FCC PART 15, SUBPART B and C; FCC 15.231; and RSS-210 & RSS-GEN TEST REPORT

for

FLOOD AND FREEZE SENSOR

Model: WST-622v2

HVIN: WST-622v2

Prepared for

ECOLINK INTELLIGENT TECHNOLOGY, INC. 2055 CORTE DEL NOGAL CARLSBAD, CALIFORNIA 92011

Prepared by:	
	KYLE FUJIMOTO
Approved by:	
	JAMES ROSS

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: AUGUST 18, 2023

	REPORT		APPENDICES				TOTAL
	BODY	A	В	С	D	E	
PAGES	21	2	2	2	15	42	84

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section	/ Title	PAGE
GENERA	AL REPORT SUMMARY	4
<i>SUMMA</i>	RY OF TEST RESULTS	5
	JRPOSE	6
1.1	Decision Rule & Risk	7
2. AI	OMINISTRATIVE DATA	8
2.1	Location of Testing	8
2.2	Traceability Statement	8
2.3	Cognizant Personnel	8
2.4	Date Test Sample was Received	8
2.5	Disposition of the Test Sample	8
2.6	Abbreviations and Acronyms	8
3. AI	PPLICABLE DOCUMENTS	9
4. DI	ESCRIPTION OF TEST CONFIGURATION	10
4.1	Description of Test Configuration – Emissions	10
4.1.1	Cable Construction and Termination	10
5. LI	STS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1	EUT and Accessory List	11
5.2	Emissions Test Equipment	12
6. TI	EST SITE DESCRIPTION	13
6.1	Test Facility Description	13
6.2	EUT Mounting, Bonding and Grounding	13
6.3	Measurement Uncertainty	13
7. TH	EST PROCEDURES	14
7.1	RF Emissions	14
7.1.1	Conducted Emissions Test	14
7.1.2	Radiated Emissions Test	15
7.1.3	RF Emissions Test Results	16
7.1.4	Sample Calculations	17
7.1.5	Duty Cycle Calculation	18
7.1.6	99 % Bandwidth	19
7.1.7	-20 dB Bandwidth	19
7.1.8	Transmission Time	20
7.1.9	Variation of the Input Power	20
8. CO	ONCLUSIONS	21

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Accreditations and Recognitions		
В	Modifications to the EUT		
С	Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Antenna and Effective Gain Factors		
	• Radiated Emissions Photos		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE	
1	Conducted Emissions Test Setup	
2	Layout of the Semi-Anechoic Test Chamber	

LIST OF TABLES

TABLE	TITLE
1	Radiated Emission Results

Report Number: B30712D1
FCC Part 15 Subpart B and C; FCC Section 15.231; and RSS-210 and RSS-GEN Test Report

OMPATIBLE
Flood and Freeze Sensor

Model: WST-622v2

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the United States government.

Device Tested: Flood and Freeze Sensor

Model: WST-622v2 S/N: 007-4355

Product Description: The equipment under test is a battery-powered wireless sensor for detecting flooding or

freezing conditions and wirelessly reporting these conditions to a wireless security panel.

The transmit frequency is 345 MHz. The clock oscillator is 39 MHz.

Dimensions: 2.50" diameter, 0.375" thick.

Modifications: The EUT was not modified to meet the specifications.

Customer: Ecolink Intelligent Technology, Inc.

2055 Corte Del Nogal Carlsbad, California 92011

Test Dates: July 11, 12, and 17, 2023

Test Specifications covered by accreditation:

Test Specifications: Emissions requirements

CFR Title 47, Part 15, Subpart B;

CFR Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.231;

RSS-210 and RSS-Gen

Test Procedures: ANSI C63.4 and ANSI C63.10

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz – 30 MHz	This test was not performed because the EUT operates on battery power only and cannot be plugged into the AC public mains.
2	Spurious Radiated RF Emissions, 9 kHz – 3.45 GHz (Transmitter and Digital portion)	Complies with the Class B limits of CFR Title 47, Part 15 Subpart B; the limits of CFR Title 47, Part 15 Subpart C, sections 15.205, 15.209, and 15.231; and the limits of RSS-210 and RSS-Gen. See section 6.3 for Measurement Uncertainty.
3	-20 dB Bandwidth	Complies with limits of CFR Title 47, Part 15 Subpart C, section 15.231 (c); and the limits of RSS-210
4	Transmission Time	Complies with limits of CFR Title 47, Part 15 Subpart C, section 15.231 (a)(1) and (a)(2); and the limits of RSS-210.

^{*}U = Expanded Uncertainty with a coverage factor of k=2

1. PURPOSE

This document is a qualification test report based on the emissions tests performed on the Flood and Freeze Sensor, Model: WST-622v2. The emissions measurements were performed according to the measurement procedure described in ANSI C63.4 and ANSI C63.10. The tests were performed to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the <u>Class B specification limits defined by CFR Title 47, Part 15 Subpart B section, 15.109</u>; the specification limits defined by CFR Title 47, Part 15 Subpart C sections 15.205, 15.209 and 15.231; and the specifications limits defined by RSS-210 and RSS-Gen.

1.1 Decision Rule & Risk

If a measured value exceeds a specification limit it implies non-compliance. If the value is below a specification limit it implies compliance. Measurement uncertainty of the laboratory is reported with all measurement results but generally not taken into consideration unless a standard, rule or law requires it to be considered.

Qualification test reports are only produced for products that are in compliance with the test requirements, therefore results are always in conformity. Otherwise, an engineering report or just the data is provided to the customer.

When performing a measurement and making a statement of conformity, in or out-of-specification to manufacturer's specifications or Pass/Fail against a requirement, there are two possible outcomes:

- The result is reported as conforming with the specification
- The result is reported as not conforming with the specification

The decision rule is defined below.

When the test result is found to be below the limit but within our measurement uncertainty of the limit, it is our policy that the final acceptance decision is left to the customer, after discussing the implications and potential risks of the decision.

When the test result is found to be exactly on the specification, it is our policy, in the case of unwanted emissions measurements to consider the result non-compliant, however, the final decision is left to the customer, after discussing the implications and potential risks of the decision.

When the test result is found to be over the specification limit under any condition, it is our policy to consider the result non-compliant.

In terms of uncertainty of measurement, the laboratory is a calibrated and tightly controlled environment and generally exceptionally stable, the measurement uncertainties are evaluated without the considering of the test sample. When it comes to the test sample however, as most testing is performed on a single sample rather than a sample population, and that sample is often a preproduction representation of the final product, that test sample represents a significantly higher source of measurement uncertainty. We advise our customers of this and that when in doubt (small test to limit margins), they may wish to perform statistical sampling on a population to gain a higher confidence in the results. All lab reported results are that of a single sample in any event.

2.

ADMINISTRATIVE DATA

2.1 Location of Testing

The emissions tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Ecolink Intelligent Technology, Inc.

David Shepard Product Compliance/QA Specialist

Jay Stone Director of Engineering

Compatible Electronics Inc.

Kyle Fujimoto Senior Test Engineer James Ross Senior Test Engineer

2.4 Date Test Sample was Received

The test sample was received prior to the initial test date in this report.

2.5 Disposition of the Test Sample

The test sample has not been returned to Ecolink Intelligent Technology, Inc. as of the date of this report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number

FCC Federal Communications Commission

DoC Declaration of Conformity

N/A Not Applicable
Tx Transmit
Rx Receive
Inc. Incorporated

RSS Radio Standards Specification

RF Radio Frequency
BLE Bluetooth Low Energy
CFR Code of Federal Regulations

PCB Printed Circuit Board

DC Direct Current

LED Light Emitting Diode

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this emission Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart B	FCC Rules – Radio frequency devices (including digital devices) – Unintentional Radiators
FCC Title 47, Part 15 Subpart C	FCC Rules – Radio frequency devices (including digital devices) – Intentional Radiators
RSS-210 Issue 10: 2019 + Amendment (April 2020)	License-exempt Radio Apparatus: Category I Equipment
RSS-Gen Issue 5: 2018 + Amendment 1: 2019 + Amendment 2: 2021	General Requirements for Compliance of Radio Apparatus
ANSI C63.4: 2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10: 2013	American National Standard of procedure for compliance testing of unlicensed wireless devices

DESCRIPTION OF TEST CONFIGURATION 4.

4.1 **Description of Test Configuration – Emissions**

The Flood and Freeze Sensor, Model: WST-622v2 (EUT) tested in the following two configurations:

- Configuration 1 The EUT was tested as a standalone device and placed in the center of the test table.
- Configuration 2 The EUT was tested with its optional External Sensor Adapter and placed at the edge of the test table. The External Sensor Adapter contained a Water Detection Rope connected to its sensor port.

In each configuration, the EUT was transmtting at 345 MHz on a continuous basis.

The EUT was tested for emissions while in the X, Y and Z axis. The X orientation is when the EUT is parallel to the ground mounted horizontally. The Y orientation is when the EUT is perpendicular to the ground mounted vertically. The Z orientation is when the EUT is perpendicular to the ground mounted horizontally.

The EUT had a fresh battery installed prior to the testing.

The firmware inside the EUT allowed the EUT to continuously transmit at 345 MHz.

The firmware was set to the maximum power setting.

The firmware is stored on the company's servers.

The final radiated emissions data for the EUT was taken in the configuration described above. Please see Appendix E for the data sheets.

4.1.1 **Cable Construction and Termination**

Cable 1: (Configuration #2 only)

This is a 2-meter unshielded cable connecting the EUT's External Sensor Adapter to the Water Detection Rope. The cable has a 1/8 inch mono connector at the EUT end and a hard wired water detection sensor at the opposite end.

LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT **5.**

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	ID
FLOOD AND FREEZE SENSOR (EUT)	ECOLINK INTELLIGENT TECHNOLOGY, INC.	WST-622v2	007-4355	FCC: XQC-WST622V2 IC: 9863B-WST622V2
EXTERNAL SENSOR ADAPTER (EUT OPTIONAL)	ECOLINK INTELLIGENT TECHNOLOGY, INC.	WST-622v2	N/A	N/A
WATER DETECTION ROPE (EUT OPTIONAL)	ECOLINK INTELLIGENT TECHNOLOGY, INC.	WST-622v2	N/A	N/A
FIRMWARE	ECOLINK INTELLIGENT TECHNOLOGY, INC.	1.0	N/A	N/A

Emissions Test Equipment 5.2

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE		
	RF RADIATED AND AC CONDUCTED EMISSIONS TEST EQUIPMENT						
TDK TestLab	TDK RF Solutions, Inc.	9.22	700145	N/A	N/A		
EMI Receiver, 3 Hz – 26.5 GHz	Keysight Technologies, Inc.	N9038A	MY51210150	September 17, 2021	September 17, 2023		
System Controller	Sunol Sciences Corporation	SC110V	112213-1	N/A	N/A		
Turntable	Sunol Sciences Corporation	2011VS	N/A	N/A	N/A		
Antenna-Mast	Sunol Sciences Corporation	TWR95-4	112213-3	N/A	N/A		
Loop Antenna	Com-Power	AL-130R	121090	February 10, 2022	February 10, 2025		
CombiLog Antenna	Com-Power	AC-220	61093	December 14, 2021	December 14, 2023		
Horn Antenna	Com-Power	AH-118	10050113	December 16, 2021	December 16, 2023		
Preamplifier	Com-Power	PA-118	181653	March 7, 2022	March 7, 2024		
Below 1 GHz Radiated Cable	N/A	N/A	Asset #: 0006	August 2, 2021	August 2, 2023		
Above 1 GHz Cable	Suhner	Sucoflex 102EA	2291	August 2, 2021	August 2, 2023		
Above 1 GHz Cable	Suhner	Sucoflex 102EA	501393	August 2, 2021	August 2, 2023		
Above 1 GHz Cable	Suhner	Sucoflex 102EA	501394	August 2, 2021	August 2, 2023		
Computer	Hewlett Packard	p6716f	MXX1030PX0	N/A	N/A		
LCD Monitor	Hewlett Packard	52031a	3CQ046N3MG	N/A	N/A		

TEST SITE DESCRIPTION 6.

