MHz	MHz	MHz	GHz
0.090-0.110	12.51975-12.52025	240-285	3.5-4.4
0.495-0.505	12.57675-12.57725	322-335.4	4.5-5.15
2.1735-2.1905	13.36-13.41	399.9-410	5.35-5.46
3.020-3.026	[®] 16.42-16.423	[®] 608-614	8 7.25-7.75
4.125-4.128	16.69475-16.69525	960-1427	8.025-8.5
4.1772&4.17775	16.80425-16.80475	1435-1626.5	9.0-9.2
4.2072&4.20775	25.5-25.67	1645.5-1646.5	9.3-9.5
5.677-5.683	37.5-38.25	1660-1710	10.6-12.7
6.215-6.218	73-74.6	1718.8-1722.2	13.25-13.4
6.26775-6.26825	74.8-75.2	2200-2300	14.47-14.5
6.31175-6.31225	108-138	2310-2390	15.35-16.2
8.291-8.294	149.9-150.05	2483.5-2500	17.7-21.4
8.362-8.366	156.52475-156.52525	2655-2900	22.01-23.12
8.37625-8.38675	156.7-156.9	3260-3267	23.6-24.0
8.41425-8.41475	162.0125-167.17	3332-3339	31.2-31.8
12.29-12.293	167.72-173.2	3345.8-3358	36.43-36.5
			Above 38.6

RSS-Gen section 8.10 Restricted frequency band

Note: Certain frequency bands listed in above table and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

(2) FCC 15.209 Limit and RSS-Gen section 8.9 Limit.

DISTANCE	FIELD STREN	GTHS LIMIT		
Meters	dB(µV)/m			
300 📃 🛞	2400/F(kHz)	67.6-20log(F)		
30	24000/F(kHz) 🚽	87.6-20log(F)		
30	30	29.54		
3	100	40.0		
3 150		43.5		
3	200	46.0		
3	® 500	54.0 🛞		
3	74.0 dB(μV) 54.0 dB(μV)/n			
	Meters 300 © 30 30 30 3 3 3 3 3 3 3 3	Meters μV/m 300 2400/F(kHz) 30 24000/F(kHz) 30 30 30 30 30 30 30 30 3 100 3 200 3 500 3 74.0 dB(μV)		

Note:

(1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9 - 90 kHz, 110 - 490 kHz and above 1000 MHz, radiated emissions limits in these three bands are based on measurements employing an average detector.

(2) At frequencies below 30 MHz, measurement may be performed at a distance closer than that specified, and the limit at closer measurement distance can be extrapolated by below formula:

Limit_{3m}(dBuV/m)= Limit_{30m}(dBuV/m) + 40Log(30m/3m)

(3) Limit for this EUT

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20 dB below the fundamental emissions or comply with 15.209 limits and RSS-Gen limits.

10.3. Test Procedure

- EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1G and 150 cm above the ground plane inside a fully-anechoic chamber for above 1G.
- (2) Test antenna was located 3 m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used	Test antenna distance
9 kHz - 30 MHz	9 kHz - 30 MHz Active Loop antenna	
30 MHz - 1 GHz	3 m	
1 GHz - 18 GHz	Double Ridged Horn Antenna (1 GHz - 18 GHz)	3 m
18 GHz - 40 GHz	Horn Antenna (18 GHz - 40 GHz)	1 m

According ANSI C63.10:2013 clause 6.4.6 and 6.5.3, for measurements below 30 MHz, Antenna was located 3 m from EUT, the loop antenna was positioned in three antenna orientations (parallel, perpendicular, and round-parallel), for each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable, and the lowest height of the magnetic antenna shall be 1 m above the ground. For measurement above 30MHz, the trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

(3) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9 kHz to 25 GHz:

(a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1 m to 4 m (Except loop antenna, it's fixed 1 m above ground.)

(b) Change work frequency or channel of device if practicable.

(c) Change modulation type of device if practicable.

(d) Change power supply range from 85% to 115% of the rated supply voltage

(e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.

Spectrum frequency from 9 kHz to 25 GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 18 GHz to 25 GHz, so below final test was performed with frequency range from 9 kHz to 18 GHz.

8

- (4) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission.
 Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipment and all of the interface cables were changed according to ANSI C63.10:2013 on Radiated Emission test.
- (5) The emissions from 9 kHz to 1 GHz were measured based on CISPR QP detector except for the frequency bands 9 - 90 kHz, 110 - 490 kHz, for emissions from 9 kHz - 90 kHz,110 kHz -490 kHz and above 1 GHz were measured based on average detector, for emissions above 1 GHz, peak emissions also be measured and need comply with Peak limit.
- (6) The emissions from 9 kHz to 1 GHz, QP or average values were measured with EMI receiver with below RBW.

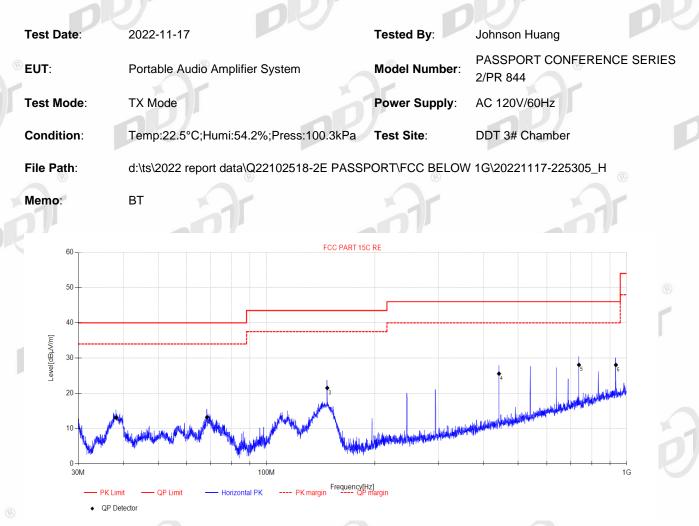
Frequency band	RBW
9 kHz - 150 kHz	200 Hz
150 kHz - 30 MHz	9 kHz
💿 30 MHz - 1 GHz 💿	120 kHz

(7) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1 MHz, VBW is set at 3 MHz for Peak measure; According ANSI C63.10:2013 clause 4.1.4.2.2 procedure for average measure.

10.4. Test result

Pass. (See below detailed test result)

All the emissions except fundamental emission from 9 kHz to 25 GHz were comply with 15.209 limits.

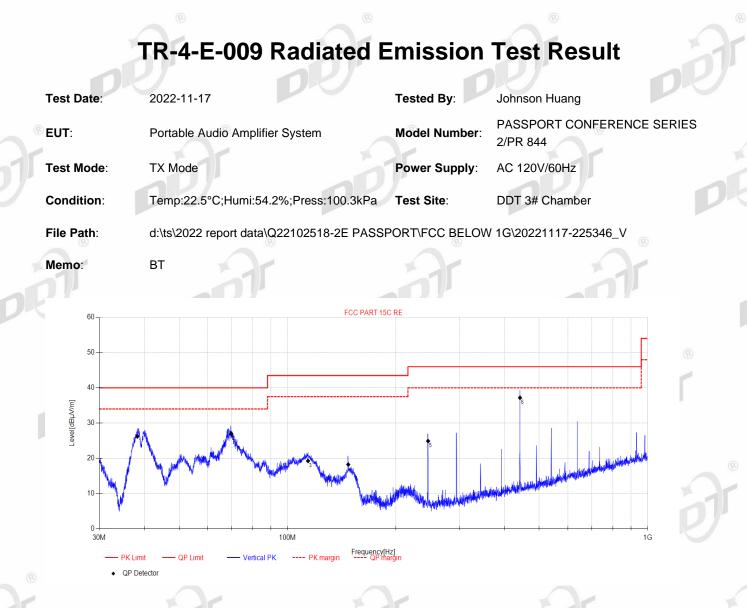

Note1: According exploratory test, the emission levels are 20 dB below the limit detected from 9 kHz to 30 MHz and 18 GHz to 25 GHz, so the final test was performed with frequency range from 30 MHz to 18 GHz and recorded in below.

Note2: For emissions below 1 GHz, according exploratory explorer test, when change Tx mode and channel, have no distinct influence on emissions level, so for emissions below 1 GHz, the final test was only performed with EUT working in GFSK, Tx 2480 MHz mode.

Note3: For emissions above 1 GHz. If peak results comply with AV limit, AV Result is deemed to comply with AV limit.

Note4: For emission above 1GHz that over the limit are fundamental, the report was only recorded the worst case.

Radiated Emission test (below 1 GHz) TR-4-E-009 Radiated Emission Test Result

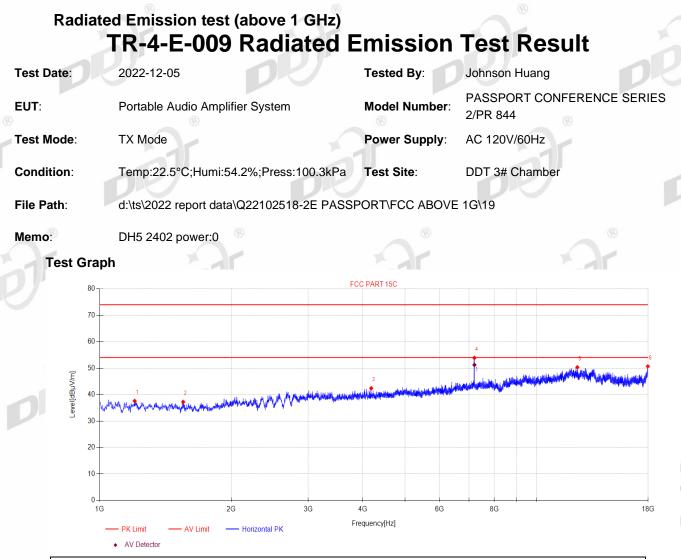

Final Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Margin [dB]	Detector	Polarity					
1	38.24	33.01	-19.95	13.06	40.00	26.94	QP	Horizontal		
2	68.38	35.15	-21.92	13.23	40.00	26.77	QP	Horizontal		
3	147.46	44.99	-23.48	21.51	43.50	21.99	QP	Horizontal		
4	442.12	39.68	-14.12	25.56	46.00	20.44	QP	Horizontal		
5	737.12	37.24	-9.17	28.07	46.00	17.93	QP	Horizontal		
6	933.59	33.71	-5.66	28.05	46.00	17.95	QP	Horizontal		

Note: 🕓

1. Result Level = Read Level + Factor

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.


