

TEST REPORT

To:	NKOK, INC.		To:	-	
Attn:			Attn:	-	
Address:	5354 Irwindale Ave Unit A Irwindale CA 91706		Address:	-	
Fax:	626-330-1199		Fax:	-	
E-mail:	testing@nkok.com		E-mail:	-	
Folder No.:					
	· T				
Factory name:					
Location:					
Product:			C Car No.: 88886		
		×	Sample No:	(5219)183-0621	
			Date of Receipt:	July 09, 2019	
			Test date:	August 20, 2019	
			Test Requested:	FCC Part 15 - 2017	
			Test Method:	ANSI C63.10 - 2013	
			FCC ID:	XQPSX061824TX	
The results g	given in this report are related to the te	ested sp	becimen of the des	cribed electrical apparatus.	
CONCLUSION:	The submitted sample was found to <u>C</u>	OMPL	(with requirement	t of FCC Part 15 Subpart C.	
	Authorize	d Signa	ture:		
C	Lo		Sy		
Reviewed by: Ivan Yeung Approved by: Sze Tsz Man					
Date: August 27		Date:	August 27, 2019		
BUREAU VERITAS Kowloon Bay Offic 1/F Pacific Trade C 2 Kai Hing Road, K Kowloon,HONG K Tel: +852 2331 088 Fax: +852 2331 088 www.cps.bureauver	report at http://www.t centre, coulson Bay, DNG 8 19 19 19 19 19 19 19 19 19 19 19 19 19	d by, and inco bureauveritas. bying or replic in prior writte esults set fort mple was take sts requested inty is only pri any material at such notice in the prescribi	reporates by reference, CPS Condi com/home/about-us/our-business/ ation of this report to or for any oft n permission. This report sets for h in this report are not indicative o on or any similar or identical proc by you and the results thereof ovided upon request for accredite error or omission caused by our or shall be in writing and shall spec d time shall constitute you unqua	tions of Service as posted at the date of issuance of this cps/about-us/terms-conditions/and is intended for your her person or entity, or use of our name or trademark, is th our findings solely with respect to the test samples representative of the quality or characteristics of the lot luct unless specifically and expressly noted. Our report based upon the information that you provided to us. 1 tests. You have 60 days from date of issuance of this negligence or if you require measurement uncertainty; ifically address the issue you wish to raise. A failure to lified acceptance of the completeness of this report, the	

Page 1 of 22

TEST REPORT No: (5219)183-0621 Test Result Summary

EMISSION TEST								
Test requirement: FCC Part 15 - 2017								
Test Condition	Test Method	Test	Result					
Test Condition	Test Method	Pass	Failed					
Radiated Emission Test,	ANSI C63.10	\boxtimes						
9kHz to 24GHz								
Frequency range of Fundamental Emission	ANSI C63.10	\square						
26dB Bandwidth of Fundamental Emission	ANSI C63.10	\square						
Duty Cycle Correction During 100msec	ANSI C63.10	\square						

Report Revision & Sample Re-submit History:

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/gps/about-us/lems-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctneess of the report contents.

Location of the test laboratory

Bureau Veritas Hong Kong Limited

Room 03, 6/F, Westin Centre, 26 Hung To Road, Kwun Tong, Kowloon, Hong Kong

Radiated measurements are investigated and taken pursuant to the procedures of ANSI C63.10 – 2013. Semi-anechoic Chamber are set up for investigation and located at:

LG1/F., HKPC Building, 78 Tat Chee Avenue, Kowloon, Hong Kong

List of measuring equipment

EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE
EMI TEST RECEIVER	R&S	ESU40	100190	12-JUN-2019	12-JUN-2020
SEMI-ANECHOIC CHAMBER	FRANKONIA			23-APR-2019	23-APR-2020
BICONICAL ANTENNA	R&S	HK116	100241	21-MAR-2018	21-MAR-2020
LOG-PERIODIC ANTENNA	R&S	HL223	841516/017	21-MAR-2018	21-MAR-2020
ACTIVE LOOP ANTENNA	EMCO	6502	9107-2651	30-OCT-2017	30-OCT-2019
STANDARD GAIN HORN (8.2 – 12.4GHZ)	ETS-LINDGREN	3160-07	00205404	04-SEP-2018	04-SEP-2020
STANDARD GAIN HORN (12.4 – 18GHZ)	ETS-LINDGREN	3160-08	002056363	26-SEP-2018	26-SEP-2020
DOUBLE RIDGED HORN (1 – 8.2GHZ)	ETS-LINDGREN	3117	00094998	30-AUG-2018	30-AUG-2020
STANDARD GAIN HORN (26.5 – 40GHZ)	ETS-LINDGREN	3160-10	00205696	03-OCT-2018	03-OCT-2020
DOUBLE RIDGED HORN (18-26.5GHZ)	ETS-LINDGREN	3116	00109210	05-OCT-2018	05-OCT-2020
MICROWAVE PREAMPLIFIER	COM-POWER CORPORATION	PAM-118A	551091	25-JUN-2019	25-JUN-2020
PREAMPLIFIER (18 -40GHZ WITH CABLE)	A.H. Systems, Inc.	Pam-1840VH	168	29-JAN-2019	29-JAN-2020
COAXIAL CABLE	Huber+Suhner	CNM-NMCMILX800-473	A2803 #0001	11-DEC-2017	11-DEC-2019

Radiated Emission

Measurement Uncertainty

MEASUREMENT	FREQUENCY	UNCERTAINTY
	30MHz to 200MHz	±5.1dB
	200MHz to 1GHz	
Radiated emissions	1GHz to 8.2GHz	±4.9dB
	8.2GHZ to 12.4GHz	±4.4dB
	12.4GHz to 18GHz	±4.6dB

Remarks:-

N/A : Not Applicable or Not Available The measurement instrumentation uncertainty would be taking into consideration on each of the test result

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Equipment Under Test [EUT]	
Description of Sample:	
Model Name:	RC Car
Model Number:	88886
Additional Model Name:	
Additional Model Number:	
Additional Model information:	
Rating:	3Vd.c. ("AA" size battery x 2)

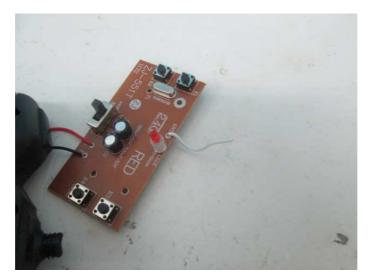
BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.ese burgauveritae.com www.cps.bureauveritas.com

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to raise on the solid provided by our equigence or if you require measurement uncertainty; provided to us inviting and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Pace 4 of 22

Description of EUT Operation:

The Equipment Under Test (EUT) is a **NKOK, INC.** of Remote Control Transmitter. It is a 1 switch and 2 sticks transmitter and operating at 2410MHz to 2473MHz. The lowest, middle and highest frequencies were tested and the results are shown in the report. The EUT transmit while buttons is being pressed or sticks are being pushed or pulled, Modulation by IC, and type is GFSK. There are total 64 channels and below is the frequency list :

					,				
2410	2411	2412	2413	2414	2415	2416	2417	2418	2419
2420	2421	2422	2423	2424	2425	2426	2427	2428	2429
2430	2431	2432	2433	2434	2435	2436	2437	2438	2439
2440	2441	2442	2443	2444	2445	2446	2447	2448	2449
2450	2451	2452	2453	2454	2455	2456	2457	2458	2459
2460	2461	2462	2463	2464	2465	2466	2467	2468	2469
2470	2471	2472	2473						


The transmitter has different control:

- 1. ON/OFF Switch power control
- 2. Left Stick Left motor control
- 3. Right Stick Right motor control

Antenna Requirement (Section 15.203)

The EUT is use of a permanently antenna. It is soldered on the PCB. The antenna consists of 3cm long wire The antenna is not replaceable or user serviceable. The requirements of S15.203 are met. There are no deviations or exceptions to the specifications.

Photo of Antenna

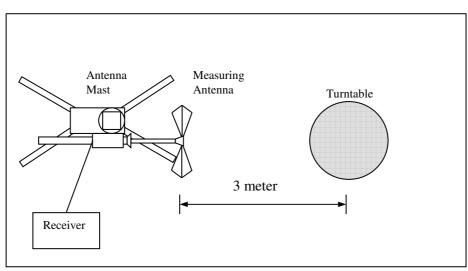
BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/etrms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accretidet tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctnees of the report contents.