6.1 **Test Facility Description**

Please refer to section 2.1 of this report for emissions test location.

6.2 EUT Mounting, Bonding and Grounding

For frequencies 1 GHz and below: The EUT was mounted on a 0.6 by 1.2 meter non-conductive table 0.8 meters above the ground plane.

For frequencies above 1 GHz: The EUT was mounted on a 0.6 by 1.2 meter non-conductive table 1.5 meters above the ground plane.

The EUT was not grounded.

6.3 **Measurement Uncertainty**

Compatible Electronics' U_{lab} value is less than U_{cispr}, thus based on this – compliance is deemed to occur if no measured disturbance exceeds the disturbance limit

$$u_{\mathsf{c}}(y) = \sqrt{\sum_{i} c_{i}^{2} \ u^{2}(x_{i})}$$

Measi	$\mathbf{U}_{\mathbf{cispr}}$	$U_{\text{lab}} = 2 \ uc \ (y)$	
Conducted disturbance (mains port)	(150 kHz – 30 MHz)	3.4 dB	2.72 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(30 MHz – 1 000 MHz)	6.3 dB	3.32 dB (Vertical) 3.30 dB (Horizontal)
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(1 GHz - 6 GHz)	5.2 dB	4.06 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(6 GHz – 18 GHz)	5.5 dB	4.06 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(18 GHz – 26.5 GHz)	N/A	4.43 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(26.5 GHz – 40 GHz)	N/A	4.57 dB

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 **RF** Emissions

7.1.1 **Conducted Emissions Test**

The EMI Receiver was used as a measuring meter. A quasi-peak and/or average reading was taken only where indicated in the data sheets. A 10 dB attenuator was used for the protection of the EMI Receiver input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the EMI Receiver. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI 63:4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by computer software. The final qualification data is located in Appendix E.

Test Results:

This test was not performed because the EUT operates on battery power only and cannot be plugged into the AC public mains.

7.1.2 **Radiated Emissions Test**

The EMI Receiver was used as the measuring meter. An internal preamplifier was used to increase the sensitivity of the instrument during emissions tests up to 1000 MHz, and an external preamplifier was used to increase the sensitivity of the instrument during emissions tests above 1 GHz. The EMI Receiver was initially used with the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which considers the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured.

The frequencies below 1 GHz, except for the fundamental frequency and the 2nd harmonic of the fundamental frequency, were quasi-peaked using the quasi-peak detector of the EMI Receiver.

The fundamental and harmonic frequencies were averaged using the duty cycle correction calculation, see section 7.1.5 of this report.

All other frequencies above 1 GHz were averaged using the average detector of the EMI Receiver.

The EMI test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is in full compliance with ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna to ensure accurate results.

The EUT was tested at a 3-meter test distance. The six highest emissions are listed in Table 1.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Loop Antenna
150 kHz to 30 MHz	9 kHz	Loop Antenna
30 MHz to 1 GHz	120 kHz	CombiLog Antenna
1 GHz to 3.45 GHz	1 MHz	Horn Antenna

Test Results:

The EUT complies with the Class B limits of CFR Title 47, Part 15, Subpart B; the limits of CFR Title 47, Part 15, Subpart C sections 15.205, 15.209 and 15.231; and the limits of RSS-210 and RSS-Gen for radiated emissions.

7.1.3 **RF Emissions Test Results**

RADIATED EMISSION RESULTS Table 1

Flood and Freeze Sensor, Model: WST-622v2

Frequency (MHz)	Average Corrected Reading* (dBµV/m)	Specification Limit (dBµV/m)	Delta (Cor. Reading – Spec. Limit) (dB)
345.00 (V) (Y-Axis) (#2)	75.81	77.26	-1.45
345.00 (H) (X-Axis) (#2)	75.71	77.26	-1.56
345.00 (V) (Z-Axis) (#2)	72.67	77.26	-4.59
345.00 (H) (X-Axis) (#1)	72.35	77.26	-4.91
345.00 (H) (Y-Axis) (#2)	71.66	77.26	-5.61
345.00 (V) (Y-Axis) (#1)	71.13	77.26	-6.13

Notes:

- The complete emissions data is given in Appendix E of this report.
- Vertical (V)
- (H) Horizontal
- No External Sensor Adapter (#1)
- (#2)With External Sensor Adapter

7.1.4 **Sample Calculations**

A correction factor for the antenna, cable and a distance factor (if any) must be applied to the meter reading before a true field strength reading can be obtained. This Corrected Meter Reading is then compared to the specification limit in order to determine compliance with the limits.

Conversion to logarithmic terms: Specification limit (μ V/m) log x 20 = Specification Limit in dBuV/m

To correct for distance when measuring at a distance other than the specification

For measurements below 30 MHz: (Specification distance / test distance) log x 40 = distance factor

For measurements above 30 MHz: (Specification distance / test distance) log x 20 = distance factor

Note: When using an Active Antenna, the Antenna factor shall be subtracted due to the combination of the internal amplification and antenna loss.

Corrected Meter Reading = meter reading + F - A + C

where: F = antenna factor

> A= amplifier gain C = cable loss

The correction factors for the antenna and the amplifier gain are attached in Appendix D of this report. The data sheets are attached in Appendix E.

The distance factor D is 0 when the test is performed at the required specification distance.

When the limit is in terms of magnetic field, the following equation applies:

$$H[dB(\mu A/m)] = V[dB(\mu V)] + L_{C}\left[dB\right] - G_{PA}\left[dB\right] + AF^{H}\left[dB(S/m)\right]$$

where: H is the magnetic field strength (to be compared with the limit),

V is the voltage level measured by the receiver or spectrum analyzer.

 L_C is the cable loss,

 G_{PA} is the gain of the preamplifier (if used), and

 AF^{H} is the magnetic antenna factor.

The G_{PA} term is only included in the equation when an external preamplifier is used in the measurement chain, in front of the receiver or spectrum analyzer. An external preamplifier is not usually necessary (or even advisable, due to risk of saturating the input mixer of the receiver) when an active loop antenna is used. In that case, the antenna factor of the loop already includes the gain of its built-in preamplifier.

If the "electrical" antenna factor is used instead, the above equation becomes:

$$H[dB(\mu A/m)] = V[dB(\mu V)] + L_C[dB] - G_{PA}[dB] + AF^{E}[dB(m^{-1})] - 51.5[dB\Omega]$$

 AF^{E} is the "electric" antenna factor, as provided by the antenna calibration where:

laboratory.

When the limit is in terms of electric field, the following equation applies:

$$E[dB(\mu V/m)] = V[dB(\mu V)] + L_C[dB] - G_{PA}[dB] + AF^E[dB(m^{-1})]$$
 or, if the magnetic antenna factor is used:

$$E[dB(\mu V/m)] = V[dB(\mu V)] + L_C[dB] - G_{PA}[dB] + AF^H \left[dB(S/m)\right] + 51.5[dB\Omega]$$

The display of the receiver (or spectrum analyzer) shall not be configured in units of current, e.g. μA or $dB(\mu A)$. That conversion is calculated inside the receiver (or spectrum analyzer) using its input impedance, which is 50 Ω , while the magnetic field calculation is based on the free-space impedance of 377 Ω .

7.1.5 **Duty Cycle Calculation**

The fundamental and harmonics were measured at a 3-meter test distance. The EMI Receiver was used to obtain the final test data. The final qualification data sheets are in Appendix E.

Where

$$\delta(dB) = 20 \log \left[\sum_{t_1} (nt_1 + mt_2 + ... + \xi t_x) / T \right]$$

n is the number of pulses of duration t_1 m is the number of pulses of duration t_2 ξ is the number of pulses of duration t_x

T is the period of the pulse train or 100 ms if the pulse train length is greater than 100 ms

Duty Cycle Correction Factor = -20.00 dB

Time of One Small Pulse = $160 \mu s$

Time of One Medium Pulse = 175 us

Time of One Large Pulse = $290 \mu s$

Number of Small Pulses = 32

Number of Medium Pulses = 8

Number of Large Pulses = 12

Total On Time = $10000 \mu s = 10.00 ms$

The time between pulses is greater than 100.00 ms

Duty Cycle = 10.00 ms / 100.00 ms = 10.00 %

7.1.6 99 % Bandwidth

The 99 % bandwidth was measured using an EMI Receiver.

The following steps were performed for measuring the 99 % bandwidth per RSS-GEN, Issue 5, clause 6.7:

- 1. Set RBW to 1 % to 5 % of the actual occupied bandwidth.
- 2. Set VBW to greater than 3 times the RBW.
- 3. Set the EMI Receiver to the occupied bandwidth Function set at 99 %
- 4. Set the peak detector to max hold.
- 5. Set the sweep time to auto
- 6. Allow the trace to stabilize.

Please note that this was only used to determine the emission bandwidth and that there are no limits or pass/fail criteria for this test. Please see the data sheets located in Appendix E.

7.1.7 -20 dB Bandwidth

The -20 dB bandwidth was measured using an EMI Receiver.

The following steps were performed for measuring the -20 dB bandwidth:

- 1. Set RBW from 1% to 5% of the Occupied Bandwidth.
- 2. Set the span to 100 kHz.
- 3. Set VBW to greater than 3 times the RBW.
- 4. Set the peak detector to max hold.
- 5. Set the sweep time to auto
- 6. Allow the trace to stabilize.
- 7. Set the markers to -20 dB of the peak fundamental emission

Test Results:

The EUT complies with limits of CFR Title 47, Part 15, Subpart C section 15.231 (c); and the limits of RSS-210.

7.1.8 **Transmission Time**

The transmission time was measured using an EMI Receiver.