Final Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Result Limit [dBµV/m] [dBµV/m]		Margin [dB] Detector		Polarity		
1	38.32	46.18	-19.94	26.24	40.00	13.76	QP	Vertical		
2	69.74	49.78	-22.82	26.96	40.00	13.04	QP	Vertical		
3	114.00	40.47	-21.22	19.25	43.50	24.25	QP	Vertical		
4	147.46	41.71	-23.48	18.23	43.50	25.27	QP	Vertical		
5	245.68	43.22	-18.33	24.89	46.00	21.11	QP	Vertical		
6	442.12	51.3	-14.12	37.18	46.00	8.82	QP	Vertical		

Note: 🕓

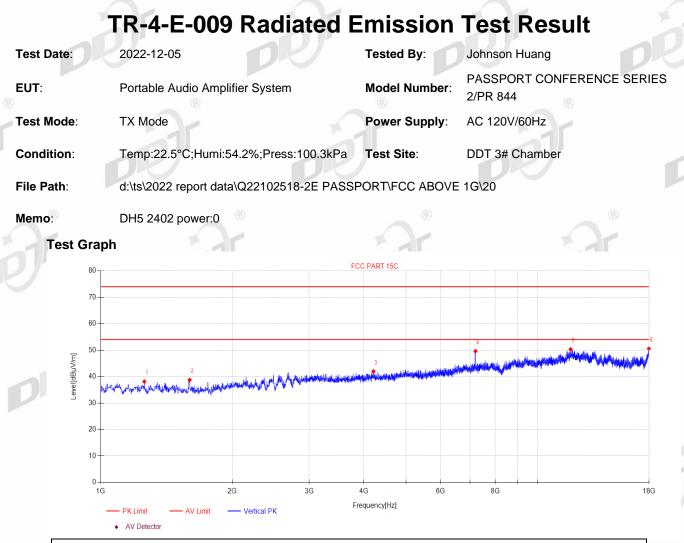
1. Result Level = Read Level + Factor

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

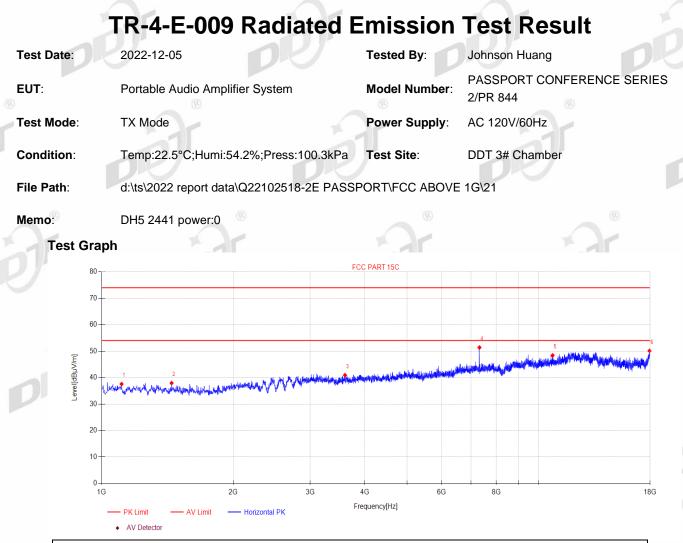
Suspe	cted Data List				®		
NO.	Freq. [MHz]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	1202.30	-11.09	37.57	74.00	36.43	PK	Horizontal
2	1552.50	-11.39	37.22	74.00	36.78	PK	Horizontal
3	4182.40	-7.07	42.38	74.00	31.62	PK	Horizontal
4	7205.00	-0.81	53.89	74.00	20.11	PK	Horizontal
5	12393.40	4.71	50.32	74.00	23.68	PK	Horizontal
6	17974.50	9.61	50.68	74.00	23.32	PK	Horizontal

Final Data List

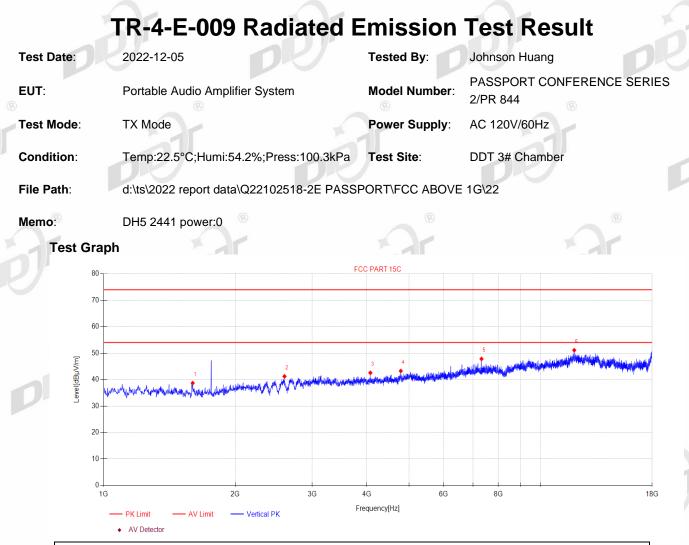

i mai									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [©] [dB]	Detector	Polarity	
1	7206.04	51.21	0.02	51.23	54.00	2.77	AV	Horizontal	
Nieter.									

Note:

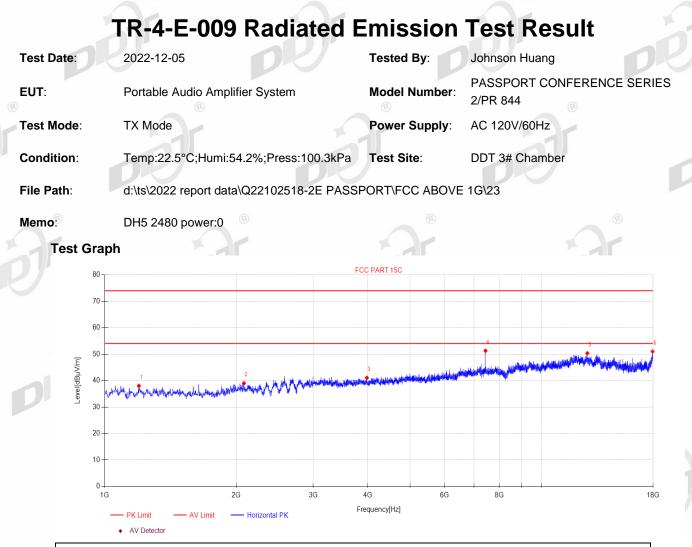
1. Level = Reading + Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.


Suspe	cted Data List				8		
NO.	NO. Freq. Factor [MHz] [dB]			.evel Limit Margin BµV/m] [dBµV/m] [dB]			Polarity
1	1258.40	-11.03	38.11	74.00	35.89	PK	Vertical
2	1598.40	-11.40	38.77	74.00	35.23	PK	Vertical
3	4211.30	-7.00	41.96	74.00	32.04	PK	Vertical
4	7206.70	-0.81	49.61	74.00	24.39	PK	Vertical
5	11898.70	4.51	50.31	74.00	23.69	PK	Vertical
6	17979.60	9.64	50.59	74.00	23.41	PK	Vertical

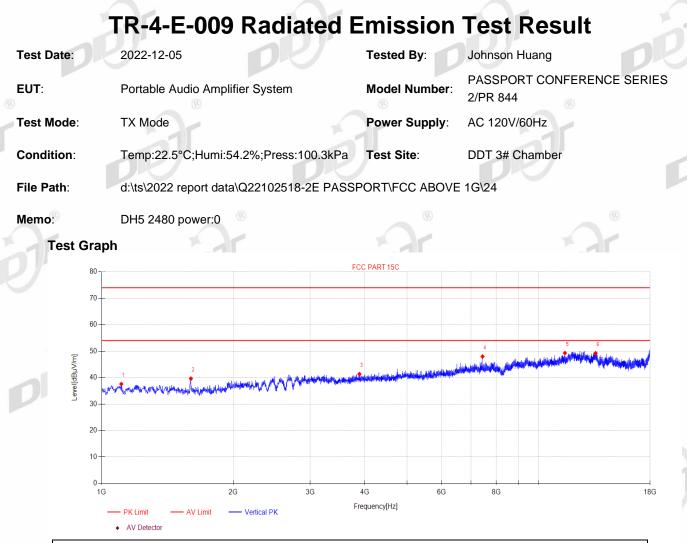
- 1. Level = Reading + Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.


