

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS 210

CERTIFICATION TEST REPORT

FOR

WIRELESS SENSOR

MODEL NUMBER: WST-231

FCC ID: XQC-WST231 IC: 9863B-WST231

REPORT NUMBER: 15U21469 REVISION B

ISSUE DATE: AUGUST 17, 2015

Prepared for ECOLINK INTELLIGENT TECHNOLOGY, INC. 2055 CORTE DEL NOGAL CARLSBAD CA, 92011, U.S.A

> Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
-	8/10/15	Initial Issue	P. Zhang
А	8/13/15	Additional note is added on page 14 Revised Page 21, 27, 28	P. Zhang
В	8/17/15	Updated antenna on page 7	P. Zhang

Page 2 of 37

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CAL	IBRATION AND UNCERTAINTY	5
4	4.1.	MEASURING INSTRUMENT CALIBRATION	5
2	4.2.	SAMPLE CALCULATION	5
2	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQI	JIPMENT UNDER TEST	7
ł	5.1.	DESCRIPTION OF EUT	7
Ę	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	7
ξ	5.3.	SOFTWARE AND FIRMWARE	7
ξ	5.4.	WORST-CASE CONFIGURATION AND MODE	7
Ę	5.5.	MODIFICATIONS	7
Ę	5.6.	DESCRIPTION OF TEST SETUP	8
6.	TES	ST AND MEASUREMENT EQUIPMENT	9
7.	AN	TENNA PORT TEST RESULTS	D
7	7.1.	20 dB AND 99% BW10	0
7	7.2.	DUTY CYCLE	4
7	7.3.	TRANSMISSION TIME	0
8.	RAI	DIATED EMISSION TEST RESULTS2 ⁴	1
8	3.1.	TX RADIATED SPURIOUS EMISSION2	1
9.	SET	UP PHOTOS	9

Page 3 of 37

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	ECOLINK INTELLIGENT TECHNOLOGY, INC. 2055 CORTE DEL NOGAL CARLSBAD, CA, 92011, U.S.A						
EUT DESCRIPTION:	WIRELESS SENSOR						
MODEL:	WST-231						
SERIAL NUMBER:	NON-SERIALIZED PRODUCTION UNIT.						
DATE TESTED: AUGUST 10, 2015							
	APPLICABLE STANDARDS						
ST	ANDARD	TEST RESULTS					
FCC PART	15 SUBPART C	Pass					
INDUSTRY CANADA	RSS-210 Issue 8, Annex 1	Pass					
INDUSTRY CAN	ADA RSS-GEN Issue 4	Pass					

UL Verification Services Inc tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc By:

PENG ZHANG PROJECT LEAD UL Verification Services Inc.

Tested By:

Rally Mame

R.ALEGRE LAB ENGINEER UL Verification Services Inc.

Page 4 of 37

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013 for IC and ANSI C63.10-2009 for FCC, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 8.

Deviation - test for above 1GHz was done at 1.5m instead of 80cm.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	Chamber E
Chamber C	Chamber F

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 5 of 37

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY				
Conducted Disturbance, 0.15 to 30 MHz	±3.52 dB				
Radiated Disturbance, 30 to 18000 MHz	±4.94 dB				

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 37

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Wireless Sensor.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a loop antenna, with a maximum gain of -15 dBi.

5.3. SOFTWARE AND FIRMWARE

The typical factory firmware installed in the EUT during testing was ESW1093-03-A01.hex.

The firmware installed in the EUT to allow continuous transmit during testing was ESW1093-FCC.hex.

5.4. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in each of its three orthogonal axes. All radiated testing was performed in the worse-case axis, which was found to be the "X-axis". See photos for details.

5.5. MODIFICATIONS

No modifications were made during testing.

Page 7 of 37

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

NONE

I/O CABLES

NONE

TEST SETUP

SETUP DIAGRAM FOR TESTS

EUT	

Page 8 of 37

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	Test Equipment List										
Description	Manufacturer	Model	Asset	Cal Due							
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	C01171	02/13/16							
Antenna, Horn, 18GHz	EMCO	3115	C00783	10/25/15							
Antenna, Horn, 25.5 GHz	ARA	MWH-1826/B	C00980	11/14/15							
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	01/28/16							
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	10/22/15							
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/20/15							
CBT Bluetooth Tester	R & S	CBT	None	07/12/16							
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/15							
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/15							
LISN, 30 MHz	FCC	50/250-25-2	C00626	01/14/16							
Reject Filter, 2.4GHz	Micro-Tronics	BRM50702	N02684	CNR							
ESA-E Spectrum Analyzer, 9kHz-26.5	Agilent / HP	E4407B	C01098	04/04/16							
GHz											
Antenna, Loop, 30 MHz	EMCO	6502	C00593	02/20/16							