The following steps were performed for measuring transmission time:

- 1. Set RBW = 120 kHz
- 2. Set VBW = 510 kHz
- 3. Span = 0 Hz
- 4. Set the sweep time to 10 seconds
- 5. Push a button on the EUT, which automatically activated the transmitter
- 6. Allow the trace to stabilize
- 7. Set the 1st marker to start of the transmission
- 8. Set the 2nd marker to the end of the transmission
- 9. Verify the transmission does not go beyond 5 seconds

Test Results:

The EUT complies with limits of CFR Title 47, Part 15, Subpart C section 15.231 (a)(1) and (a)(2); and the limits of RSS-210.

7.1.9 Variation of the Input Power

The variation of the input power test was performed using the EMI Receiver. The EUT input power was varied between 85% and 115% of the nominal rated supply voltage. The carrier frequency was monitored for any change in amplitude.

Test Results:

This test was not performed because the EUT is battery power only.

Report Number: B30712D1 Page 21 of 21

Flood and Freeze Sensor Model: WST-622v2

8. **CONCLUSIONS**

The Flood and Freeze Sensor, Model: WST-622v2 (EUT), as tested, meets all the specification limits defined in RSS-210, RSS-Gen, the Class B specification limits defined in CFR Title 47, Part 15, Subpart B; and the specification limits defined in CFR Title 47, Part, 15, Subpart C, sections 15.205, 15.209 and 15.231.

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

FCC Part 15 Subpart B and C; FCC Section 15.231; and RSS-210 and RSS-GEN Test Report Flood and Freeze Sensor Model: WST-622v2

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025.

For the most up-to-date version of our scopes and certificates please visit

http://celectronics.com/quality/scope/

Quote from ISO-ILAC-IAF Communiqué on the Management Systems Requirements of ISO/IEC 17025, General Requirements for the competence of testing and calibration laboratories:

"A laboratory's fulfilment of the requirements of ISO/IEC 17025 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025 are written in language relevant to laboratory operations and operate generally in accordance with the principles of ISO 9001"

Innovation, Science and Economic Development Canada Lab Code 2154A

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B, FCC 15.231, RSS-210, and RSS-Gen specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX C

MODELS COVERED UNDER THIS REPORT

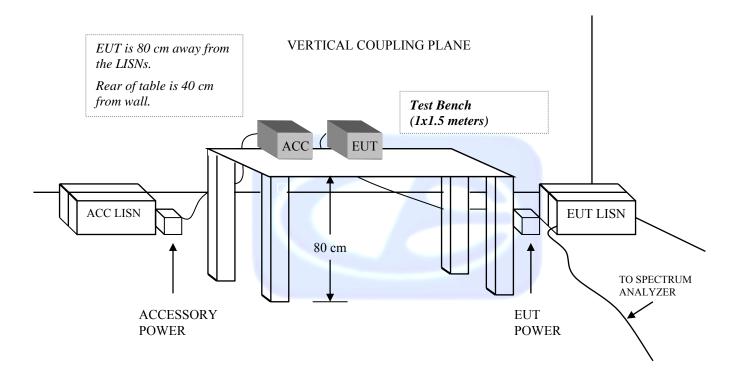
MODELS COVERED UNDER THIS REPORT

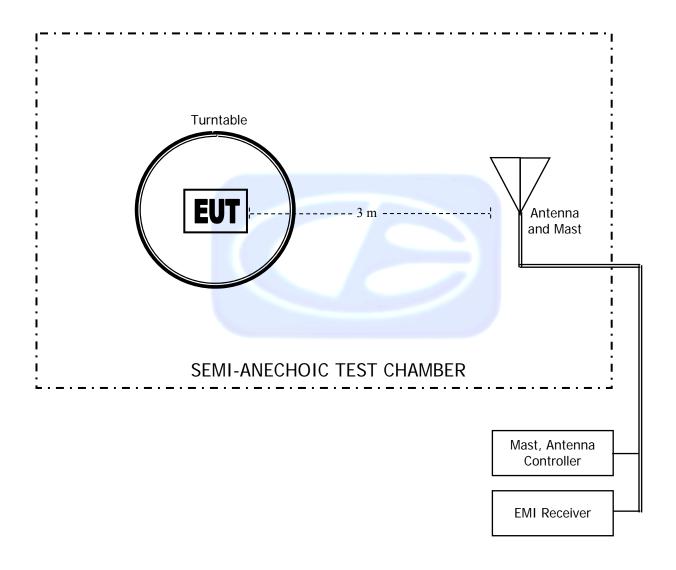
USED FOR THE PRIMARY TEST Flood and Freeze Sensor

Model: WST-622v2

ADDITIONAL MODEL COVERED UNDER THIS REPORT

Flood and Freeze Sensor Model: CS-622v2


The CS-622v2 is identical to the WST-622v2 in power output, hardware, and firmware. Model option is for marketing purposes only.


APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: LAYOUT OF THE SEMI -ANECHOIC TEST CHAMBER

COM-POWER AL-130R LOOP ANTENNA

S/N: 121090

CALIBRATION DATE: FEBRUARY 10, 2022

	CALIBRATION DATE: FEBRUARY 10, 2022				
FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)			
0.009	15.6	-35.8			
0.01	15.8	-35.6			
0.02	14.8	-36.6			
0.03	15.6	-35.9			
0.04	15.0	-36.5			
0.05	14.4	-37.1			
0.06	14.6	-36.9			
0.07	14.3	-37.2			
0.08	14.3	-37.2			
0.09	14.4	-37.0			
0.10	14.1	-37.4			
0.20	14.1	-37.4			
0.30	14.0	-37.5			
0.40	13.9	-37.6			
0.50	14.1	-37.3			
0.60	14.1	-37.3			
0.70	14.2	-37.3			
0.80	14.2	-37.3			
0.90	14.2	-37.2			
1.00	14.4	-37.0			
2.00	14.6	-36.9			
3.00	14.6	-36.8			
4.00	14.9	-36.6			
5.00	14.9	-36.7			
6.00	14.8	-36.7			
7.00	14.6	-36.8			
8.00	14.5	-37.0			
9.00	14.3	-37.2			
10.00	14.5	-37.0			
11.00	14.6	-36.9			
12.00	14.7	-36.7			
13.00	14.9	-36.6			
14.00	15.0	-36.5			
15.00	14.9	-36.6			
16.00	14.9	-36.6			
17.00	14.6	-36.8			
18.00	14.4	-37.1			
19.00	14.5	-37.0			
20.00	14.5	-37.0			
21.00	14.2	-37.3			
22.00	13.9	-37.5			
23.00	13.9	-37.5			
24.00	13.8	-37.7			
25.00	13.4	-38.0			
26.00	13.4	-38.2			
27.00	13.2	-38.3			
28.00	13.2	-38.7			
29.00	12.7	-38.8			
30.00	12.7	-39.0			
30.00	12.4	-37.0			

COM-POWER AC-220

COMBILOG ANTENNA

S/N: 61093

CALIBRATION DATE: DECEMBER 14, 2021

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	22.50	200	16.00
35	21.40	250	17.40
40	21.00	300	19.70
45	20.60	350	20.00
50	19.70	400	22.20
60	16.10	450	22.40
70	12.80	500	23.10
80	12.50	550	23.40
90	14.20	600	24.90
100	15.40	650	25.30
120	16.50	700	25.40
125	16.80	750	26.40
140	15.90	800	26.70
150	16.60	850	27.10
160	18.50	900	27.90
175	15.90	950	28.00
180	15.50	1000	28.00

COM POWER AH-118

HORN ANTENNA

S/N: 10050113

CALIBRATION DATE: DECEMBER 16, 2021

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	23.86	10.0	38.91
1.5	25.67	10.5	39.94
2.0	28.25	11.0	39.10
2.5	29.17	11.5	39.70
3.0	29.78	12.0	40.29
3.5	30.88	12.5	41.93
4.0	31.21	13.0	41.34
4.5	32.96	13.5	40.57
5.0	33.30	14.0	40.23
5.5	34.24	14.5	42.25
6.0	34.57	15.0	43.63
6.5	35.61	15.5	39.96
7.0	36.60	16.0	40.38
7.5	37.49	16.5	40.56
8.0	37.44	17.0	40.93
8.5	37.98	17.5	42.27
9.0	38.01	18.0	43.77
9.5	38.53		

COM-POWER PAM-118

PREAMPLIFIER

S/N: 181653

CALIBRATION DATE: MARCH 7, 2022

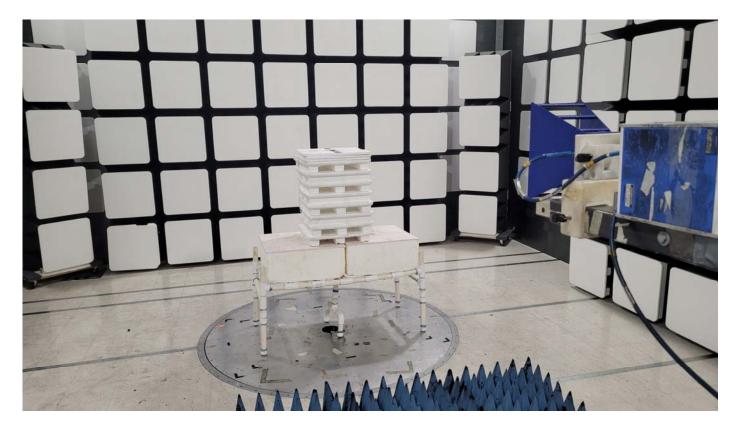
FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	40.02	6.0	38.84
1.1	39.72	6.5	39.20
1.2	39.93	7.0	39.46
1.3	39.98	7.5	39.67
1.4	39.99	8.0	39.28
1.5	40.20	8.5	38.63
1.6	40.05	9.0	38.96
1.7	40.15	9.5	39.33
1.8	40.20	10.0	39.58
1.9	40.33	11.0	38.25
2.0	40.33	12.0	40.03
2.5	40.60	13.0	40.55
3.0	40.76	14.0	40.36
3.5	40.87	15.0	39.34
4.0	40.39	16.0	37.34
4.5	39.55	17.0	42.14
5.0	40.34	18.0	42.54
5.5	39.45		

FRONT VIEW

WITH NO EXTERNAL SENSOR ADAPTER

ECOLINK INTELLIGENT TECHNOLOGY, INC. FLOOD AND FREEZE SENSOR MODEL: WST-622v2 FCC SUBPART B AND C; RSS-210 AND RSS-GEN - RADIATED EMISSIONS - BELOW 1 GHz

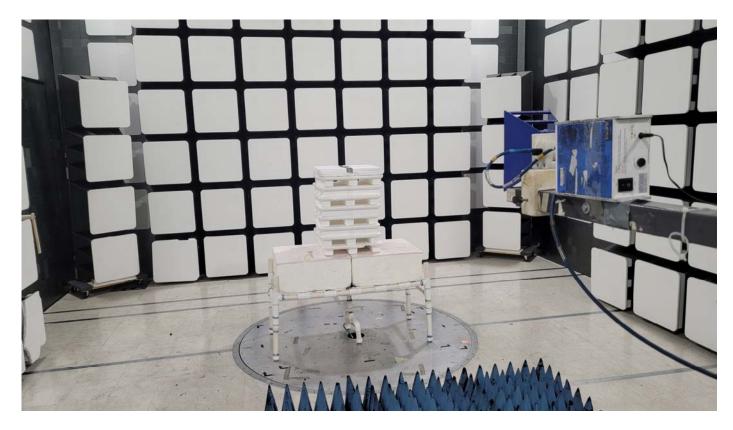
PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS



REAR VIEW

WITH NO EXTERNAL SENSOR ADAPTER

ECOLINK INTELLIGENT TECHNOLOGY, INC. FLOOD AND FREEZE SENSOR MODEL: WST-622v2 FCC SUBPART B AND C; RSS-210 AND RSS-GEN - RADIATED EMISSIONS - BELOW 1 GHz


PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

FRONT VIEW

WITH NO EXTERNAL SENSOR ADAPTER

ECOLINK INTELLIGENT TECHNOLOGY, INC. FLOOD AND FREEZE SENSOR MODEL: WST-622v2 FCC SUBPART B AND C; RSS-210 AND RSS-GEN - RADIATED EMISSIONS - ABOVE 1 GHz

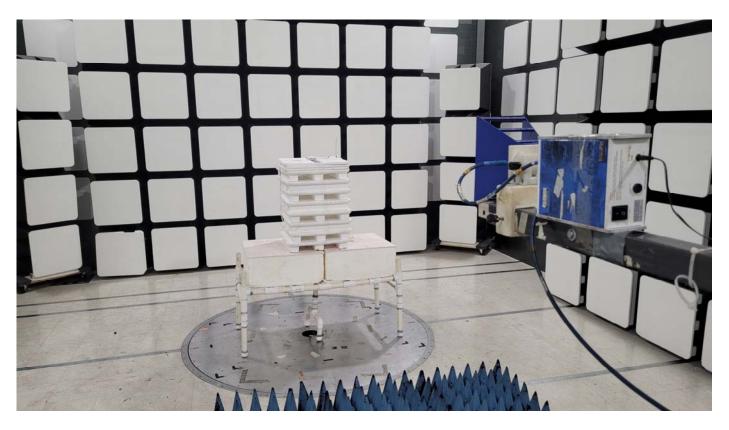
REAR VIEW

WITH NO EXTERNAL SENSOR ADAPTER

ECOLINK INTELLIGENT TECHNOLOGY, INC. FLOOD AND FREEZE SENSOR MODEL: WST-622v2 FCC SUBPART B AND C; RSS-210 AND RSS-GEN - RADIATED EMISSIONS - ABOVE 1 GHz

FRONT VIEW

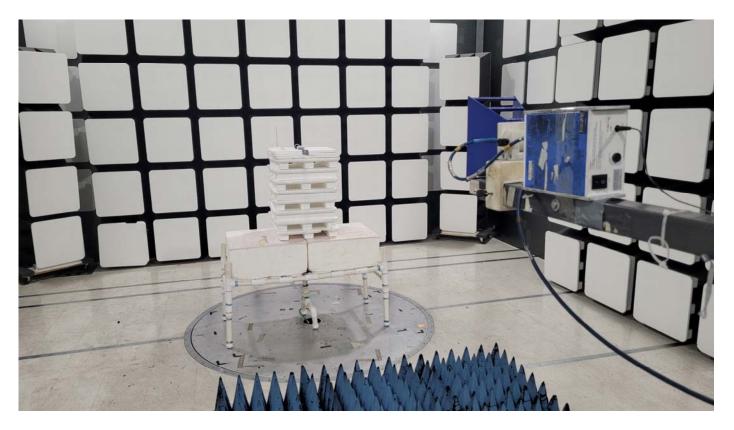
WITH EXTERNAL SENSOR ADAPTER


ECOLINK INTELLIGENT TECHNOLOGY, INC. FLOOD AND FREEZE SENSOR MODEL: WST-622v2 FCC SUBPART B AND C; RSS-210 AND RSS-GEN - RADIATED EMISSIONS - BELOW 1 GHz

REAR VIEW

WITH EXTERNAL SENSOR ADAPTER

ECOLINK INTELLIGENT TECHNOLOGY, INC. FLOOD AND FREEZE SENSOR MODEL: WST-622v2 FCC SUBPART B AND C; RSS-210 AND RSS-GEN - RADIATED EMISSIONS - BELOW 1 GHz


FRONT VIEW

WITH EXTERNAL SENSOR ADAPTER

ECOLINK INTELLIGENT TECHNOLOGY, INC. FLOOD AND FREEZE SENSOR MODEL: WST-622v2 FCC SUBPART B AND C; RSS-210 AND RSS-GEN - RADIATED EMISSIONS - ABOVE 1 GHz

Report Number: **B30712D1**

Flood and Freeze Sensor Model: WST-622v2

REAR VIEW

WITH EXTERNAL SENSOR ADAPTER

ECOLINK INTELLIGENT TECHNOLOGY, INC. FLOOD AND FREEZE SENSOR MODEL: WST-622v2 FCC SUBPART B AND C; RSS-210 AND RSS-GEN - RADIATED EMISSIONS - ABOVE 1 GHz

APPENDIX E

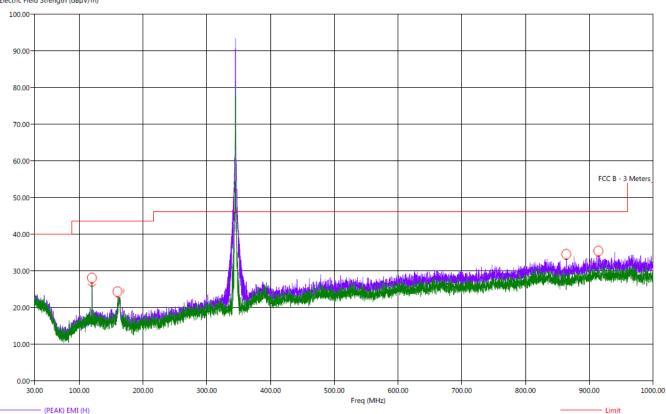
DATA SHEETS

RADIATED EMISSIONS

DATA SHEETS

Report Number: B30712D1

Model: WST-622v2


Title: Pre-Scan - FCC Class B File: 1 - Pre-Scan - X-Axis - 345 MHz - Stand Alone - FCC Class B - 07-17-2023.set Operator: Kyle Fujimoto EUT Type: Flood and Freeze Sensor EUT Condition: The EUT is continuously transmitting at 345 MHz in Stand Alone Mode Company: Ecolink Intelligent Technology, Inc. Model: WST-622v2 S/N: 007-4355 Note: The Frequencies at 345 MHz and 690 MHz are subject to the limits of FCC 15.231 instead

7/17/2023 8:08:09 AM Sequence: Preliminary Scan

FCC Class B

Electric Field Strength (dBµV/m)

(PEAK) EMI (V)

Report Number: B30712D1

FCC Part 15 Subpart B and C; FCC Section 15.231; and RSS-210 and RSS-GEN Test Report COMPATIBLE

Flood and Freeze Sensor Model: WST-622v2

Title: Radiated Final - FCC Class B File: 1 - Final Scan - X-Axis - 345 MHz - Stand Alone - FCC Class B - 07-17-2023.set Operator: Kyle Fujimoto EUT Type: Flood and Freeze Sensor EUT Condition: The EUT is continuously transmitting at 345 MHz in Stand Alone Mode Company: Ecolink Intelligent Technology, Inc. Model: WST-622v2 S/N: 007-4355 X-Axis

7/17/2023 8:18:59 AM Sequence: Final Measurements

FCC Class B

Freq (MHz)	Pol	(PEAK) EMI (dBµV/m)	(OP) EMI (dBµV/m)	(PEAK) Margin (dB)	(QP) Margin (dB)	Limit (dBµV/m)	Transducer (dB)	Cable (dB)	Ttbl Agl (deg)	Twr Ht (cm)
120.00	н	29.44	15.05	-14.06	-28.45	43.50	16.52	0.80	42.75	365.77
120.00	V	28.50	26.24	-15.00	-17.26	43.50	16.50	0.79	221.25	318.07
160.00	V	28.60	25.02	-14.90	-18.48	43.50	18.59	0.93	237.00	110.91
162.80	н	25.79	20.41	-17.71	-23.09	43.50	22.42	0.94	164.00	382.01
864.10	н	32.64	27.32	-13.36	-18.68	46.00	26.90	2.53	238.75	143.02
914.40	н	34.63	28.82	-11.37	-17.18	46.00	28.20	2.57	155.50	206.79

7/17/2023 8:53:03 AM

Sequence: Preliminary Scan

Report Number: B30712D1

Model: WST-622v2

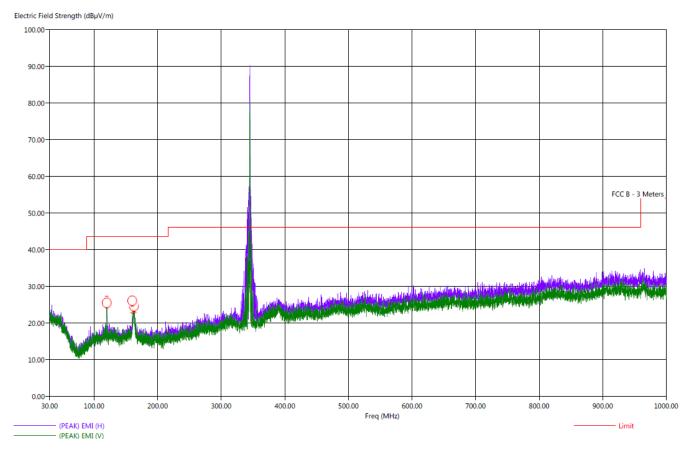
Title: Pre-Scan - FCC Class B

File: 2 - Pre-Scan - X-Axis - 345 MHz - With Cradle - FCC Class B - 07-17-2023.set

Operator: Kyle Fujimoto

EUT Type: Flood and Freeze Sensor

EUT Condition: The EUT is continuously transmitting at 345 MHz with External Sensor Cable


Company: Ecolink Intelligent Technology, Inc. Model: WST-622v2

S/N: 007-4355 X-Axis (Worst Case)

Note: The Frequencies at 345 MHz and 690 MHz are subject to the limits of FCC 15.231 instead

FCC Class B

Report Number: B30712D1

FCC Part 15 Subpart B and C; FCC Section 15.231; and RSS-210 and RSS-GEN Test Report COMPATIBLE

Flood and Freeze Sensor Model: WST-622v2

Title: Radiated Final - FCC Class B File: 2 - Final Scan - X-Axis - 345 MHz - With Cradle - FCC Class B - 07-17-2023.set Operator: Kyle Fujimoto EUT Type: Flood and Freeze Sensor EUT Condition: The EUT is continuously transmitting at 345 MHz with External Sensor Cable Company: Ecolink Intelligent Technology, Inc. Model: WST-622v2 S/N: 007-4355 X-Axis