cted Data List				®		
Freq. [MHz]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1110.50	-11.14	37.56	74.00	36.44	PK	Horizontal
1445.40	-11.16	37.92	74.00	36.08	PK	Horizontal
3604.40	-8.07	40.93	74.00	33.07	PK	Horizontal
7322.30	-0.79	51.39	74.00	22.61	PK	Horizontal
10766.50	3.07	48.41	74.00	25.59	PK	Horizontal
17937.10	9.34	50.13	74.00	23.87	PK	Horizontal
	Freq. [MHz] 1110.50 1445.40 3604.40 7322.30 10766.50	Freq. Factor [MHz] [dB] 1110.50 -11.14 1445.40 -11.16 3604.40 -8.07 7322.30 -0.79 10766.50 3.07	Freq. Factor Level [MHz] [dB] [dBµV/m] 1110.50 -11.14 37.56 1445.40 -11.16 37.92 3604.40 -8.07 40.93 7322.30 -0.79 51.39 10766.50 3.07 48.41	Freq. Factor Level Limit [MHz] [dB] [dBµV/m] [dBµV/m] 1110.50 -11.14 37.56 74.00 1445.40 -11.16 37.92 74.00 3604.40 -8.07 40.93 74.00 7322.30 -0.79 51.39 74.00 10766.50 3.07 48.41 74.00	Freq. Factor Level Limit Margin [MHz] [dB] [dBµV/m] [dBµV/m] [dB] 1110.50 -11.14 37.56 74.00 36.44 1445.40 -11.16 37.92 74.00 36.08 3604.40 -8.07 40.93 74.00 33.07 7322.30 -0.79 51.39 74.00 22.61 10766.50 3.07 48.41 74.00 25.59	Freq. [MHz] Factor [dB] Level [dBµV/m] Limit [dBµV/m] Margin [dB] Detector 1110.50 -11.14 37.56 74.00 36.44 PK 1445.40 -11.16 37.92 74.00 36.08 PK 3604.40 -8.07 40.93 74.00 33.07 PK 7322.30 -0.79 51.39 74.00 22.61 PK 10766.50 3.07 48.41 74.00 25.59 PK

- 1. Level = Reading + Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Suspe	cted Data List	®		8	®		
NO.	Freq. [MHz]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	1598.40	-11.40	38.69	74.00	35.31	PK	Vertical
2	2592.90	-8.97	41.21	74.00	32.79	PK	Vertical
3	4077.00	-7.32	42.56	74.00	31.44	PK	Vertical
4	4785.90	-5.65	43.25	74.00	30.75	PK	Vertical
5	7324.00	-0.79	47.83	74.00	26.17	PK	Vertical
6	11939.50	4.62	51.11	74.00	22.89	PK	Vertical

- 1. Level = Reading + Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.


	Suspe	cted Data List	®		3	8		
	NO.	Freq. [MHz]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
	1	1197.20	-11.09	37.99	74.00	36.01	PK	Horizontal
	2	2082.90	-9.91	38.99	74.00	35.01	PK	Horizontal
	3	3981.80	-7.53	41.04	74.00	32.96	PK	Horizontal
B	4	7439.60	-0.76	51.29	74.00	22.71	PK	Horizontal
	5	12723.20	4.80	50.34	74.00	23.66	PK	Horizontal
	6	17952.40	9.44	50.99	74.00	23.01	PK	Horizontal

1. Level = Reading + Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Page 50 of 83

cted Data List						
Freq. [MHz]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1108.80	-11.15	37.57	74.00	36.43	PK	Vertical
1600.10	-11.40	39.60	74.00	34.40	PK	Vertical
3888.30	-7.60	41.34	74.00	32.66	PK	Vertical
7441.30	-0.76	47.98	74.00	26.02	PK	Vertical
11485.60	3.98	49.27	74.00	24.73	PK	Vertical
13506.90	5.47	49.22	74.00	24.78	PK	Vertical
	Freq. [MHz] 1108.80 1600.10 3888.30 7441.30 11485.60	Freq. Factor [MHz] [dB] 1108.80 -11.15 1600.10 -11.40 3888.30 -7.60 7441.30 -0.76 11485.60 3.98	Freq. Factor Level [dB] [MHz] [dB] [dBµV/m] 1108.80 -11.15 37.57 1600.10 -11.40 39.60 3888.30 -7.60 41.34 7441.30 -0.76 47.98 11485.60 3.98 49.27	Freq. Factor Level Limit [MHz] [dB] [dBµV/m] [dBµV/m] 1108.80 -11.15 37.57 74.00 1600.10 -11.40 39.60 74.00 3888.30 -7.60 41.34 74.00 7441.30 -0.76 47.98 74.00 11485.60 3.98 49.27 74.00	Freq. [MHz]Factor [dB]Level [dBµV/m]Limit [dBµV/m]Margin [dB]1108.80-11.1537.5774.0036.431600.10-11.4039.6074.0034.403888.30-7.6041.3474.0032.667441.30-0.7647.9874.0026.0211485.603.9849.2774.0024.73	Freq. [MHz] Factor [dB] Level [dBµV/m] Limit [dBµV/m] Margin [dB] Detector 1108.80 -11.15 37.57 74.00 36.43 PK 1600.10 -11.40 39.60 74.00 34.40 PK 3888.30 -7.60 41.34 74.00 32.66 PK 7441.30 -0.76 47.98 74.00 26.02 PK 11485.60 3.98 49.27 74.00 24.73 PK

- 1. Level = Reading + Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

11.RF Conducted Spurious Emissions

11.1. Block diagram of test setup

Same as section 4.1

11.2. Limits

In any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

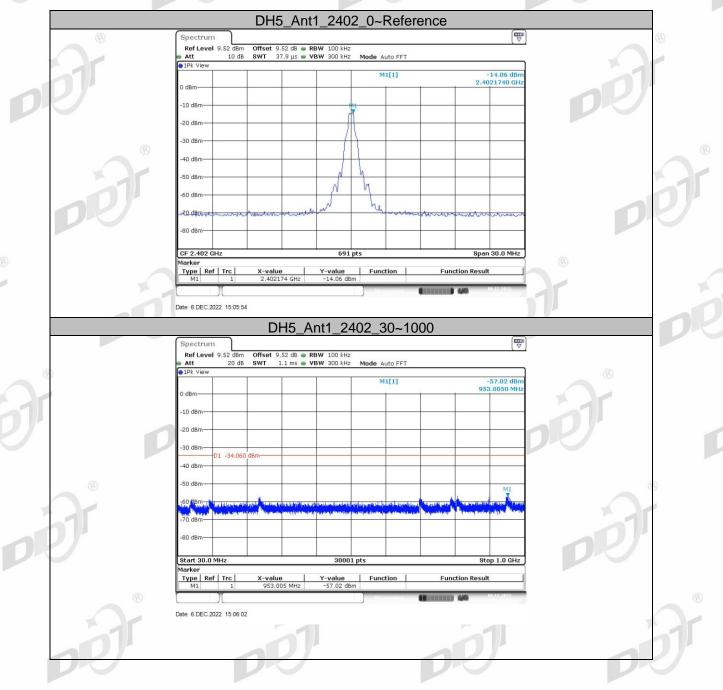
11.3. Test procedure

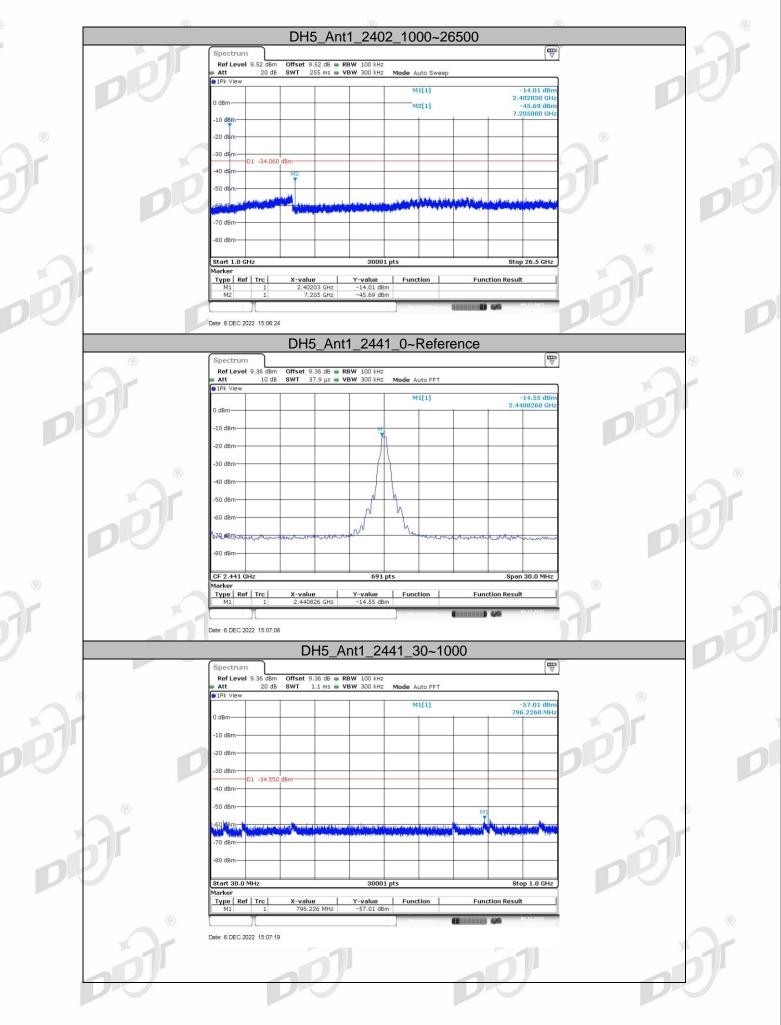
- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Establish a reference level by using the following procedure:

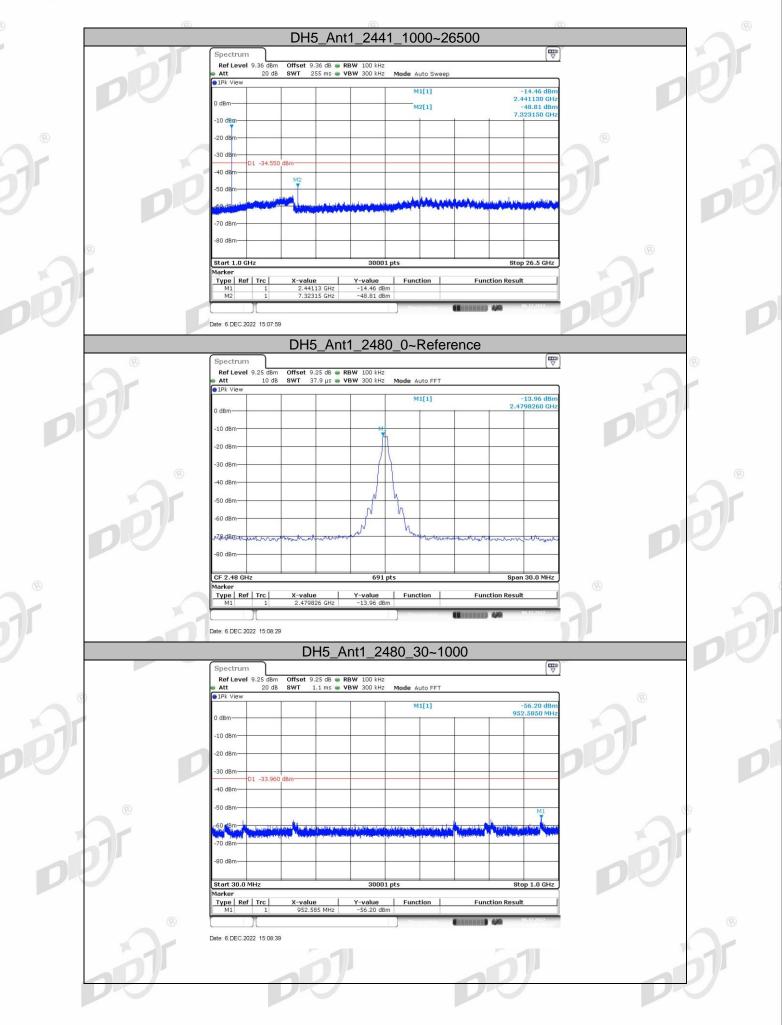
	g
Center frequency	Test frequency
RBW:	100 kHz
VBW:	300 kHz
Spon ®	Wide enough to capture the peak level of the in-band
Span	emission
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold
(3) Allow the trace to stabilize, use the	e peak marker function to determine the maximum peak
power level to establish the referen	nce level.
(4) Set the spectrum analyzer as follo	ws:
RBW:	100 kHz
_S VBW:	300 kHz 🛞
Span	Encompass frequency range to be measured
Number of measurement points	≥span/RBW
Detector Mode:	Peak DE DE
Sweep time:	auto
Trace mode ®	Max hold 6 8
(5) Allow the trace to stabilize, use the	e peak marker function to determine the maximum

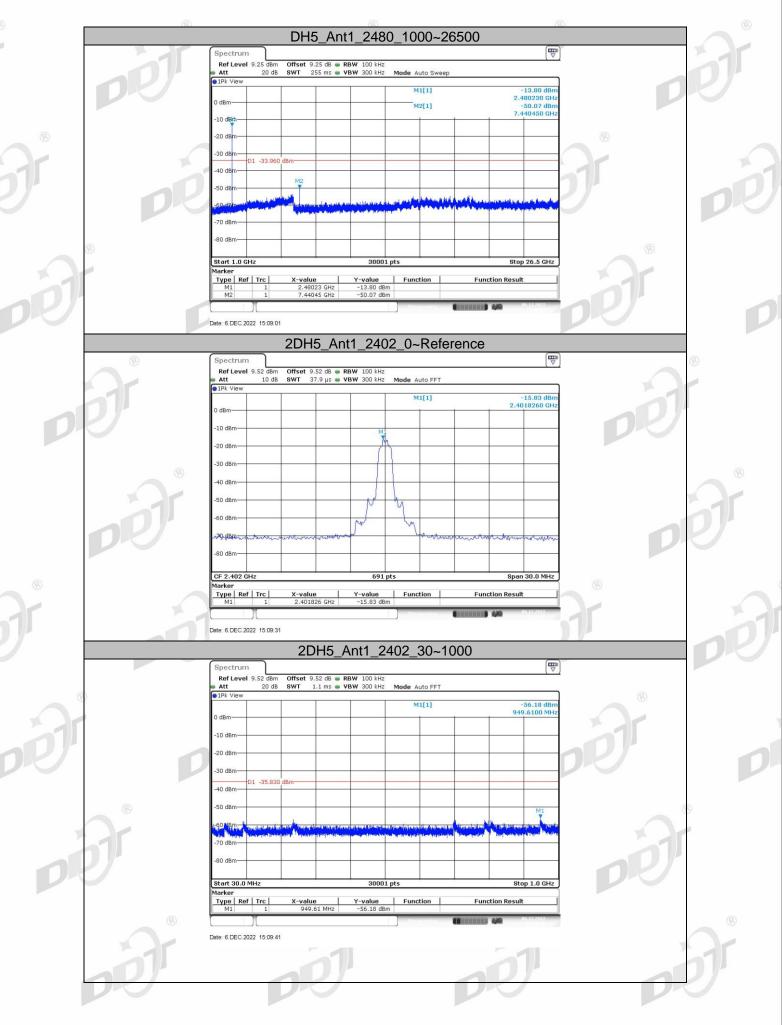
amplitude of all unwanted emissions outside of the authorized frequency band

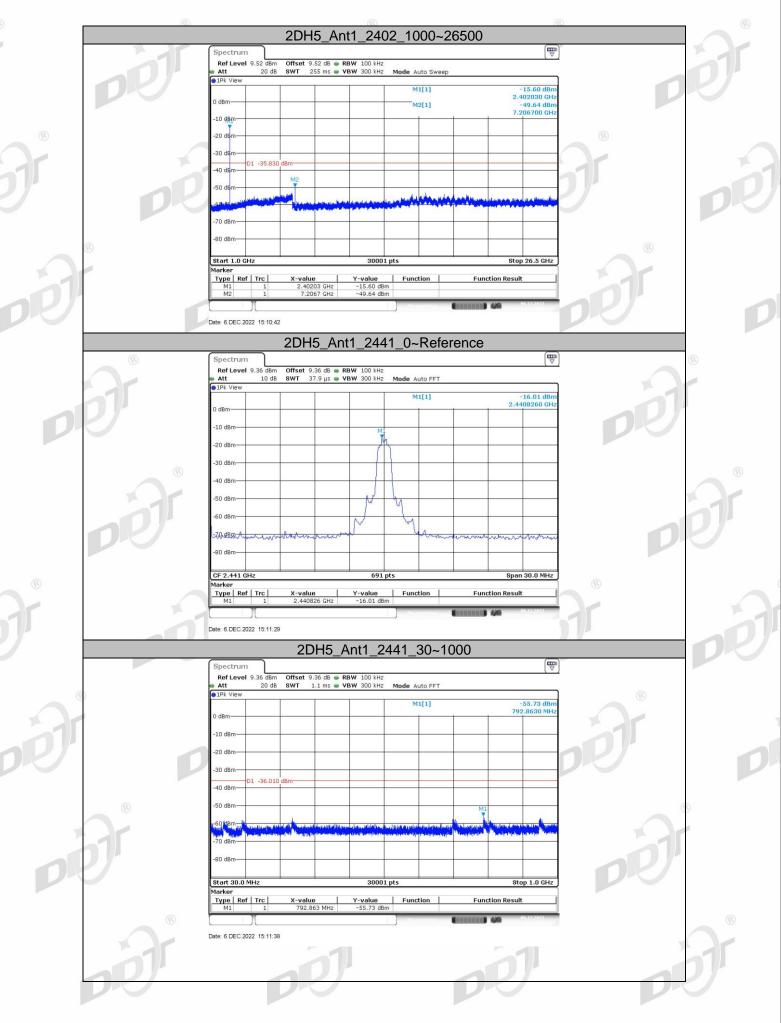
Note:

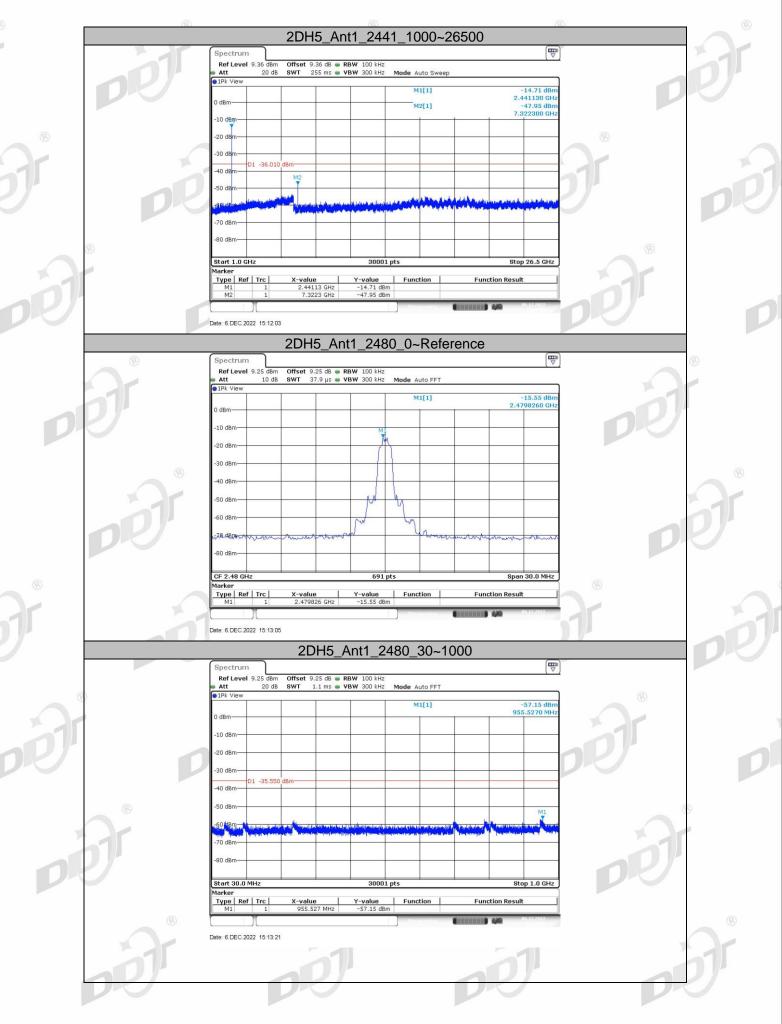

1.The attenuator loss was inputted into spectrum analyzer as amplitude offset.2.The pathloss of external cable: 0.5dB (According to the manufacturer's claims).