Page 9 of 37

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB AND 99% BW

<u>LIMITS</u>

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

IC A1.1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST PROCEDURE

ANSI C63.10

The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 1% to 5% of OBW. The VBW is set to 3 times the RBW. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

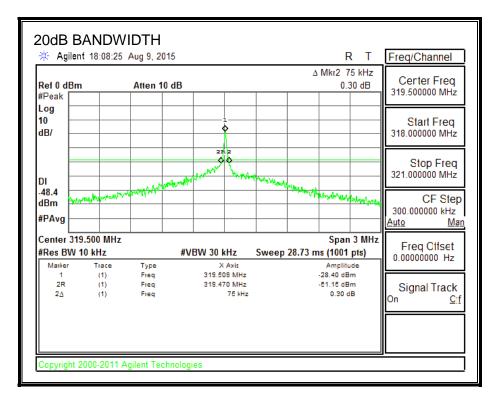
99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Page 10 of 37

RESULTS

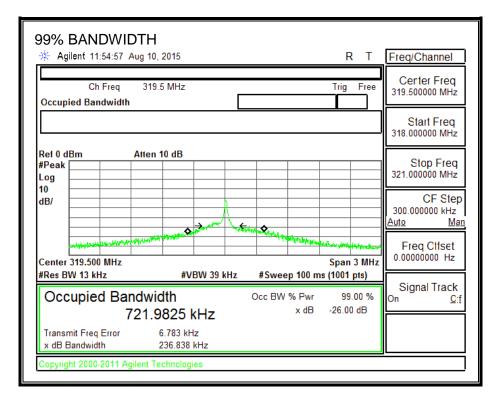
No non-compliance noted:

20dB Bandwidth


Frequency	20dB Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
319.5	75	798.75	-723.75

99% Bandwidth

Frequency	99% Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
319.5	721.9825	798.75	-76.7675


Page 11 of 37

20dB BANDWIDTH

Page 12 of 37

99% BANDWIDTH

Page 13 of 37

7.2. DUTY CYCLE

<u>LIMITS</u>

FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1MHz and the VBW is set to 1MHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

CALCULATION

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

RESULTS

No non-compliance noted:

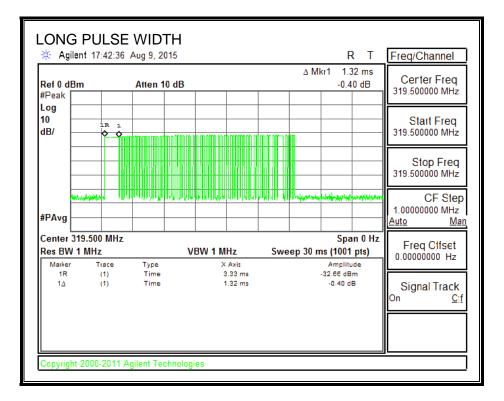
One	Long Pulse	# of	Short	# of	Duty	20*Log
Period	Width	Long	Width	Short	Cycle	Duty Cycle
(ms)	(ms)	Pulses	(ms)	Pulses		(dB)
100	1.32	1	0.12	62	0.088	-21.15

NOTE: Medium pulse is counted as four short pulses.

NOTE: One pulse stream is $1.38ms + 0.12ms^* 62 = 8.82ms$, one transition contain 16 pulse streams (from section 7.3) which is $8.82ms^* 16 = 141.12ms$

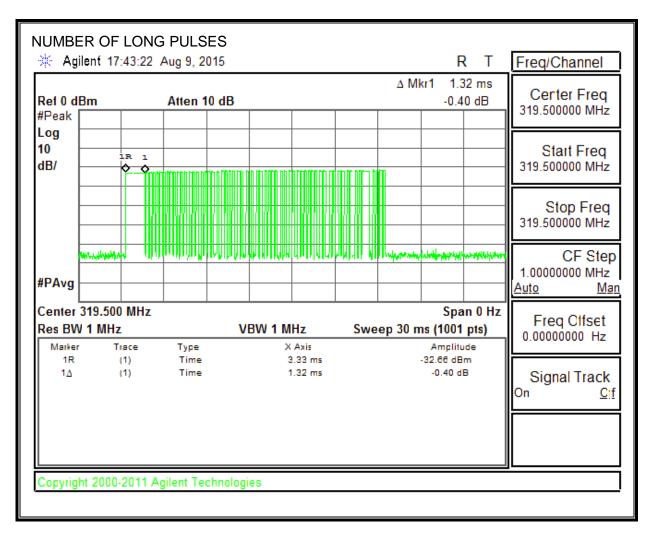
NOTE: The device transmit supervisory message in every 70mins which means transmit 141.12ms * 120mins/70mins=241.92ms in two hours.