Test Results

Radiated Emissions (Fundamental)

Test Requirement:	FCC Part 15 Section 15.249
Test Method:	ANSI C63.10
Test Date(s):	2019-08-20
Temperature:	24.0 °C
Humidity:	51.0 %
Mode of Operation:	Transmission mode
Tested Voltage:	3Vd.c. ("AA" size battery x 2)

Test Procedure:


Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.10 - 2013.

The equipment under test (EUT) was placed on a non-conductive turntable with dimensions of 1.5m x 1m and 0.8m high above the ground for measurement frequency below 1GHz and 1.5m high above the ground for measurement frequency above 1GHz. 3m from the EUT, a broadband antenna mounting on the mast received the signal strength. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using new battery. The turntable was rotated to maximize the emission level. The antenna was then moving along the mast from 1m up to 4m until no more higher value was found. Both horizontal and vertical polarization of the antenna were placed and investigated.

For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.

Location: Hong Kong Productivity Council - Electromagnetic Compatibility Centre

Test Setup: Semi-anechoic chamber

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/etrms-conditions/and is intended for your exclusive use. Any copying or replication of this report are not not or any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in is report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Limits for Field Strength of Fundamental Emissions [FCC 47CFR 15.249]:

j		
Frequency Range of	Field Strength of	Field Strength of
Fundamental	Fundamental Emission	Harmonics Emission
	(Average)	(Average)
[MHz]	[mV/m]	[µV/m]
2400-2483.5	50	500

Measurement Data

Test Result of (Transmission mode, Lowest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	**Field Strength at 3m – Average (dBμV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2410.00	Н	32.0	-44.7	81.8	114.0	-32.2	37.1	94.0	-56.9
2410.00	V	32.0	-44.7	86.4	114.0	-27.6	41.7	94.0	-52.3

Test Result of (Transmission mode, Middle frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	**Field Strength at 3m – Average (dBμV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2440.00	Н	32.0	-44.7	82.0	114.0	-32.0	37.3	94.0	-56.7
2440.00	V	32.0	-44.7	86.3	114.0	-27.7	41.6	94.0	-52.4

Test Result of (Transmission mode, Highest frequency): PASS

				, ,					
Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	**Field Strength at 3m – Average (dBμV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2473.00	Н	32.3	-44.7	88.1	114.0	-25.9	43.4	94.0	-50.6
2473.00	V	32.3	-44.7	90.8	114.0	-23.2	46.1	94.0	-47.9

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

**Duty Cycle Correction = 20Log(0.0058) = -44.7dB

Note: Field Strength includes Antenna Factor and Cable Loss. Receiver setting: $\begin{array}{rcl} RBW &=& 1MHz\\ VBW &=& 1MHz \end{array}$

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/etrms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctnees of the report contents.

Radiated Emissions (Spurious Emission)

Test Requirement:	FCC Part 15 Section 15.249
Test Method:	ANSI C63.10
Test Date(s):	2019-08-20
Temperature:	24.0 °C
Humidity:	51.0 %
Mode of Operation:	Transmission mode
Tested Voltage:	3Vd.c. ("AA" size battery x 2)

Measurement Data

Test Result of (Transmission mode, Lowest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	**Field Strength at 3m – Average (dBμV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2400.00	Н	32.0	-44.7	47.0	74.0	-27.0	2.3	54.0	-51.7
4820.00	Н	-1.3	-44.7	53.3	74.0	-20.7	8.6	54.0	-45.4
7230.00	Н	2.4	-44.7	61.2	74.0	-12.8	16.5	54.0	-37.5
9640.00	Н	4.8	-44.7	58.1	74.0	-15.9	13.4	54.0	-40.6
12050.00	Н	5.4	-44.7	44.9	74.0	-29.1	0.2	54.0	-53.8
14460.00	Н	8.9	-44.7	45.8	74.0	-28.2	1.1	54.0	-52.9
16870.00	Н	8.4	-44.7	46.2	74.0	-27.8	1.5	54.0	-52.5
19280.00	Н	20.5	-44.7	46.6	74.0	-27.4	1.9	54.0	-52.1
21690.00	Н	21.7	-44.7	47.1	74.0	-26.9	2.4	54.0	-51.6
24100.00	Н	25.7	-44.7	47.8	74.0	-26.2	3.1	54.0	-50.9
26510.00	Н	29.5	-44.7	48.5	74.0	-25.5	3.8	54.0	-50.2