7/17/2023 9:02:19 AM Sequence: Final Measurements

FCC Class B

Freq (MHz)	Pol	(PEAK) EMI (dBuV/m)	(QP) EMI (dBuV/m)	(PEAK) Margin (dB)	(QP) Margin (dB)	Limit (dBµV/m)	Transducer (dB)	Cable (dB)	Ttbl Agl (deg)	Twr Ht (cm)
120.00	н	27.38	24.69	-16.12	-18.81	43.50	16.50	0.79	286.75	364.52
120.00	V	28.80	26.42	-14.70	-17.08	43.50	16.50	0.79	142.50	302.25
160.00	V	27.49	22.92	-16.01	-20.58	43.50	18.63	0.93	328.00	127.08
161.70	Н	25.22	19.82	-18.28	-23.68	43.50	21.79	0.93	230.25	254.79
162.50	H	26.72	20.87	-16.78	-22.63	43.50	22.93	0.94	89.00	143.02
162.70	V	27.71	22.22	-15.79	-21.28	43.50	22.54	0.94	27.00	174.79

FUNDAMENTAL AND HARMONICS

DATA SHEETS

EUT WITHOUT EXTERNAL SENSOR ADAPTER

DATA SHEETS

Ecolink Intelligent Technology, Inc. Date: 07/12/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Fundamental - Stand Alone Mode

F	Laval	Del			Peak /	Table	Ant.	
Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	QP / Avg	Angle (deg)	Height (cm)	Comments
345.00	75.79	\ \ \	97.26	-21.47	Peak	10.00	220.76	X-Axis
345.00	55.79	V	77.26	-21.47	Avg	10.00	220.76	Vertical Polarization
		-			g			
345.00	91.13	V	97.26	-6.13	Peak	273.75	212.34	Y-Axis
345.00	71.13	V	77.26	-6.13	Avg	273.75	212.34	Vertical Polarization
345.00	91.07	V	97.26	-6.19	Peak	72.75	154.31	Z-Axis
345.00	71.07	V	77.26	-6.19	Avg	72.75	154.31	Vertical Polarization
345.00	92.35	Н	97.26	-4.91	Peak	0.00	101.11	X-Axis
345.00	72.35	Н	77.26	-4.91	Avg	0.00	101.11	Horizontal Polarization
345.00	87.33	Н	97.26	-9.94	Peak	219.75	194.01	Y-Axis
345.00	67.33	Н	77.26	-9.94	Avg	219.75	194.01	Horizontal Polarization
345.00	89.04	Н	97.26	-8.22	Peak	170.25	111.02	Z-Axis
345.00	69.04	Н	77.26	-8.22	Avg	170.25	111.02	Horizontal Polarization

Ecolink Intelligent Technology, Inc. Date: 07/12/2023

Flood and Freeze Sensor Lab: D Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - Stand Alone Mode Transmit Mode - X-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
690.00	37.62	V	77.26	-39.64	Peak	320.25	238.37	
690.00	17.62	V	57.26	-39.64	Avg	320.25	238.37	
000.00	17.02	•	07.20	00.01	7.149	020.20	200.01	
1035.00	32.34	V	73.97	-41.63	Peak	351.00	223.14	
1035.00	12.34	V	53.97	-41.63	Avg	351.00	223.14	
1380.00	30.81	V	73.97	-43.16	Peak	215.75	191.14	
1380.00	10.81	V	53.97	-43.16	Avg	215.75	191.14	
						//		
1725.00	31.60	V	77.26	-45.66	Peak	216.00	239.32	
1725.00	11.60	V	57.26	-45.66	Avg	216.00	239.32	
2070.00	33.01	V	77.26	-44.25	Peak	161.25	249.01	
2070.00	13.01	V	57.26	-44.25	Avg	161.25	249.01	
2415.00	37.47	V	77.26	-39.79	Peak	48.75	127.38	
2415.00	17.47	V	57.26	-39.79	Avg	48.75	127.38	
2760.00	34.17	V	73.97	-39.80	Peak	52.75	239.20	
2760.00	14.17	V	53.97	-39.80	Avg	52.75	239.20	
3105.00	36.00	V	77.26	-41.26	Peak	359.75	223.14	
3105.00	16.00	V	57.26	-41.26	Avg	359.75	223.14	
3450.00	34.68	V	77.26	-42.58	Peak	259.25	143.20	
3450.00	14.68	V	57.26	-42.58	Avg	259.25	143.20	

Ecolink Intelligent Technology, Inc. Date: 07/12/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - Stand Alone Mode Transmit Mode - Y-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
690.00	37.54	\ \ \	77.26	-39.72	Peak	139.25	254.25	Comments
690.00	17.54	V	57.26	-39.72	Avg	139.25	254.25	
030.00	17.54	V	37.20	33.72	Avg	100.20	204.20	
1035.00	31.94	V	73.97	-42.03	Peak	51.75	127.44	
1035.00	11.94	V	53.97	-42.03	Avg	51.75	127.44	
	-							
1380.00	30.63	V	73.97	-43.34	Peak	33.50	174.97	
1380.00	10.63	V	53.97	-43.34	Avg	33.50	174.97	
							7-7-1-17	
1725.00	31.30	V	77.26	-45.96	Peak	143.50	159.08	
1725.00	11.30	V	57.26	-45.96	Avg	143.50	159.08	
2070.00	33.42	V	77.26	-43.84	Peak	359.75	175.02	
2070.00	13.42	V	57.26	-43.84	Avg	359.75	175.02	
2415.00	37.66	V	77.26	-39.60	Peak	161.00	127.14	
2415.00	17.66	V	57.26	-39.60	Avg	161.00	127.14	
2760.00	34.78	V	73.97	-39.19	Peak	335.75	239.26	
2760.00	14.78	V	53.97	-39.19	Avg	335.75	239.26	
3105.00	35.90	V	77.26	-41.36	Peak	15.75	111.38	
3105.00	15.90	V	57.26	-41.36	Avg	15.75	111.38	
3450.00	36.35	V	77.26	-40.91	Peak	167.75	191.32	
3450.00	16.35	V	57.26	-40.91	Avg	167.75	191.32	

FCC 15.231

Ecolink Intelligent Technology, Inc. Date: 07/12/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - Stand Alone Mode Transmit Mode - Z-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
690.00	37.47	\ \ \	77.26	-39.79	Peak	275.00	238.55	Comments
690.00	17.47	V	57.26	-39.79	Avg	275.00	238.55	
000.00	17.47	•	07.20	00.70	7.09	270.00	200.00	
1035.00	33.40	V	73.97	-40.57	Peak	256.25	143.02	
1035.00	13.40	V	53.97	-40.57	Avg	256.25	143.02	
1380.00	31.25	V	73.97	-42.72	Peak	146.75	127.32	
1380.00	11.25	V	53.97	-42.72	Avg	146.75	127.32	
						// /	7-7-1-17	
1725.00	32.29	V	77.26	-44.97	Peak	29.75	127.38	
1725.00	12.29	V	57.26	-44.97	Avg	29.75	127.38	
2070.00	32.51	V	77.26	-44.75	Peak	353.00	207.14	
2070.00	12.51	V	57.26	-44.75	Avg	353.00	207.14	
2415.00	37.55	V	77.26	-39.71	Peak	5.50	174.97	
2415.00	17.55	V	57.26	-39.71	Avg	5.50	174.97	
2760.00	34.81	V	73.97	-39.16	Peak	131.75	249.91	
2760.00	14.81	V	53.97	-39.16	Avg	131.75	249.91	
3105.00	36.36	V	77.26	-40.90	Peak	38.50	175.02	
3105.00	16.36	V	57.26	-40.90	Avg	38.50	175.02	
3450.00	34.82	V	77.26	-42.44	Peak	29.50	238.97	
3450.00	14.82	V	57.26	-42.44	Avg	29.50	238.97	

FCC 15.231

Ecolink Intelligent Technology, Inc. Date: 07/12/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - Stand Alone Mode Transmit Mode - X-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
690.00	37.50	Н	77.26	-39.76	Peak	74.75	302.31	
690.00	17.50	Н	57.26	-39.76	Avg	74.75	302.31	
1035.00	31.77	Н	73.97	-42.20	Peak	311.75	111.50	
1035.00	11.77	Н	53.97	-42.20	Avg	311.75	111.50	
1380.00	30.68	Н	73.97	-43.29	Peak	234.25	207.08	
1380.00	10.68	Н	53.97	-43.29	Avg	234.25	207.08	
1725.00	32.37	Н	77.26	-44.89	Peak	293.75	175.08	
1725.00	12.37	<u>H</u>	57.26	-44.89	Avg	293.75	175.08	
2070.00	33.24	Н	77.26	-44.02	Peak	149.25	111.26	
2070.00	13.24	Н	57.26	-44.02	Avg	149.25	111.26	
2415.00	38.37	Н	77.26	-38.89	Peak	90.75	191.14	
2415.00	18.37	Н	57.26	-38.89	Avg	90.75	191.14	
2760.00	34.86	Н	73.97	-39.11	Peak	100.25	127.26	
2760.00	14.86	Н	53.97	-39.11	Avg	100.25	127.26	
3105.00	36.00	Н	77.26	-41.26	Peak	161.00	159.32	
3105.00	16.00	Н	57.26	-41.26	Avg	161.00	159.32	
3450.00	34.70	Н	77.26	-42.56	Peak	202.50	206.91	
3450.00	14.70	Н	57.26	-42.56	Avg	22.50	206.91	

FCC 15.231

Ecolink Intelligent Technology, Inc. Date: 07/12/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - Stand Alone Mode Transmit Mode - Y-Axis

Freq.	Level	Pol			Peak / QP /	Table Angle	Ant. Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
690.00	37.21	Н	77.26	-40.05	Peak	19.25	190.85	
690.00	17.21	Н	57.26	-40.05	Avg	19.25	190.85	
1035.00	31.70	Н	73.97	-42.27	Peak	89.75	238.97	
1035.00	11.70	Н	53.97	-42.27	Avg	89.75	238.97	
1380.00	30.59	Н	73.97	-43.38	Peak	222.50	175.20	
1380.00	10.59	Н	53.97	-43.38	Avg	222.50	175.20	
						/(
1725.00	33.68	Н	77.26	-43.58	Peak	323.25	190.73	
1725.00	13.68	Н	57.26	-43.58	Avg	323.23	190.73	
2070.00	32.46	Н	77.26	-44.80	Peak	210.50	206.73	
2070.00	12.46	Н	57.26	-44.80	Avg	210.50	206.73	
2415.00	35.26	Н	77.26	-42.00	Peak	316.75	158.37	
2415.00	15.26	Н	57.26	-42.00	Avg	316.75	158.37	
2760.00	34.75	Н	73.97	-39.22	Peak	115.75	191.32	
2760.00	14.75	Н	53.97	-39.22	Avg	115.75	191.32	
3105.00	35.80	Н	77.26	-41.46	Peak	289.75	239.02	
3105.00	15.80	Н	57.26	-41.46	Avg	289.75	239.02	
3450.00	34.90	Н	77.26	-42.36	Peak	261.25	111.20	
3450.00	14.90	Н	57.26	-42.36	Avg	261.25	111.20	