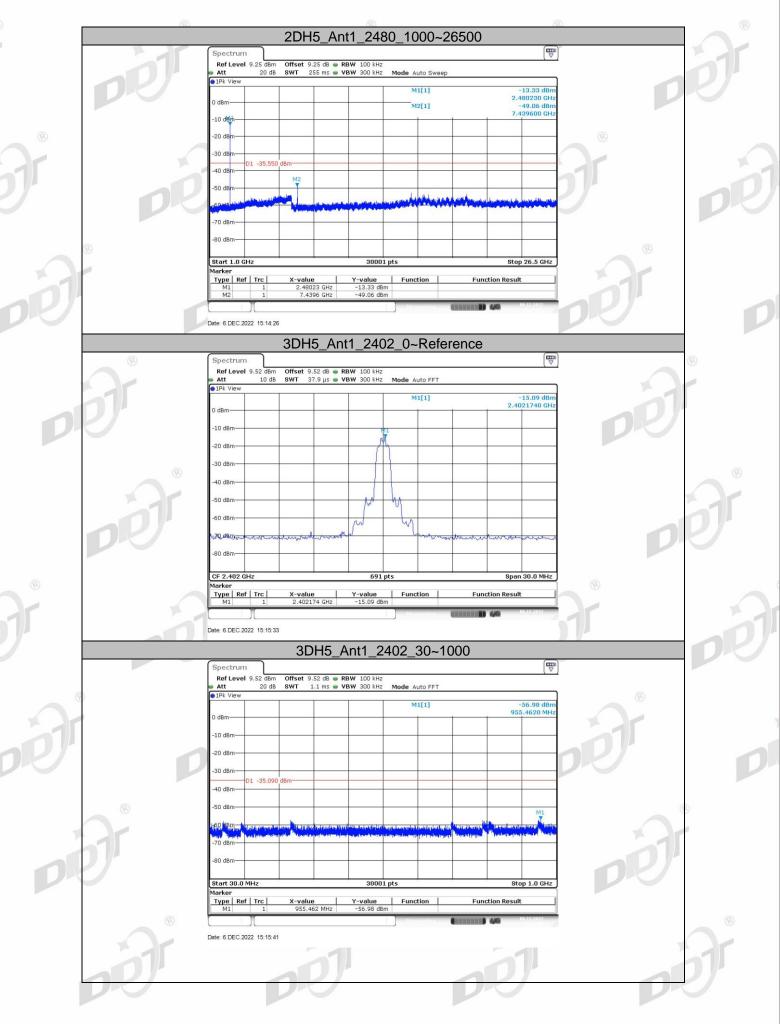

Dongguan Dongdian Testing Service Co., Ltd.

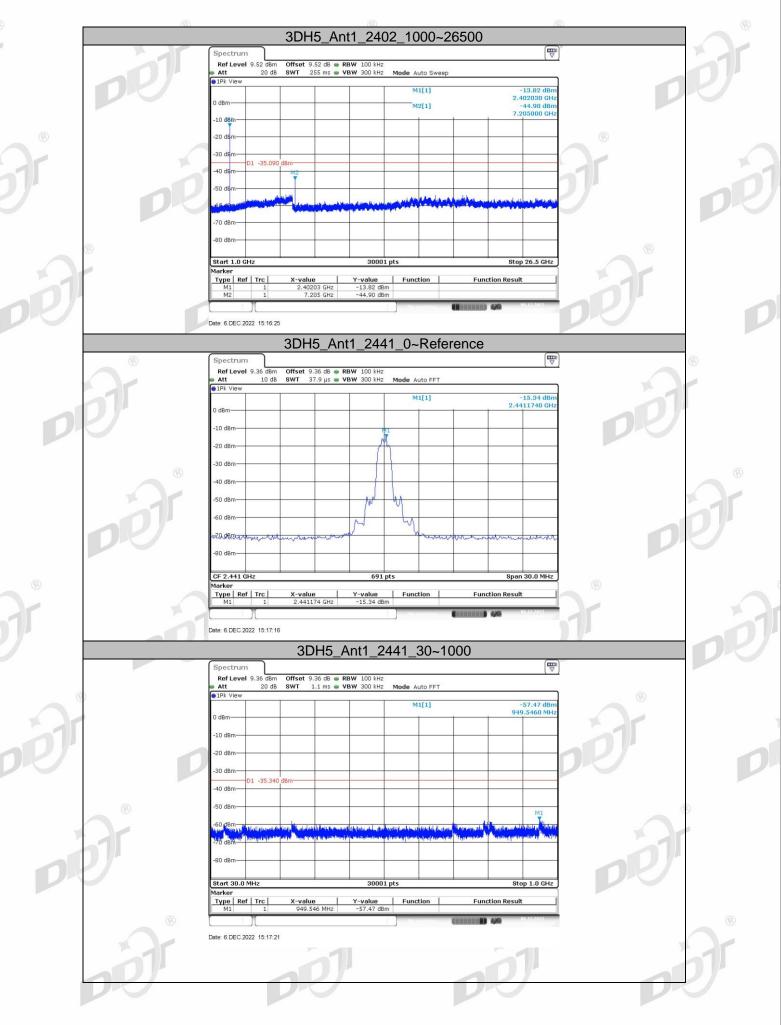

11.4. Test result

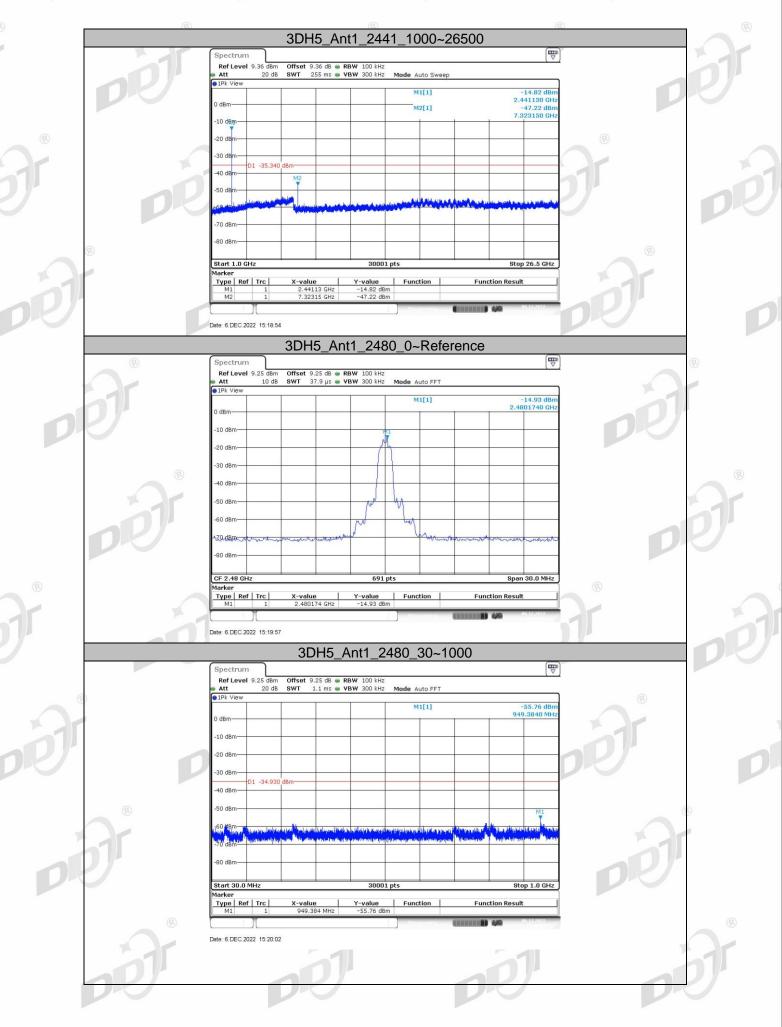

Mode	Frequency (MHz)	Verdict
	Hopping off 2402	Pass
GFSK	Hopping off 2441	Pass
	Hopping off 2480	Pass
× Ar	Hopping off 2402	Pass
π/4-DQPSK	Hopping off 2441	Pass
	Hopping off 2480	Pass
	Hopping off 2402	Pass
® 8DPSK	Hopping off 2441	Pass 🔬
	Hopping off 2480	Pass