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation. **Duty Cycle Correction = 20Log(0.0058) = -44.7dB

Note: Field Strength includes Antenna Factor and Cable Loss. RBW = 1MHz Receiver setting: VBW = 1MHz

BUREAU VERITAS HONG KONG LIMITED -Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at <u>http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/teme-conditions/a</u>nd is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples permitted only with our prior written permission. This report sets found our information solution test exact samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to reise on the increase of the camerative of the camerative and the camerative for accredited tests. raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Measurement Data

Test Result of (Transmission mode, Lowest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	**Field Strength at 3m – Average (dBμV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2400.00	V	32.0	-44.7	47.3	74.0	-26.7	2.6	54.0	-51.4
4820.00	V	-1.3	-44.7	53.2	74.0	-20.8	8.5	54.0	-45.5
7230.00	V	2.4	-44.7	56.7	74.0	-17.3	12.0	54.0	-42.0
9640.00	V	4.8	-44.7	57.1	74.0	-16.9	12.4	54.0	-41.6
12050.00	V	5.4	-44.7	45.3	74.0	-28.7	0.6	54.0	-53.4
14460.00	V	8.9	-44.7	45.6	74.0	-28.4	0.9	54.0	-53.1
16870.00	V	8.4	-44.7	46.8	74.0	-27.2	2.1	54.0	-51.9
19280.00	V	20.5	-44.7	47.2	74.0	-26.8	2.5	54.0	-51.5
21690.00	V	21.7	-44.7	47.4	74.0	-26.6	2.7	54.0	-51.3
24100.00	V	25.7	-44.7	48.3	74.0	-25.7	3.6	54.0	-50.4
26510.00	V	29.5	-44.7	48.6	74.0	-25.4	3.9	54.0	-50.1

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation. **Duty Cycle Correction = 20Log(0.0058) = -44.7dB

Note: Field Strength includes Antenna Factor and Cable Loss. Receiver setting: RBW = 1MHz VBW 1MHz =

BUREAU VERITAS HONG KONG LIMITED -Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at <u>http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/teme-conditions/a</u>nd is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples permitted only with our prior written permission. This report sets found our information solution test exact samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to reise on the increase of the camerative of the camerative and the camerative for accredited tests. raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Measurement Data Test Result of (Transmission mode, Middle frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	**Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
4880.00	Н	-1.3	-44.7	51.4	74.0	-22.6	6.7	54.0	-47.3
7320.00	Н	2.4	-44.7	57.2	74.0	-16.8	12.5	54.0	-41.5
9760.00	Н	4.8	-44.7	59.7	74.0	-14.3	15.0	54.0	-39.0
12200.00	Н	5.4	-44.7	45.6	74.0	-28.4	0.9	54.0	-53.1
14640.00	Н	11.1	-44.7	46.2	74.0	-27.8	1.5	54.0	-52.5
17080.00	Н	12.5	-44.7	46.8	74.0	-27.2	2.1	54.0	-51.9
19520.00	Н	20.7	-44.7	47.4	74.0	-26.6	2.7	54.0	-51.3
21960.00	Н	22.1	-44.7	47.8	74.0	-26.2	3.1	54.0	-50.9
24400.00	Н	25.7	-44.7	48.3	74.0	-25.7	3.6	54.0	-50.4
26840.00	Н	29.7	-44.7	48.9	74.0	-25.1	4.2	54.0	-49.8

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	**Field Strength at 3m – Average (dBµV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
4880.00	V	-1.3	-44.7	52.0	74.0	-22.0	7.3	54.0	-46.7
7320.00	V	2.4	-44.7	54.0	74.0	-20.0	9.3	54.0	-44.7
9760.00	V	4.8	-44.7	56.7	74.0	-17.3	12.0	54.0	-42.0
12200.00	V	5.4	-44.7	46.0	74.0	-28.0	1.3	54.0	-52.7
14640.00	V	11.1	-44.7	46.5	74.0	-27.5	1.8	54.0	-52.2
17080.00	V	12.5	-44.7	47.0	74.0	-27.0	2.3	54.0	-51.7
19520.00	V	20.7	-44.7	47.2	74.0	-26.8	2.5	54.0	-51.5
21960.00	V	22.1	-44.7	47.9	74.0	-26.1	3.2	54.0	-50.8
24400.00	V	25.7	-44.7	48.5	74.0	-25.5	3.8	54.0	-50.2
26840.00	V	29.7	-44.7	48.8	74.0	-25.2	4.1	54.0	-49.9