FCC 15.231

Ecolink Intelligent Technology, Inc. Date: 07/12/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - Stand Alone Mode Transmit Mode - Z-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
690.00	37.06	Н	77.26	-40.20	Peak	81.00	397.77	
690.00	17.06	Н	57.26	-40.20	Avg	81.00	397.77	
1035.00	31.91	Н	73.97	-42.06	Peak	198.75	159.26	
1035.00	11.91	Н	53.97	-42.06	Avg	198.75	159.26	
1380.00	30.62	Н	73.97	-43.35	Peak	200.50	175.08	
1380.00	10.62	Н	53.97	-43.35	Avg	200.50	175.08	
1725.00	31.44	Н	77.26	-45.82	Peak	288.00	159.32	
1725.00	11.44	Н	57.26	-45.82	Avg	288.00	159.32	
2070.00	32.94	Н	77.26	-44.32	Peak	217.00	175.14	
2070.00	12.94	Н	57.26	-44.32	Avg	217.00	175.14	
2415.00	37.93	Н	77.26	-39.33	Peak	164.25	191.14	
2415.00	17.93	Н	57.26	-39.33	Avg	164.25	191.14	
2760.00	35.01	Н	73.97	-38.96	Peak	251.00	191.02	
2760.00	15.01	Н	53.97	-38.96	Avg	251.00	191.02	
3105.00	35.81	Н	77.26	-41.45	Peak	244.25	175.02	
3105.00	15.81	Н	57.26	-41.45	Avg	244.25	175.02	
2450.00	25.00		77.00	44.07	Deal	070.75	000.44	
3450.00 3450.00	35.29 15.29	H	77.26 57.26	-41.97 -41.97	Peak Avg	276.75 276.75	223.14 223.14	

FCC Class B and FCC 15.231

Ecolink Intelligent Technology, Inc. Date: 07/12/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Stand Alone Mode

Non Harmonic Emissions from the Tx and Digital Portion - 9 kHz to 30 MHz Non Harmonic Emissions from the Tx and Digital Portion - 1 GHz To 3.45 GHz

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
								No Emissions Detected
								from 9 kHz to 30 MHz
								for the digital portion
								of the EUT
								of the EOT
								No Emissions Detected
						4.7		from 1 GHz to 3.45 GHz
								for the digital portion
								of the EUT
								of the Lot
								from 9 kHz to 30 MHz
								for the Non-Harmonic Emissions
								of the Transmitter for the EUT
								of the Transmitter for the EOT
								No Emissions Detected
								from 1 GHz to 3.45 GHz
								for the Non-Harmonic Emissions
								of the Transmitter for the EUT
								or the Transmitter for the 201
								Investigated in the X-Axis,
								Y-Axis, and Z-Axis
								·

EUT WITH EXTERNAL SENSOR ADAPTER

DATA SHEETS

FCC 15.231

Ecolink Intelligent Technology, Inc. Date: 07/11/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Fundamental with External Cable Sensor

					I			
Eroa	Level	Pol			Peak / QP /	Table	Ant. Height	
Freq. (MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	Angle (deg)	(cm)	Comments
345.00	89.38	V	97.26	-7.88	Peak	138.00	173.95	X-Axis
345.00	69.38	V	77.26	-7.88	Avg	138.00	173.95	Vertical Polarization
345.00	95.81	V	97.26	-1.45	Peak	93.00	173.00	Y-Axis
345.00	75.81	V	77.26	-1.45	Avg	93.00	173.00	Vertical Polarization
345.00	92.67	V	97.26	-4.59	Peak	101.50	182.85	Z-Axis
345.00	72.67	V	77.26	-4.59	Avg	101.50	182.85	Vertical Polarization
345.00	95.71	Н	97.26	-1.56	Peak	22.00	107.92	X-Axis
345.00	75.71	Н	77.26	-1.56	Avg	22.00	107.92	Horizontal Polarization
345.00	91.66	Н	97.26	-5.61	Peak	173.00	145.23	Y-Axis
345.00	71.66	Н	77.26	-5.61	Avg	173.00	145.23	Horizontal Polarization
345.00	89.96	Н	97.26	-7.30	Peak	200.75	181.53	Z-Axis
345.00	69.96	Н	77.26	-7.30	Avg	200.75	181.53	Horizontal Polarization

Ecolink Intelligent Technology, Inc. Date: 07/11/2023

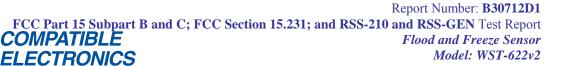
Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - With External Cable Sensor Transmit Mode - X-Axis

					Peak /	Table	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
690.00	64.42	V	77.26	-12.84	Peak	228.75	100.35	
690.00	44.42	V	57.26	-12.84	Avg	228.75	100.35	
1035.00	31.77	V	73.97	-42.20	Peak	76.75	238.85	
1035.00	11.77	V	53.97	-42.20	Avg	76.75	238.85	
1380.00	30.80	V	73.97	-43.17	Peak	311.00	111.50	
1380.00	10.80	V	53.97	-43.17	Avg	311.00	111.50	
1725.00	32.27	V	77.26	-44.99	Peak	41.75	249.07	
1725.00	12.27	V	57.26	-44.99	Avg	41.75	249.07	
2070.00	32.92	V	77.26	-44.34	Peak	121.75	111.44	
2070.00	12.92	V	57.26	-44.34	Avg	121.75	111.44	
2415.00	35.53	V	77.26	-41.73	Peak	43.75	127.26	
2415.00	15.53	V	57.26	-41.73	Avg	43.75	127.26	
2760.00	35.28	V	73.97	-38.69	Peak	123.00	143.02	
2760.00	15.28	V	53.97	-38.69	Avg	123.00	143.02	
3105.00	37.92	V	77.26	-39.34	Peak	357.75	111.32	
3105.00	17.92	V	57.26	-39.34	Avg	357.75	111.32	
3450.00	34.64	V	77.26	-42.62	Peak	21.50	222.85	
3450.00	14.64	V	57.26	-42.62	Avg	21.50	222.85	

FCC 15.231


Ecolink Intelligent Technology, Inc. Date: 07/11/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - With External Cable Sensor Transmit Mode - Y-Axis

F		D-1			Peak /	Table	Ant.	
Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	QP / Avg	Angle (deg)	Height (cm)	Comments
690.00	64.45	V	77.26	-12.81	Peak	178.50	173.67	
690.00	44.45	V	57.26	-12.81	Avg	178.50	173.67	
1035.00	32.01	V	73.97	-41.96	Peak	325.00	127.20	
1035.00	12.01	V	53.97	-41.96	Avg	325.00	127.20	
1380.00	30.97	V	73.97	-43.00	Peak	218.00	174.85	
1380.00	10.97	V	53.97	-43.00	Avg	218.00	174.85	
1725.00	31.58	V	77.26	-45.68	Peak	316.00	127.26	
1725.00	11.58	V	57.26	-45.68	Avg	316.00	127.26	
2070.00	33.17	V	77.26	-44.09	Peak	155.00	175.02	
2070.00	13.17	V	57.26	-44.09	Avg	155.00	175.02	
0445.00	07.04		77.00	00.00	Deal	4.40.00	0.40.07	
2415.00	37.64	V	77.26	-39.62	Peak	143.00	249.07	
2415.00	17.64	V	57.26	-39.62	Avg	143.00	249.07	
2760.00	34.91	V	73.97	-39.06	Peak	130.75	249.07	
2760.00	14.91	V	53.97	-39.06	Avg	130.75	249.07	
2700.00	14.91	V	55.91	-39.00	Avy	130.73	249.07	
3105.00	36.68	V	77.26	-40.58	Peak	255.25	223.08	
3105.00	16.68	V	57.26	-40.58	Avg	255.25	223.08	
3450.00	34.95	V	77.26	-42.31	Peak	173.75	191.08	
3450.00	14.95	V	57.26	-42.31	Avg	173.75	191.08	

Ecolink Intelligent Technology, Inc. Date: 07/11/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - With External Cable Sensor Transmit Mode - Z-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
690.00	58.11	V	77.26	-19.15	Peak	351.25	138.74	
690.00	38.11	V	57.26	-19.15	Avg	351.25	138.74	
		-	0110					
1035.00	31.83	V	73.97	-42.14	Peak	86.25	206.49	
1035.00	11.83	V	53.97	-42.14	Avg	86.25	206.49	
1380.00	31.24	V	73.97	-42.73	Peak	163.25	111.32	
1380.00	11.24	V	53.97	-42.73	Avg	163.25	111.32	
							7-7-1-17	
1725.00	31.78	V	77.26	-45.48	Peak	303.00	238.91	
1725.00	11.78	V	57.26	-45.48	Avg	303.00	238.91	
2070.00	32.75	V	77.26	-44.51	Peak	49.00	159.08	
2070.00	12.75	V	57.26	-44.51	Avg	49.00	159.08	
2415.00	34.41	V	77.26	-42.85	Peak	306.00	111.44	
2415.00	14.41	V	57.26	-42.85	Avg	306.00	111.44	
2760.00	34.12	V	73.97	-39.85	Peak	31.00	239.02	
2760.00	14.12	V	53.97	-39.85	Avg	31.00	239.02	
3105.00	36.70	V	77.26	-40.56	Peak	258.50	143.14	
3105.00	16.70	V	57.26	-40.56	Avg	258.50	143.14	
3450.00	34.76	V	77.26	-42.50	Peak	34.75	127.44	
3450.00	14.76	V	57.26	-42.50	Avg	34.75	127.44	

Ecolink Intelligent Technology, Inc. Date: 07/11/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - With External Cable Sensor Transmit Mode - X-Axis

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
690.00	54.62	Н	77.26	-22.64	Peak	60.50	110.02	
690.00	34.62	H	57.26	-22.64	Avg	60.50	110.02	
000.00	0 1102		01.20		,,,,	00.00	110.02	
1035.00	31.41	Н	73.97	-42.56	Peak	0.00	239.14	
1035.00	11.41	Н	53.97	-42.56	Avg	0.00	239.14	
1380.00	30.71	Н	73.97	-43.26	Peak	128.25	175.26	
1380.00	10.71	Ι	53.97	-43.26	Avg	128.25	175.26	
						//		
1725.00	34.09	Η	77.26	-43.17	Peak	185.75	159.14	
1725.00	14.09	Н	57.26	-43.17	Avg	185.75	159.14	
			N.					
2070.00	32.71	Н	77.26	-44.55	Peak	313.75	127.20	
2070.00	12.71	Н	57.26	-44.55	Avg	313.75	127.20	
2415.00	41.82	Н	77.26	-35.44	Peak	100.75	249.89	
2415.00	21.82	Н	57.26	-35.44	Avg	100.75	249.89	
2760.00	34.42	Н	73.97	-39.55	Peak	141.75	238.85	
2760.00	14.42	Н	53.97	-39.55	Avg	141.75	238.85	
040=05	27.00		05	00.05		22.25	40=00	
3105.00	37.39	H	77.26	-39.87	Peak	80.00	127.32	
3105.00	17.39	Н	57.26	-39.87	Avg	80.00	127.32	
2450.00	24.04	11	77.00	40.40	Dest	204.75	222.22	
3450.00	34.84	H	77.26	-42.42	Peak	291.75	223.02	
3450.00	14.84	Н	57.26	-42.42	Avg	291.75	223.02	

