Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
511	01	-17.83			
802.11b	06	-15.88	8.00	Pass	
	11-5	-17.28			
	01	-23.55	LING		
802.11g	06	-22.98	8.00	Pass	
	11	-23.91			
	01	-25.38		STING	
802.11n(HT20)	06	-22.57	8.00	Pass	
	11	-22.45	No. W.	C/L	
	03	-25.53			
802.11n(HT40)	06	-25.15	8.00	Pass	
	09	-25.58			

Note:

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- Test results including cable loss;
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

Please refer to following plots;

Page 23 of 37 Report No.: CTA23031400703

4.5 6dB Bandwidth

<u>Limit</u>

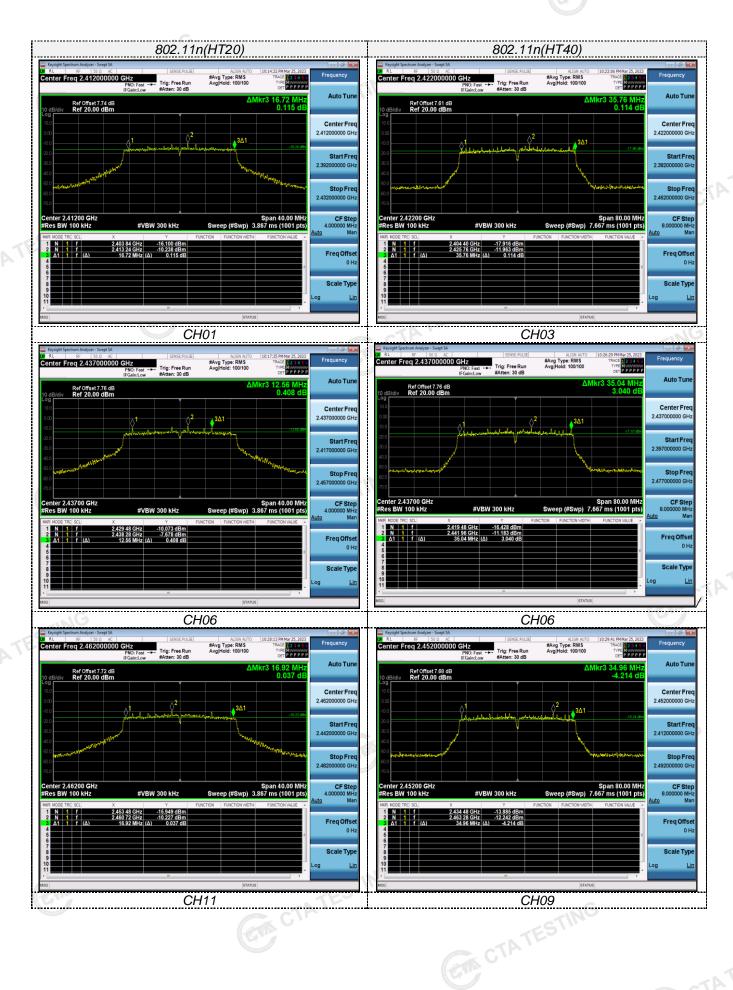
For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results


Test Results		CTA TESA		ATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	8.520	A STANTANTON	
802.11b	06	8.520	≥500	Pass
CTINO	11	8.560		
TES	01	16.320		
802.11g	06	15.480	≥500	Pass
CVIII	11	14.840		
	01	16.720	GTING	
802.11n(HT20)	06	12.560	≥500	Pass
	11	16.920	CVI	
	03	35.760		
802.11n(HT40)	06	35.040	≥500	Pass
ING	09	34.960		

Note:

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- Test results including cable loss; 2)
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; CTA TESTING 13.5Mbps at IEEE 802.11n HT40;

Please refer to following plots;

Report No.: CTA23031400703 Page 26 of 37

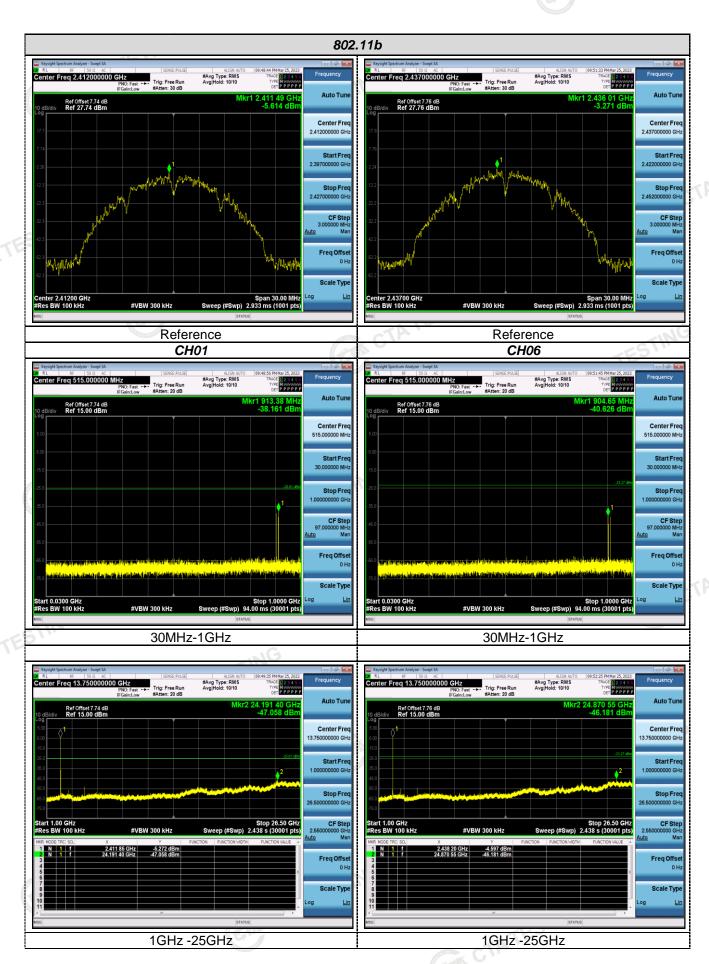
Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.


Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.

Test plot as follows: CTATESTING