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation. **Duty Cycle Correction = 20Log(0.0058) = -44.7dB

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 1MHz VBW = 1MHz

BUREAU VERITAS HONG KONG LIMITED -Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at <u>http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/term-conditions/a</u>nd is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples permitted only with our prior written permission. This report sets found our information solution test exact samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to reise on the increase of the camerative of the camerative and the camerative for accredited tests. raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Measurement Data Test Result of (Transmission mode, Highest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	**Field Strength at 3m – Average (dBμV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2483.50	Н	32.3	-44.7	47.6	74.0	-26.4	2.9	54.0	-51.1
4946.00	Н	-1.3	-44.7	58.2	74.0	-15.8	13.5	54.0	-40.5
7419.00	Н	2.4	-44.7	61.4	74.0	-12.6	16.7	54.0	-37.3
9892.00	Н	4.8	-44.7	53.2	74.0	-20.8	8.5	54.0	-45.5
12365.00	Н	5.4	-44.7	47.8	74.0	-26.2	3.1	54.0	-50.9
14838.00	Н	11.1	-44.7	46.0	74.0	-28.0	1.3	54.0	-52.7
17311.00	Н	12.5	-44.7	46.2	74.0	-27.8	1.5	54.0	-52.5
19784.00	Н	20.7	-44.7	47.0	74.0	-27.0	2.3	54.0	-51.7
22257.00	Н	22.1	-44.7	47.3	74.0	-26.7	2.6	54.0	-51.4
24730.00	Н	26.7	-44.7	48.0	74.0	-26.0	3.3	54.0	-50.7
27203.00	Н	29.7	-44.7	48.6	74.0	-25.4	3.9	54.0	-50.1

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

**Duty Cycle Correction = 20Log(0.0058) = -44.7dB

Note: Field Strength includes Antenna Factor and Cable Loss. Receiver setting:

= 1MHz RBW VBW = 1MHz

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at <u>http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/teme-conditions/a</u>nd is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples permitted only with our prior written permission. This report sets found our information solution test exact samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to reise on the increase of the camerative of the camerative and the camerative for accredited tests. raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Measurement Data Test Result of (Transmission mode, Highest frequency): PASS

Frequency (MHz)	Polarity (H/V)	Antenna Factor & Cable Loss (dB/m)	Duty- cycle correction (dB)	Field Strength at 3m – Peak (dBµV/m)	Limit at 3m – Peak (dBµV/m)	Margin - Peak (dB)	**Field Strength at 3m – Average (dBμV/m)	Limit at 3m – Average (dBµV/m)	Margin - Average (dB)
2483.50	V	32.3	-44.7	48.2	74.0	-25.8	3.5	54.0	-50.5
4946.00	V	-1.3	-44.7	56.1	74.0	-17.9	11.4	54.0	-42.6
7419.00	V	2.4	-44.7	60.4	74.0	-13.6	15.7	54.0	-38.3
9892.00	V	4.8	-44.7	54.0	74.0	-20.0	9.3	54.0	-44.7
12365.00	V	5.4	-44.7	48.0	74.0	-26.0	3.3	54.0	-50.7
14838.00	V	11.1	-44.7	46.6	74.0	-27.4	1.9	54.0	-52.1
17311.00	V	12.5	-44.7	46.8	74.0	-27.2	2.1	54.0	-51.9
19784.00	V	20.7	-44.7	47.1	74.0	-26.9	2.4	54.0	-51.6
22257.00	V	22.1	-44.7	47.4	74.0	-26.6	2.7	54.0	-51.3
24730.00	V	26.7	-44.7	48.3	74.0	-25.7	3.6	54.0	-50.4
27203.00	V	29.7	-44.7	49.0	74.0	-25.0	4.3	54.0	-49.7

For pulse modulated devices and using measuring equipment employing a peak detection mode, properly adjusted for such factor as pulse desensitisation.