Ecolink Intelligent Technology, Inc. Date: 07/11/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

Harmonics - With External Cable Sensor Transmit Mode - Y-Axis

Freq.	Level	Pol			Peak / QP /	Table Angle	Ant. Height	_
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
690.00	58.50	Η	77.26	-18.76	Peak	10.25	108.47	
690.00	38.50	Η	57.26	-18.76	Avg	10.25	108.47	
1035.00	31.79	Н	73.97	-42.18	Peak	316.50	223.20	
1035.00	11.79	Н	53.97	-42.18	Avg	316.50	223.20	
1380.00	31.28	Н	73.97	-42.69	Peak	104.00	127.20	
1380.00	11.28	Н	53.97	-42.69	Avg	104.00	127.20	
						//		
1725.00	31.94	Η	77.26	-45.32	Peak	337.25	191.20	
1725.00	11.94	Н	57.26	-45.32	Avg	337.25	191.20	
					- 110			
2070.00	32.52	Η	77.26	-44.74	Peak	9.25	143.20	
2070.00	12.52	Н	57.26	-44.74	Avg	9.25	143.20	
2415.00	39.90	Н	77.26	-37.36	Peak	10.75	110.97	
2415.00	19.90	Н	57.26	-37.36	Avg	10.75	110.97	
2760.00	34.58	Н	73.97	-39.39	Peak	207.25	143.20	
2760.00	14.58	Н	53.97	-39.39	Avg	207.25	143.20	
3105.00	36.43	Н	77.26	-40.83	Peak	55.50	191.20	
3105.00	16.43	Н	57.26	-40.83	Avg	55.50	191.20	
3450.00	35.07	Н	77.26	-42.19	Peak	326.00	249.89	
3450.00	15.07	Н	57.26	-42.19	Avg	326.00	249.89	

Ecolink Intelligent Technology, Inc. Date: 07/11/2023

Flood and Freeze Sensor Lab: D

Model: WST-622v2 Tested By: Kyle Fujimoto

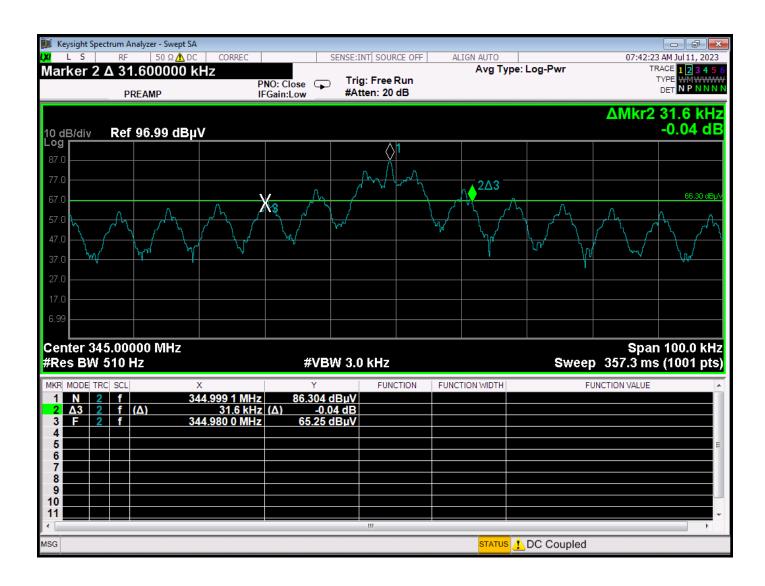
Harmonics - With External Cable Sensor Transmit Mode - Z-Axis

					Peak /	Table	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
690.00	67.71	Н	77.26	-9.56	Peak	65.50	114.20	
690.00	47.71	Н	57.26	-9.56	Avg	65.50	114.20	
1035.00	32.22	Н	73.97	-41.75	Peak	289.00	206.97	
1035.00	12.22	Н	53.97	-41.75	Avg	289.00	206.97	
1380.00	31.65	Н	73.97	-42.32	Peak	55.75	127.38	
1380.00	11.65	Η	53.97	-42.32	Avg	55.75	127.38	
1725.00	31.10	Н	77.26	-46.16	Peak	307.50	206.91	
1725.00	11.10	Η	57.26	-46.16	Avg	307.50	206.91	
2070.00	33.23	Η	77.26	-44.03	Peak	106.00	111.20	
2070.00	13.23	Η	57.26	-44.03	Avg	106.00	111.20	
2415.00	41.66	Н	77.26	-35.60	Peak	174.25	111.20	
2415.00	21.66	Н	57.26	-35.60	Avg	174.25	111.20	
2760.00	34.71	Н	73.97	-39.26	Peak	32.75	159.08	
2760.00	14.71	Н	53.97	-39.26	Avg	32.75	159.08	
3105.00	35.95	Н	77.26	-41.31	Peak	160.50	191.02	
3105.00	15.95	Н	57.26	-41.31	Avg	160.50	191.02	
3450.00	34.92	Н	77.26	-42.34	Peak	298.00	175.14	
3450.00	14.92	Н	57.26	-42.34	Avg	298.00	175.14	

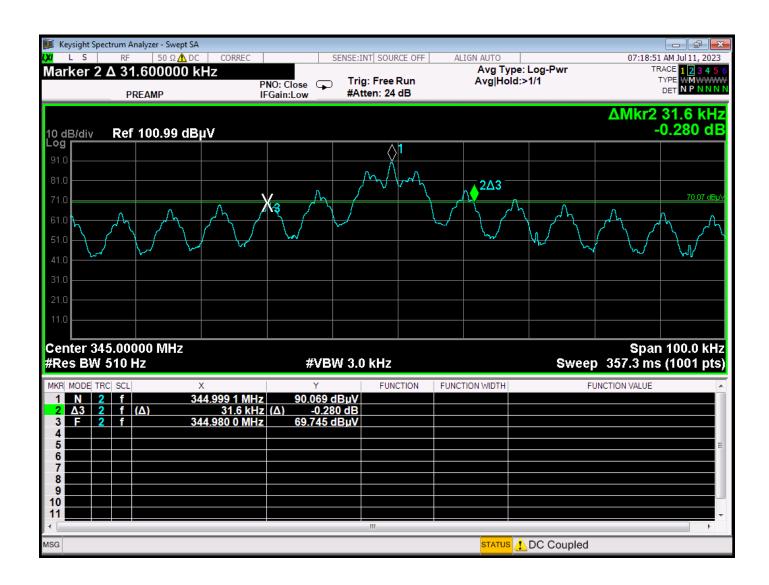
FCC Class B and FCC 15.231

Ecolink Intelligent Technology, Inc. Date: 07/11/2023

Flood and Freeze Sensor Lab: D


Model: WST-622v2 Tested By: Kyle Fujimoto

With External Cable Sensor


Non Harmonic Emissions from the Tx and Digital Portion - 9 kHz to 30 MHz Non Harmonic Emissions from the Tx and Digital Portion - 1 GHz To 3.45 GHz

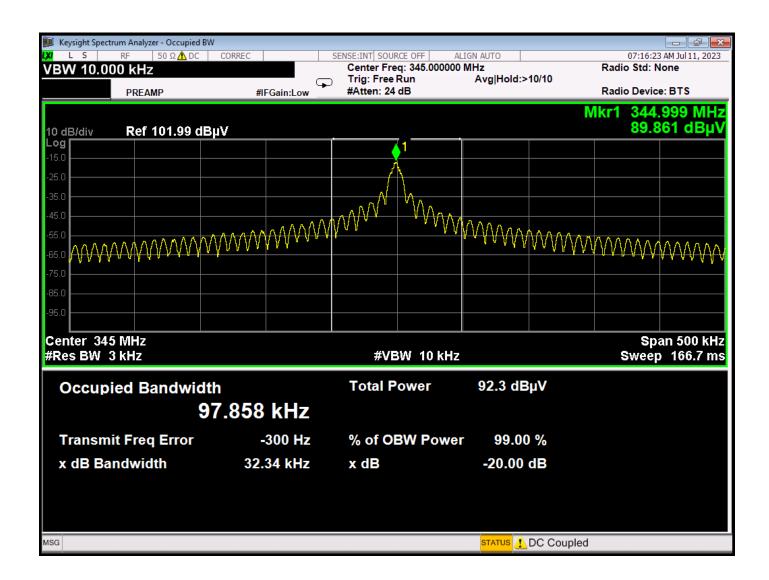
Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
								No Emissions Detected
								from 9 kHz to 30 MHz
								for the digital portion
								of the EUT
								of the EOT
								No Emissions Detected
						4.7		from 1 GHz to 3.45 GHz
								for the digital portion
								of the EUT
								of the Lot
								from 9 kHz to 30 MHz
								for the Non-Harmonic Emissions
								of the Transmitter for the EUT
								of the Transmitter for the EOT
								No Emissions Detected
								from 1 GHz to 3.45 GHz
								for the Non-Harmonic Emissions
								of the Transmitter for the EUT
								Investigated in the X-Axis,
								Y-Axis, and Z-Axis

-20 dB BANDWIDTH PLOT DATA SHEET

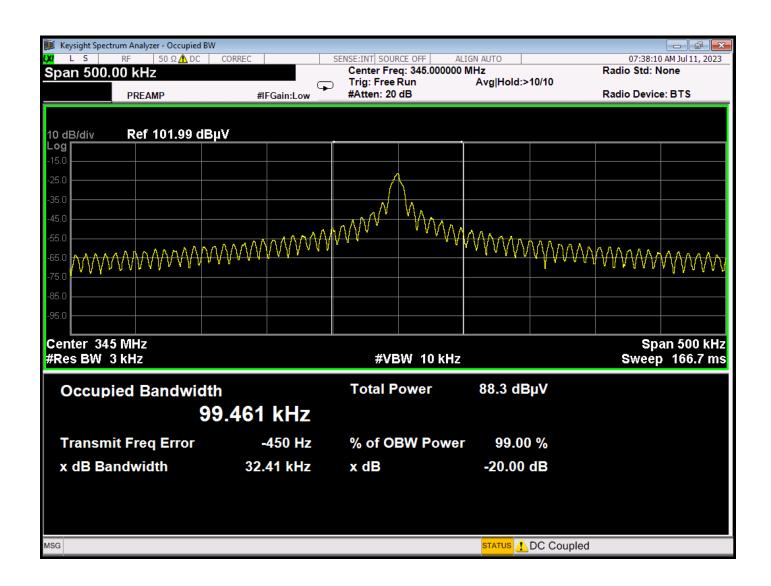
-20 dB Bandwidth Plot - No External Sensor Adapter