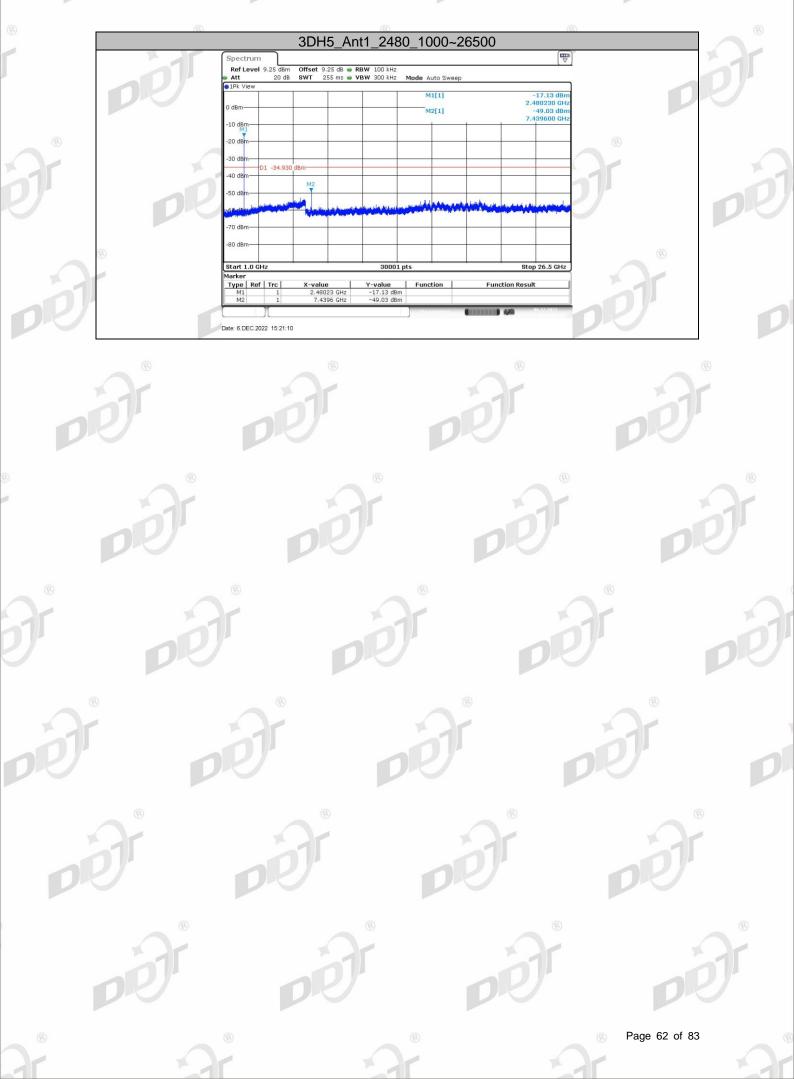

11.5. Original test data

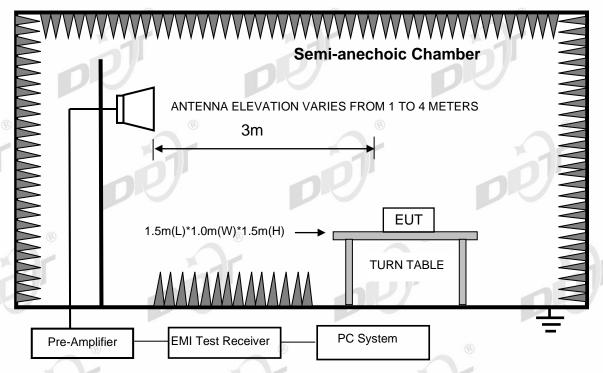










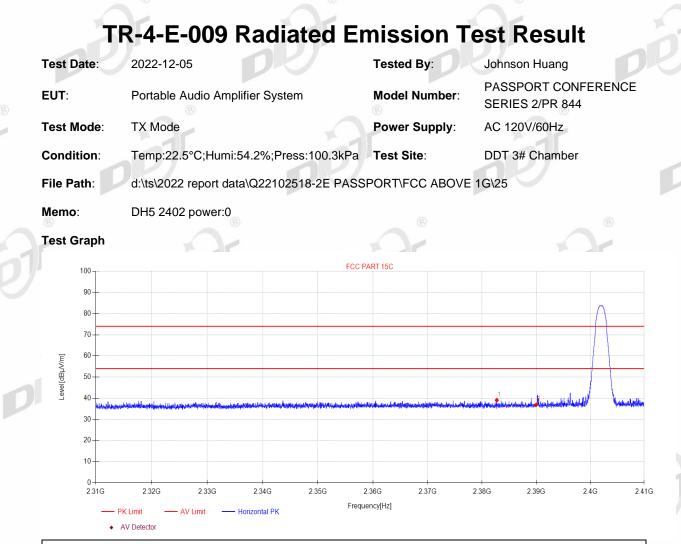


12. Band Edge Compliance (Radiated Method)

12.1. Block diagram of test setup

12.2. Limit

All restriction band should comply with 15.209, other emission should be at least 20 dB below the fundamental.


12.3. Test Procedure

Same with clause 10.3 except change investigated frequency range from 2310 MHz to 2410 MHz and 2475 MHz to 2500 MHz.

Remark: All restriction band have been tested, and only the worst case is shown in report.

12.4. Test result

Pass. (See below detailed test result) Remark: hopping on and hopping off mode all have been test, hopping off mode is worse and reported only.

Suspected	Data	List

Ousp		LISC (R)				(8)			(8)	
NO.	Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	2382.71	48.79	0.72	27.47	-37.92	39.06	74.00	34.94	PK	Horizontal
2	2390.00	46.67	0.72	27.48	-37.92	36.95	74.00	37.05	PK	Horizontal

Note:

1. Level = Reading + Cable Loss + Antenna Factor + AMP

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

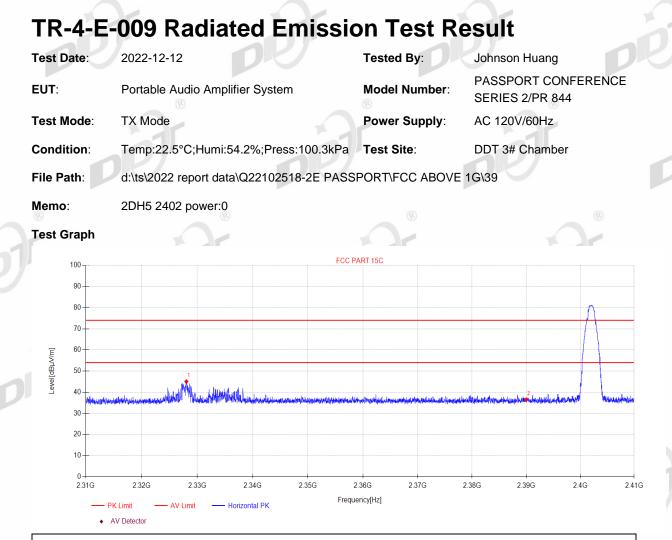
3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Test Date:	2022-12-05	Tested By:	Johnson Huang
EUT:	Portable Audio Amplifier System	Model Number:	PASSPORT CONFERENCE SERIES 2/PR 844
Test Mode:	TX Mode	Power Supply:	AC 120V/60Hz
Condition:	Temp:22.5°C;Humi:54.2%;Press:100.3kPa	Test Site:	DDT 3# Chamber
File Path:	d:\ts\2022 report data\Q22102518-2E PAS	SPORT\FCC ABOVE	1G\26
Memo:	DH5 2402 power:0		
Test Graph		51	51
80	FCC	PART 15C	
70			
60			
50			
	an martan y se an an air an air air an air an air an an an air an an an an an air an air an air an air an air a	ر بر المراجع بين الله من المالية من المالية من المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا	Line in a mailine and the first have a set had
30-			
20			
10-			
0 2.31G	2.32G 2.33G 2.34G 2.35G PK Limit — AV Limit — Vertical PK Free	2.36G 2.37G uency[Hz]	238G 2.39G 2.4G 2.4

Susp	ected Data	List					-	/		
NO.	Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	2360.80	50.94	0.72	27.42	-37.92	41.16	74.00	32.84	PK	Vertical
2	2390.00	46.20	0.72	27.48	-37.92	36.48	74.00	37.52	PK	Vertical

- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Test Dat	e:	2022-1	2-05				Tes	ted By:	Johns	on Huang	
EUT:	Portable Audio Amplifier System		Mod	lel Number:		PASSPORT CONFERENCE SERIES 2/PR 844					
Test Mod	de:	TX Mod	de				Pov	ver Supply:	AC 12	0V/60Hz	
Conditio	n:	Temp:2	22.5°C;	;Humi:54	4.2%;Pre	ess:100.3	kPa Tes	t Site:	DDT 3	# Chamber	
File Path	:	d:\ts\20	22 rep	ort data	Q22102	2518-2E F	PASSPOR		/E 1G\27		
Memo:		DH5 24	180 pov	wer:0							
Test Gra	ph			1				1			r
100)						FCC PART 15C				
90)										
80)		r								
70)										
			/								
[ɯ///ˈɡp] əʌə40						2				alessander at 100 lekster og som som killer.	
30	Neise North Lafer in A	aki tai fada kata ta ta			" Weith Market W	Adarthalis John Joopallid Alah	hrender Maria ander an legist	din telant den der state som det for der state som	han Miller and Anna Andrea and And	udiştirinin den çiri dir. Anton oran dan definingen	nijite (canicilite anitation)
20)										
10)										
C	475G	2.4775G	24	18G	2.4825G	2.485G	2.4875G	2.49G	2.4925G	2.495G 2.497	iG 2.50


Susp	ected Data	List						1		
NO.	Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	2483.50	45.89	0.73	27.73	-37.92	36.43	74.00	37.57	PK	Horizontal
2	2485.47	48.96	0.73	27.74	-37.92	39.51	74.00	34.49	PK	Horizontal