**Duty Cycle Correction = 20Log(0.0058) = -44.7dB

Note: Field Strength includes Antenna Factor and Cable Loss. Receiver setting:

RBW = 1MHz VBW 1MHz =

BUREAU VERITAS HONG KONG LIMITED -Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at <u>http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/teme-conditions/a</u>nd is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples permitted only with our prior written permission. This report sets found our information solution test exact samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to reise on the increase of the camerative of the camerative and the camerative for accredited tests. raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Radiated Emissions (30MHz - 2.4GHz)

Test Requirement:	FCC Part 15 Section 15.209
Test Method:	ANSI C63.10
Test Date(s):	2019-08-20
Temperature:	24.0 °C
Humidity:	51.0 %
Mode of Operation:	On mode
Tested Voltage:	3Vd.c. ("AA" size battery x 2)

Limits for Radiated Emissions [FCC 47 CFR 15.209]:

	Owned Deals Linette	Manager and Distance
Frequency Range	Quasi-Peak Limits	Measurement Distance
[MHz]	[µV/m]	m
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above960	500	3

Measurement Data

Test Result of (On mode): PASS

Detection mode: Quasi-Peak

Frequency	Polarity (H/V)	Field Strength	Limit	Margin (dB)		
Emissions	detected are n	nore than 20 d	B below the lin	nit line(s) in		
	9kHz to 30MHz					
		9kHz to 30MH	z			

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 200Hz VBW = 200Hz

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/gps/about-us/lems-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctnees of the report contents.

Measurement Data

Test Result of (On mode): PASS

Detection mode: Quasi-Peak

Frequency (MHz)	Polarity (H/V)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
45.76	Н	20.7	40.0	-19.3
125.62	Н	21.7	43.5	-21.8
231.48	Н	23.6	46.0	-22.4
366.56	Н	25.4	46.0	-20.6
572.12	Н	27.1	46.0	-18.9
693.24	Н	29.2	46.0	-16.8

Frequency (MHz)	Polarity (H/V)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
45.76	V	20.5	40.0	-19.5
125.62	V	21.9	43.5	-21.6
231.48	V	23.5	46.0	-22.5
366.56	V	25.0	46.0	-21.0
572.12	V	27.6	46.0	-18.4
693.24	V	28.8	46.0	-17.2

Note: Field Strength includes Antenna Factor and Cable Loss.

Receiver setting: RBW = 120KHz VBW = 120KHz

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests report, the tests report.

Frequency range of Fundamental Emission

Test Requirement:	FCC 47 CFR 15.249
Test Method:	ANSI C63.10 Clause 6.10
Test Date(s):	2019-08-20
Temperature:	24.0 °C
Humidity:	51.0 %
Mode of Operation:	Transmission mode
Tested Voltage:	3Vd.c. ("AA" size battery x 2)

Test Method:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Limits for Frequency range of Fundamental Emission:

Frequency	FCC Limits
[MHz]	[MHz]
2410.00 - 2473.00	2400 – 2483.5

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/ems-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredite tests. Nave 500 apps from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Measurement Data :

Test Result of Frequency Range of Fundamental Emission: PASS

Lowest Frequency – 2410.00MHz

vestinequency	
	Spectrum Spectrum 2 Spectrum 3 (𝔅) (𝔅) Ref Level 67.00 dbµV/m ● RBW 50 kHz ♥ 𝔅
	Att 0 dB SWT 3.3 ms VBW 50 kHz Mode Auto Sweep
	PA TDF P1Pk Max
	60 dBµV/m
	50 dBµV/m
	40 dBµV/m
	30 dBµV/m
	20 dBµV/m+
	10 dBµV/m
	white the second se
	-10 dBµV/m
	-10 0800/00
	-20 dBµV/m
	-30 dBµV/m Start 2.4 GHz 691 pts Stop 2.4835 GHz
le Frequency –	Spectrum Spectrum 2 Spectrum 3 (x) Ref Level 67.00 dBµV/m
	●1Pk Max
	60 dBµv/m
	50 dBµV/m-
	40 dBµV/m
	30 dBµV/m
	20 dBµV/m
	10 dBµV/m
	denormalisation with the development of the develop
	-10 dBµV/m
	na aniti u