-20 dB Bandwidth Plot – With External Sensor Adapter

TRANSMISSION TIME DATA SHEET


Plot Showing Actual Time of Transmission 4.575 seconds

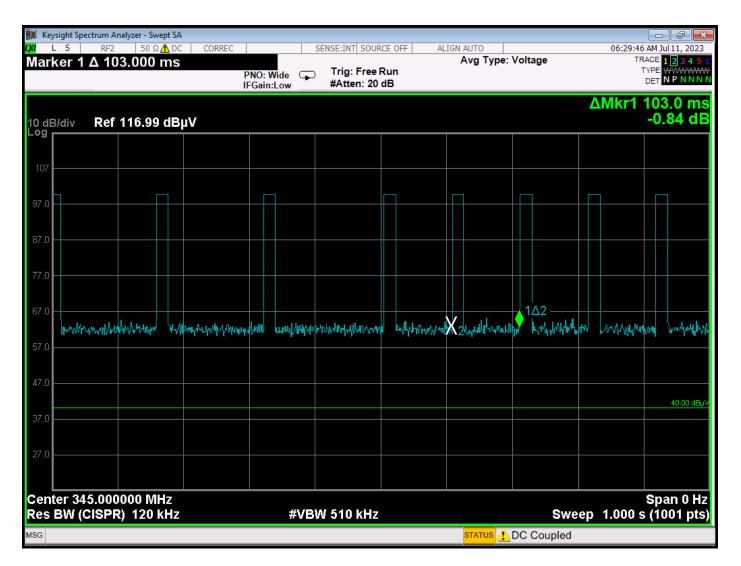
Plot Showing Time of Transmission is less than 5 seconds


99% BANDWIDTH DATA SHEET

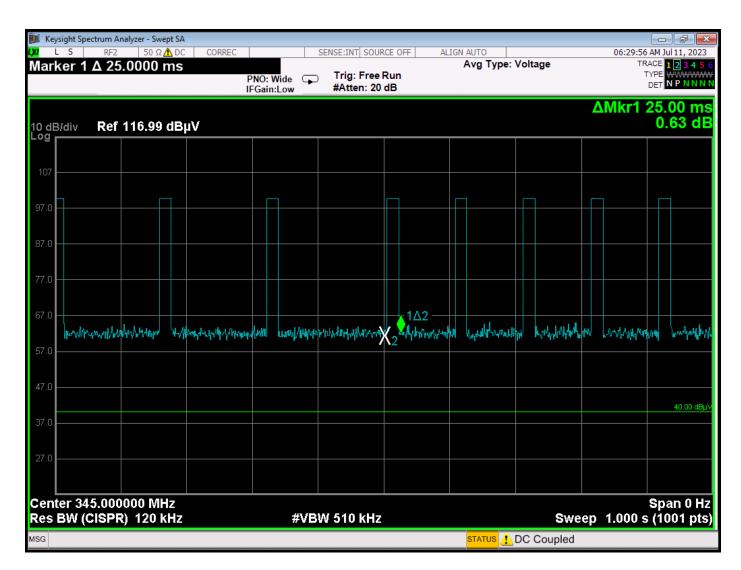
Flood and Freeze Sensor Model: WST-622v2

99% Bandwidth Plot - No External Sensor Adapter

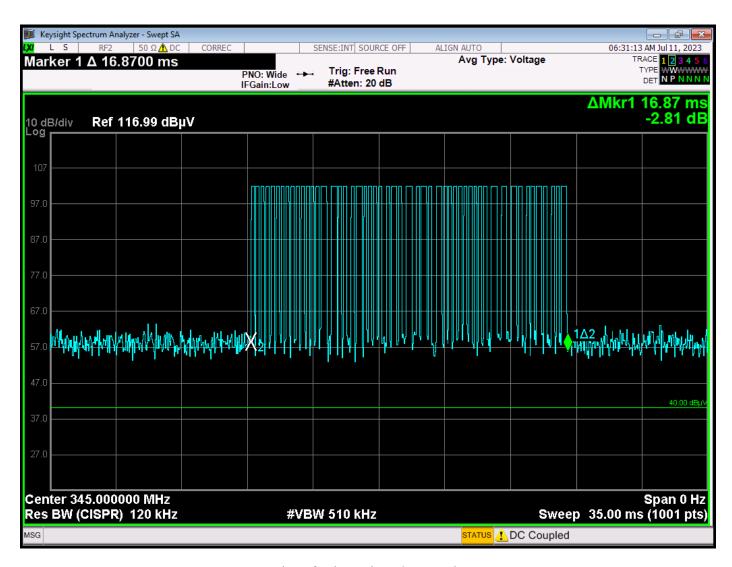
Flood and Freeze Sensor Model: WST-622v2

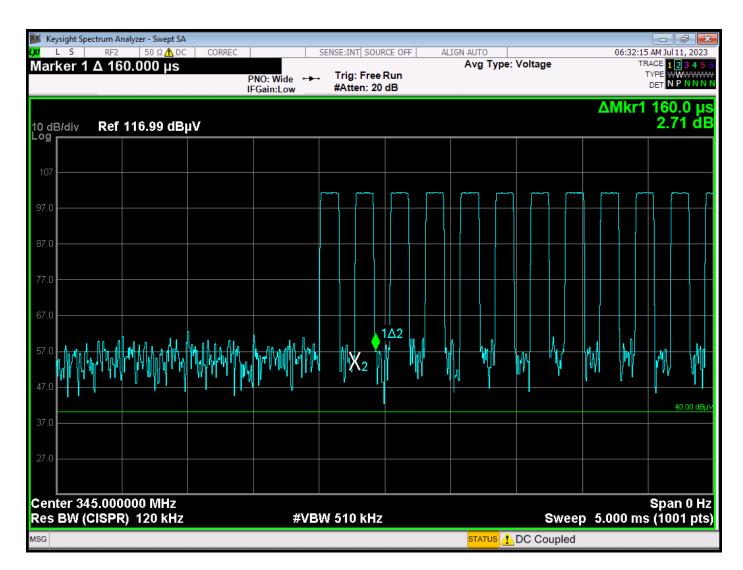


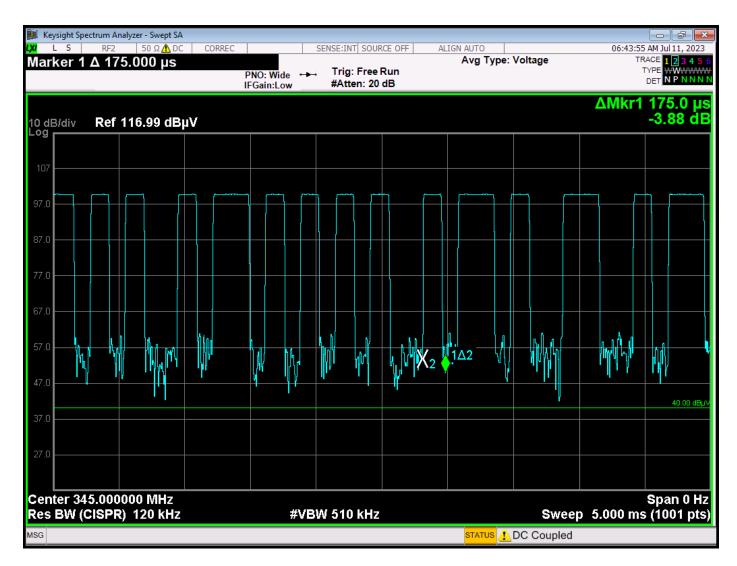
99% Bandwidth Plot - With External Sensor Adapter

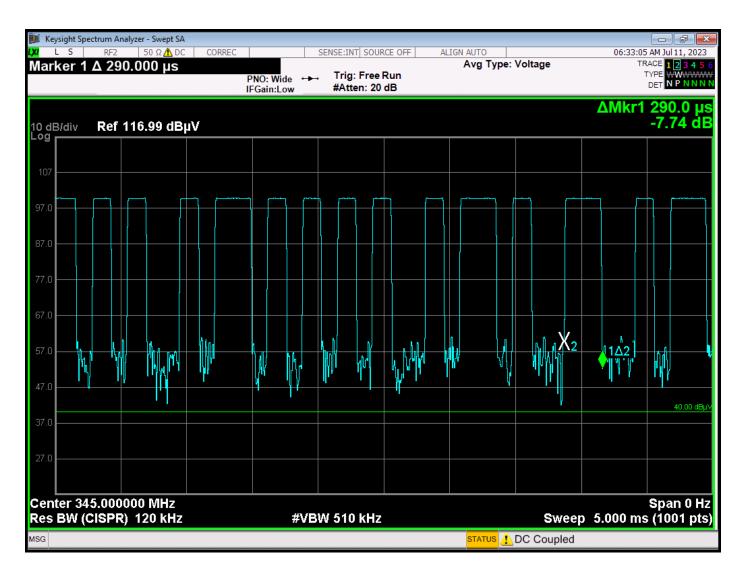

DUTY CYCLE

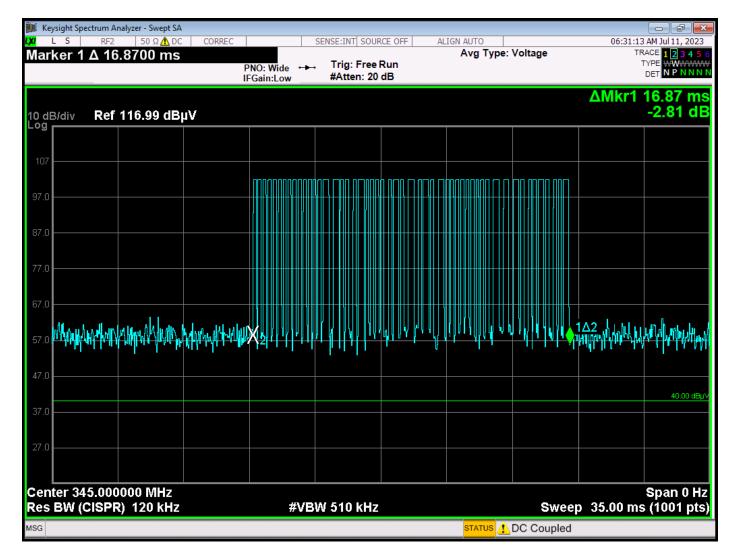
DATA SHEETS


Flood and Freeze Sensor Model: WST-622v2


The worst case where the pulse train repeats itself will always be at least 100 ms


Time of One Complete Pulse Train


Time of Pulse Train on 35 ms scale


Time of One Small Pulse = 160 us

Time of One Medium Pulse = 175 us

Time of One Large Pulse = 290 us

Number of Small Pulses = 32 = (32*160 us) = 5120 usNumber of Medium Pulses = 8 = (8*175 us) = 1400 usNumber of Large Pulses = 12 = (12*290 us) = 3480 us

Total On Time = 10000 us = 10.000 ms

Duty Cycle = 10.000 ms / 100 ms = 10.00%

The peak to average ratio is -20.00 dB