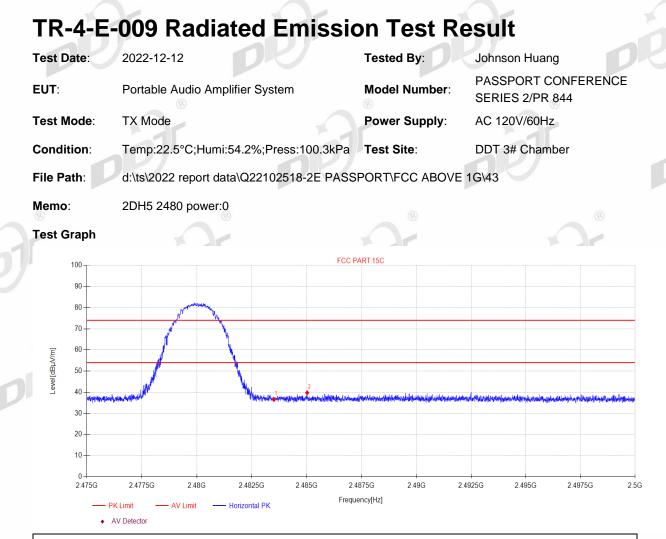
- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Test Date:	2022-12-05	Tested By:	Johnson Huang
EUT:	Portable Audio Amplifier System	Model Number:	PASSPORT CONFERENCE SERIES 2/PR 844
Test Mode:	TX Mode	Power Supply:	AC 120V/60Hz
Condition:	Temp:22.5°C;Humi:54.2%;Press:100.3kPa	Test Site:	DDT 3# Chamber
File Path:	d:\ts\2022 report data\Q22102518-2E PAS	SPORT\FCC ABOVE	1G\28
Memo:	DH5 2480 power:0	e e	8
Test Graph	1		
80	FCC	PART 15C	
70 - 60 -			
	dan beren der die die d	الموار والمراجع المراجع	2 and bill definition for the data of the sound set of a distribution of the linear
30-			
20			
10			
0 2.475G	Free	2.4875G 2.49G 2. guency[Hz]	4925G 2.495G 2.4975G 2.5G
	PK Limit — AV Limit — Vertical PK AV Detector	4 3 8 - 3	

Susp	ected Data	List						1		
NO.	Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	2483.50	47.14	0.73	27.73	-37.92	37.68	74.00	36.32	PK	Vertical
2	2493.78	50.06	0.73	27.78	-37.92	40.65	74.00	33.35	PK	Vertical
(K)			(8)				(84)			(%)

- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Suspected Data Lis


ousp		LIOU (R)				(8)			(8)	
NO.	Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	2328.04	54.89	0.72	27.36	-37.92	45.05	74.00	28.95	PK	Horizontal
2	2390.00	46.24	0.72	27.48	-37.92	36.52	74.00	37.48	PK	Horizontal

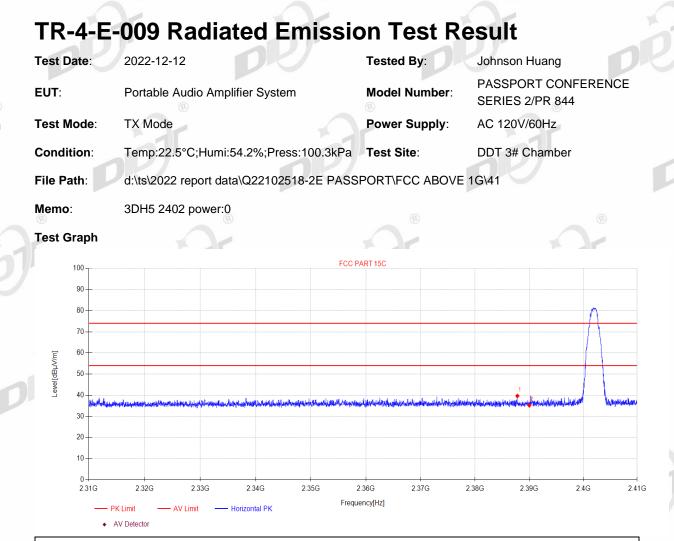
- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

est Date:	2022-12-1	2			Tested By		Johnson I	Huang	
:UT:	Portable A	Audio Amplifi	er System		Model Nu	mber:	PASSPO		ERENCE
est Mode:	TX Mode			51	Power Su	pply:	AC 120V/	60Hz	
Condition:	Temp:22.	5°C;Humi:54	.2%;Press:1	00.3kPa	Test Site:		DDT 3# C	hamber	
ile Path:	d:\ts\2022	report data	Q22102518	-2E PASS	PORT\FCC	ABOVE 1	G\40		
lemo:	2DH5 240	2 power:0							
est Graph		1			51			-	r
80				FCC P/	ART 15C				
70									Λ
60									
50		1							
Level[dBJ/Vm]	unior the second se		1	mandulateristic	when the state of the second state of the seco	hallfush york At shared had	oniloicotothicsistaplist	2 Miliphaliselladdaraatheif	hepitrashau
<u> </u>									
20									
20									

Suspected Data List Cable Antenna Freq. Reading AMP Level Limit Margin NO. Factor Detector Polarity Loss [MHz] [dBµV] [dB] [dBµV/m] [dBµV/m] [dB] [dB] [dB] 2328.04 28.95 ΡK 1 54.89 0.72 27.36 -37.92 45.05 74.00 Vertical 2 2390.00 46.70 0.72 27.48 -37.92 36.98 74.00 37.02 ΡK Vertical

- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Sus	pected	Data	l ist
Jua	pecieu	ναια	LISU


Ousp		EIOC (8)				(8)			(8)	
NO.	Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	2483.50	45.99	0.73	27.73	-37.92	36.53	74.00	37.47	PK	Horizontal
2	2485.02	49.20	0.73	27.74	-37.92	39.75	74.00	34.25	PK	Horizontal

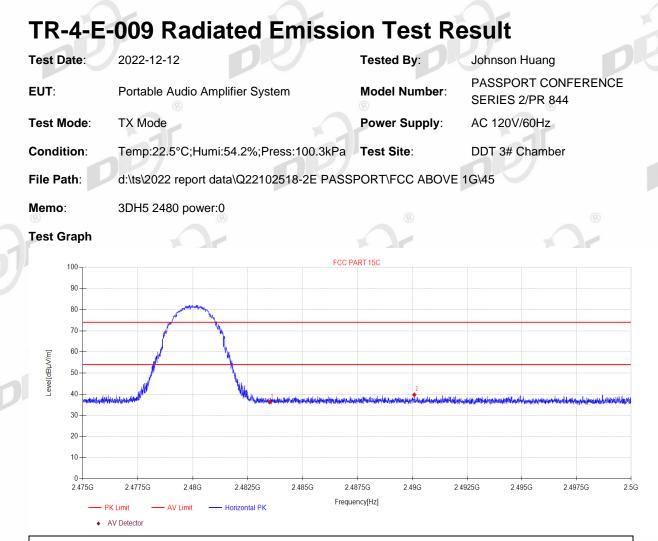
- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Test Date:	2022-12-12		Tested By:	Johnson Huar	ng
EUT:	Portable Audio Amplifier	System	Model Number:	PASSPORT C SERIES 2/PR	ONFERENCE 844
Test Mode:	TX Mode		Power Supply:	AC 120V/60H	z
Condition:	Temp:22.5°C;Humi:54.2	%;Press:100.3kPa	Test Site:	DDT 3# Cham	nber
File Path:	d:\ts\2022 report data\Q	22102518-2E PASS	PORT\FCC ABOVE	1G\44	
Memo: Test Graph	2DH5 2480 power:0		Â		ar
80		FCC P	ART 15C		
70 60 50 40 40 30 20 10 0 2.475G	24775G 248G 248 K Limit — AV Limit — Vertica	25G 2.485G 2.4 Frequ	2 Maria and Annu Hanna and Annu Hanna annu Hann	2.4925G 2.495G	24975G 2.50

Susp	ected Data	List					-	/		-
NO.	Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	2483.50	46.20	0.73	27.73	-37.92	36.74	74.00	37.26	PK	Vertical
2	2489.52	49.02	0.73	27.76	-37.92	39.59	74.00	34.41	PK	Vertical

- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

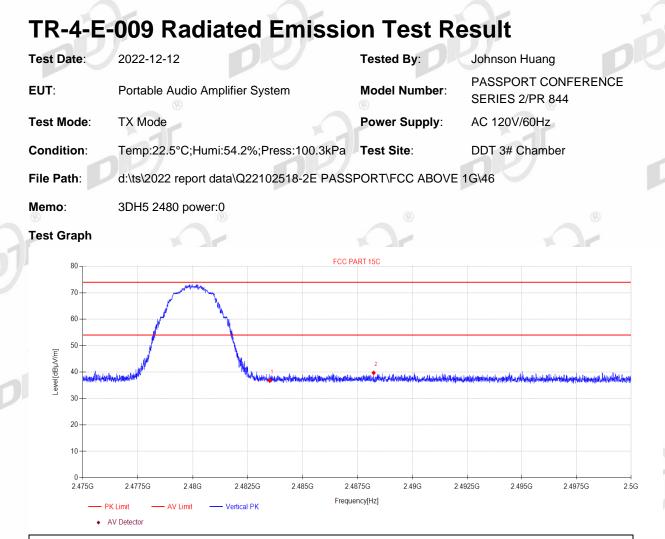
Suspected Data List


Ousp		LIOT (8)				(8)			(8)	
NO.	Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	2387.80	49.37	0.72	27.48	-37.92	39.65	74.00	34.35	PK	Horizontal
2	2390.00	44.92	0.72	27.48	-37.92	35.20	74.00	38.80	PK	Horizontal

- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

EUT:	Portable Audio Amplifier System	Model Number	PASSPORT CONFERENC	CE
Test Mode:	TX Mode	Power Supply:	AC 120V/60Hz	
Condition:	Temp:22.5°C;Humi:54.2%;Press:	100.3kPa Test Site :	DDT 3# Chamber	
File Path:	d:\ts\2022 report data\Q22102518	-2E PASSPORT\FCC ABO	VE 1G\42	
Memo:	3DH5 2402 power:0			
Test Graph	51	511		
80		FCC PART 15C		
70			Λ	
60				
50				
	يغل بولما والالالالية والمارية والماركة والمتعادية والمتعادية والمعالية والمعالية والمعالية والمعالية	aning and and and a sure of the week of the second and a second share	Marine well the second rate of Analysia Alle And	ulian
30-				
20-				
10				
0	2.32G 2.33G 2.34G 2	2.35G 2.36G 2.37G Frequency[Hz]	2.38G 2.39G 2.4G	2.4

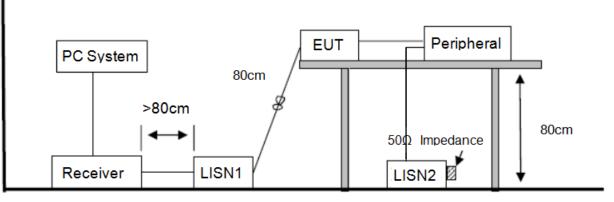
Susp	ected Data	List		-				/		
NO.	Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	2368.56	51.05	0.72	27.44	-37.92	41.29	74.00	32.71	PK	Vertical
2	2390.00	48.06	0.72	27.48	-37.92	38.34	74.00	35.66	PK	Vertical


- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

Sus	pected	Data	l ist
Jua	pecieu	Data	LISL

0 usp		LIOT (8)				(8)			(8)	
NO.	Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity
1	2483.50	45.75	0.73	27.73	-37.92	36.29	74.00	37.71	PK	Horizontal
2	2490.09	49.19	0.73	27.76	-37.92	39.76	74.00	34.24	PK	Horizontal

- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.