Highest Frequency – 2473.00MHz

Spectrum	Spectrum 2	x s	pectrum 3	×				
Ref Level 67.00) dBµV/m		RBW 50 kH:					
e Att	0 dB SW1	3.3 ms	VBW 50 kH:	Z Mode A	luto Sweep			
PA TDF 1Pk Max								
•тык шах		1			-			
60 dBµV/m								
50 dBµV/m							-	
							L A	
40.dBµV/m							}	
30 dBµV/m								
20 dBµV/m							Ľ ľ	
20 00000								
10 dBµV/m							l de la composición de la composicinde la composición de la composición de la composición de la compos	<u> </u>
D dBµV/m	a ida - star	Sumb in real		المراجع المراجع	الملاميس معاقد سالك	an and	with N	al municipality
0 dBµV/m	www.man.orww		anne anna an	and the Mathematic	- on a play of	endres inde au	rourn	- W-V 4000
-10 dBµV/m								
			1					
-20 dBµV/m			1					
-30 dBµV/m								
Start 2.4 GHz			691					.4835 GHz

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/sps/about-us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TEST REPORT No: (5219)183-0621 Measurement Data :

Test Result of 26dB Bandwidth of Fundamental Emission: PASS

Lowest Frequency – 2410.00MHz

Spectrum	Ť	Spectru	ım 2	×	Sp	ectr	um 3	X								
Ref Level 6	57.00 c						50 kHz		_							
Att PÅ TDF		0 dB	SWT	75.9 µs		VBW	50 kHz	Mo	de .	Auto FF1	r					
1Pk Max																
									Μ	1[1]				43.38 dE		
60 dBµV/m					+				-					2.410246		
50 d0 4 do									no						.00 dl	
50 dBµV/m								M1	-B	n factor			1.8	4600000		
40 dBL/V/m								Å		ractor	_			·	1790.	
io appyin							- M	M	1.							
30 dBuV/m							- m		<u>م</u>		_					
							1		1							
20 dBµV/m					-	ñ.	1		-¥	A	-		-			
						17	1			~ (
10 dBµV/m				m	VÌ				_	, ví		unn				
o deuv/m	rin	mm	n	<i>yo vor</i>								a . mar	m	man	~~	
5 abpsym																
-10 dBµV/m																
-20 dBµV/m					-						-					
-30 dBµV/m									_							
CF 2.41 GHz							691 p	ots					5	Span 10.0) MHz	
1arker	× 1							1 -				-				
Type Ref M1			-value 2.41024			Y-V	dBµV/n		unc	down		Fun	ction Re	tion Result 1.346 MHz		
T1	1		2.4095				dBµV/n		nub	ndB					00 dB	
T2	1	3	2.41092				dBµV/n		0	factor					790.8	

Middle Frequency – 2440.00MHz

Spectrum	Spec	trum 2	×	Spectrum 3						
Ref Level 67.				RBW 50 ki						
Att	0.0	IB SWT	75.9 µs	VBW 50 ki	Iz Mode	Auto FF1	r			
PA TDF										
●1Pk Max										
					N	11[1]			84 dBµV/m	
60 dBµV/m								2.44	402890 GHz	
						dB			26.00 dE	
50 dBµV/m-						w		1.3460	00000 MHz	
40 dBµV/m-					M1 C	(factor	1	1	1813.2	
40 gBhA/w-					A.					
30 dBuV/m				- M	N My					
50 abpv/m				1 1	1 1					
20 dBµV/m										
				Ant		¥~)				
10 dBµV/m				+P		$V \rightarrow$				
	- 0 1	mm	-And	ςμ v –			A man	man		
o deuv/m	~~~~	0.0.000	J	~						
-10 dBµV/m								-		
-20 dBµV/m										
-30 dBµV/m										
CF 2.44 GHz				(01	pts			0	10.0 MHz	
				091	pro			span	10.0 MHZ	
Marker	1		1		1 -		-			
Type Ref T M1	1 1	2.44028	0.047	Y-value 39.84 dBµV	Fund	a down	Fur	iction Result	1.346 MHz	
T1	1	2.44962		14.03 dBµV		ndB			26.00 dB	
T2	1	2.4409		13.77 dBµV		factor	1813.2			

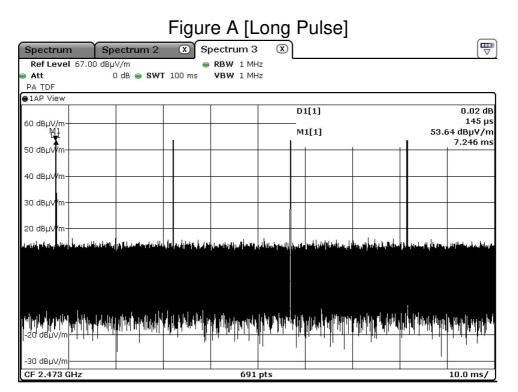
Highest Frequency – 2473.00MHz

Spectrum	ľ	Spectru	m 2	×	Sp	pectr	um 3	X	1						.
Ref Level	67.00 d	BµV/m			•	RBW	50 kH:	z	-						
Att		0 dB	SWT	75.9 µs		VBW	50 kH	z Mo	de .	Auto FF	Т				
PA TDF															
1Pk Max															
							I		M	1[1]			5	2.25 d	BµV/n
60 dBµV/m+			-		-			M1	-				2	47324	
								MT.		1B					5.00 di
50 dBµV/m+		-			-			dia a	-B1				1.33	10000	
							m	/***VV	A Q	factor					1857.0
40 dBµV/m-		-			-		-10.4		<u>1</u>		-			_	
							1		1						
30 dBµV/m-					_	A.	T#		- 12	wl	_				
						11	Ϋ́Ι		- 1	M.					
20 dBµV/m					A	1	1				Λ.				
10 dBµV/m-				0	h	/	U I			1 1/	R				
10 0000/111			۵	715	-1					W.	٦.	The and	nnm		
Y YBITY/m~+	mon	mar	and the	v v								a Man	nhm	non	mm
0 000000															
-10 dBuV/m					_										
-20 dBµV/m-		_			_						-			_	
-30 dBµV/m-		_			_				_		_			_	
CF 2.473 G	Ηz						691	pts					Sp	an 10.	0 MHz
darker															
Type Ref	Trc	X-	(-value			Y-va	Functi		nction		Function Result				
M1	1			46 GHz			dBµ∀/i		ndB	down					1 MHz
Τ1	1			95 GHz			dBµ∀/i			ndB					.00 dB
T2	1	2	47392	26 GHz		25.28	dBµV/r	m	Q	factor				1	857.6

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauverltas.com/home/about-us/our-business/cps/about-us/ltmms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accreditel tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Duty Cycle Correction During 100msec:

Each function key sends a different series of characters, but each packet period (<u>100</u>msec) never exceeds a series of 4 pulses (<u>0.145</u>msec). Assuming any combination of short and long pulses maybe obtained due to encoding the worst case transmit duty cycle would be considered <u>4*0.145</u> per <u>100</u>msec = <u>0.58</u>% duty cycle.


Remarks: Duty Cycle Correction = 20Log(0.0058) = -44.7dB

The following figures show the characteristics of the pulse train for one of these functions.

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about_us/our-business/cps/about_us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Measurement Data :

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/ems-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredite tests. Nave 500 apps from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Photographs of EUT

Front View of the product

Top View of the product

Side View of the product

Battery compartment

Rear View of the product

Bottom View of the product

Side View of the product

Battery Cover

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report or or or any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctnees of the report contents.

Photographs of EUT

Internal View of the product

Inner Circuit Top View


Antenna

AA

Inner Circuit Bottom View

Internal View of the product

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/gps/about-us/lems-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctnees of the report contents.

Measurement of Radiated Emission Test Set Up

***** End of Report *****

BUREAU VERITAS HONG KONG LIMITED – Kowloon Bay Office 1/F Pacific Trade Centre, 2 Kai Hing Road, Kowloon Bay, Kowloon,HONG KONG Tel: +852 2331 0888 Fax: +852 2331 0889 www.cps.bureauveritas.com This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at <u>http://www.bureauverlias.com/home/about-us/our-business/cps/about-us/hems-conditions/</u>and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.