Suspected Data List

Colca Dala	EIOC (8)				(8)				(R)	
Freq. [MHz]	Reading [dBµV]	Cable Loss [dB]	Antenna Factor [dB]	AMP [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector	Polarity	
2483.50	46.21	0.73	27.73	-37.92	36.75	74.00	37.25	PK	Vertical	
2488.23	49.15	0.73	27.75	-37.92	39.71	74.00	34.29	PK	Vertical	
	Freq. [MHz] 2483.50	[MHz] [dBµV] 2483.50 46.21	Freq. Reading Cable [MHz] [dBμV] Loss [dBμV] [dB] 2483.50 46.21 0.73	Freq. [MHz]Reading [dBμV]Cable LossAntenna Factor [dB]2483.5046.210.7327.73	Freq. [MHz]Reading [dBμV]Cable LossAntenna Factor [dB]AMP [dB]2483.5046.210.7327.73-37.92	Freq. [MHz] Reading [dBμV] Cable Loss Antenna Factor AMP [dB] Level [dB] 2483.50 46.21 0.73 27.73 -37.92 36.75	Freq. [MHz] Reading [dBμV] Cable Loss Antenna Factor [dB] AMP [dB] Level [dB] Limit [dBμV/m] 2483.50 46.21 0.73 27.73 -37.92 36.75 74.00	Freq. [MHz]Reading [dBμV]Cable Loss [dB]Antenna Factor [dB]AMP [dB]Level [dB]Limit [dBµV/m]Margin [dB]2483.5046.210.7327.73-37.9236.7574.0037.25	Freq. [MHz]Reading [dBμV]Cable LossAntenna Factor [dB]AMP [dB]Level [dB]Limit [dBµV/m]Margin [dB]Detector2483.5046.210.7327.73-37.9236.7574.0037.25PK	

- 1. Level = Reading + Cable Loss + Antenna Factor + AMP
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

13. Power Line Conducted Emission

13.1. Block diagram of test setup

13.2. Power Line Conducted Emission Limits

Frequ	Jency	Quasi-Peak Level dB(μV)	Average Level dB(μV)			
150 kHz ~	500 kHz	66 ~ 56*	56 ~ 46*			
500 kHz ~	5 MHz	56	46			
5 MHz ~	30 MHz 🗾	60	50			

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

13.3. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test setup as described in clause 13.1 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes. During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

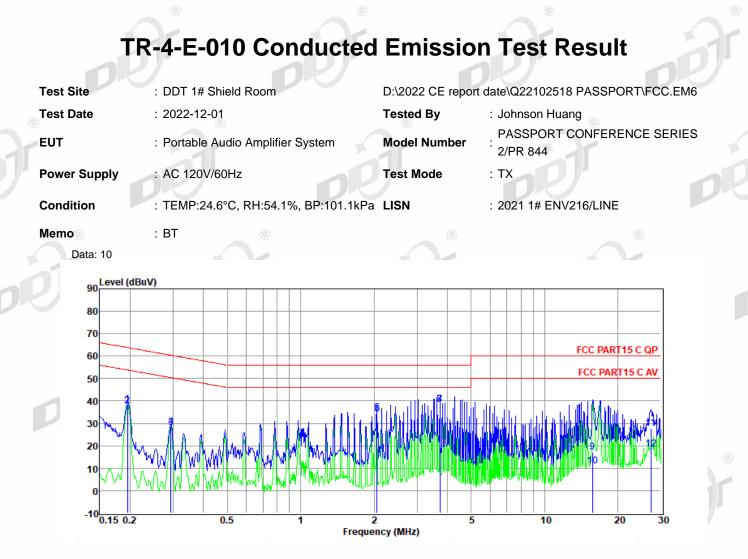
The EUT configuration and worse cable configuration of the above highest emission levels were

recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

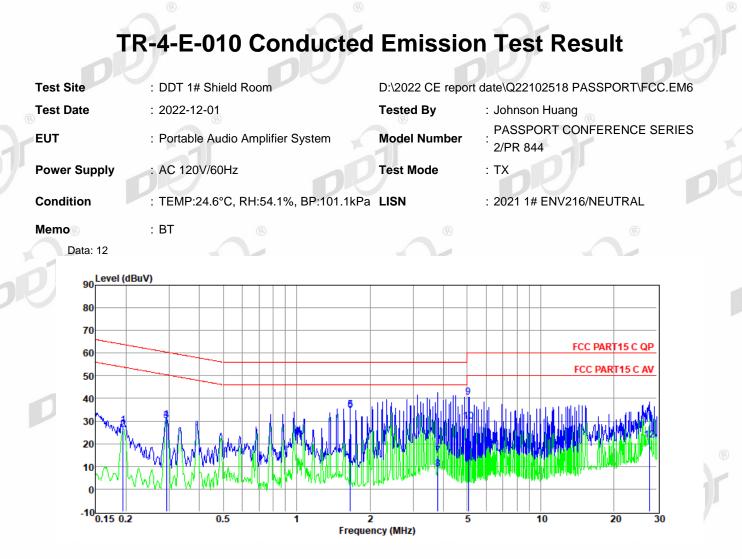

The bandwidth of test receiver is set at 9 kHz.

13.4. Test Result

Pass. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits. Note2: "-----" means Peak detection; "-----" means Average detection.

Item	Freq.	Read Level	LISN Factor	Cable Loss	Pulse Limiter Factor	Result Level	Limit Line	Over Limit	Detector	Phase
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.20	18.86	9.78	0.01	9.92	38.57	63.80	-25.23	QP	LINE
2	0.20	17.97	9.78	0.01	9.92	37.68	53.80	-16.12	Average	LINE
3®	0.29	8.65	9.72 🛞	0.02	9.92	28.31	<u>60.41</u>	-32.10	QP	[®] LINE
4	0.29	8.69	9.72	0.02	9.92	28.35	50.41	-22.06	Average	LINE
5	2.06	15.19	9.50	0.04	9.89	34.62	56.00	-21.38	QP	LINE
6	2.06	14.52	9.50	0.04	9.89	33.95	46.00	-12.05	Average	LINE
7	3.72	19.00	9.59	0.05	9.92	38.56	56.00	-17.44	QP	LINE
8	3.72	18.98	9.59	0.05	9.92	38.54	46.00	-7.46	Average	LINE
9	15.72	-2.60	9.77	0.15	9.93	17.25	60.00 [®]	-42.75	QP	LINE
10	15.72	-9.02	9.77	0.15	9.93	10.83	50.00	-39.17	Average	LINE
11	27.27	7.86	9.68	0.20	9.99	27.73	60.00	-32.27	QP	LINE
12	27.27	-1.24	9.68	0.20	9.99	18.63	50.00	-31.37	Average	LINE


Note:

1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).

4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

ltem	Freq.	Read Level	LISN Factor	Cable Loss	Pulse Limiter Factor	Result Level	Limit Line	Over Limit	Detector	Phase
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.19	8.27	9.80	0.01	9.92	28.00	63.84	-35.84	QP	NEUTRAL
2	0.19	6.59	9.80	0.01	9.92	26.32	53.84	-27.52	Average	NEUTRAL
3	0.29	10.71	9.68 ®	0.02	9.92	30.33	[®] 60.46	-30.13	QP	®NEUTRAL
4	0.29	10.77	9.68	0.02	9.92	30.39	50.46	-20.07	Average	NEUTRAL
5	1.66	15.59	9.63	0.04	9.89	35.15	56.00	-20.85	QP	NEUTRAL
6	1.66	15.27	9.63	0.04	9.89	34.83	46.00	-11.17	Average	NEUTRAL
7	3.80	-4.95	9.79	0.05	9.92	14.81	56.00	-41.19	QP	NEUTRAL
8	3.80	-10.70	9.79	0.05	9.92	9.06	46.00	-36.94	Average	NEUTRAL
9	5.06	20.92	9.72	0.06	9.93	40.63	60.00	-19.37	Peak	NEUTRAL
10	5.06	10.26	9.72	0.06	9.93	29.97	50.00	-20.03	Average	NEUTRAL
11	27.86	8.55	9.88	0.20	9.99	28.62	60.00	-31.38	QP	NEUTRAL
12	27.86	1.52	9.88	0.20	9.99	21.59	50.00	-28.41	Average	NEUTRAL

- 1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

14. Antenna Requirements

1.1. Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

For intentional device, according to RSS-Gen issue 5 section 6.8.

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

1.2. Result

The antenna used for this product is FPC antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is -4.47 dBi.

Dongguan Dongdian Testing Service Co., Ltd.

Report No.: DDT-R22102518-2E01

16. Photos of the EUT

Please refer to Appendix I: Photos of the EUT.