Page 14 of 37

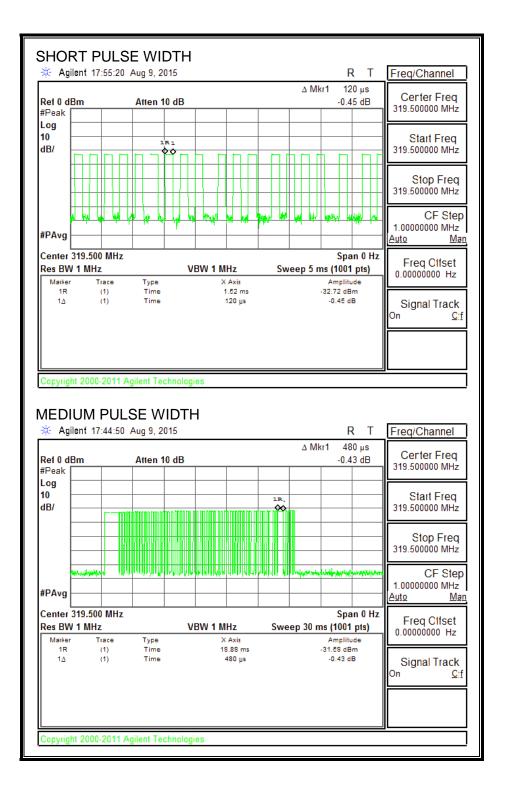

ONE PERIOD

JNE ∦ Ag	PER jilent 17			Au	g 9, 2	2015										F	२	т	Free	/Cha	anne	
Ref 0 d #Peak	IBm			A	tten	10 d	В						4	Mk		1(-42.	00 i 54 (r Free 00 MH	
Log 10 dB/		11	R.]																Free	
											1								319.	Stop 5000	o Fre 00 M⊦	q Iz
#PAvg	1244 Pr. 1944	pantara			b /10	a land	***		in an						, 41		-	4 4% in 18	1.00 <u>Auto</u>		F St 00 MH	
Center 319.500 MHz Res BW 1 MHz							v	BW	1 M	Hz	Sw	ee	p 2()0 m	ns ('	Spa 1001		0 Hz s)			Offse 00 Hi	
Marker 1R		frace (1)			Type Time					Axis 7.93 ms						mpliti 10 dE						-
14		(1)			Time					100 ms						2.54 c			Si On	gnal	Trac	k <u>Ω:f</u>
Copyrig	ht 2000	-201	1 A	gile	nt Te	echn	olog	ies														

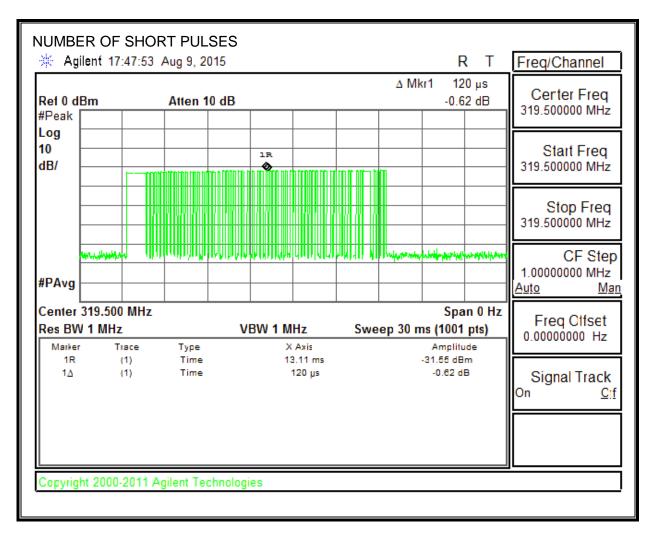
UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..


Page 15 of 37

LONG PULSE WIDTH


Page 16 of 37

NUMBER OF LONG PULSES


Page 17 of 37

SHORT PULSE AND MEDIUM WIDTH

Page 18 of 37

NUMBER OF SHORT PULSES

NOTE: Medium pulse is counted as four short pulses.

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..

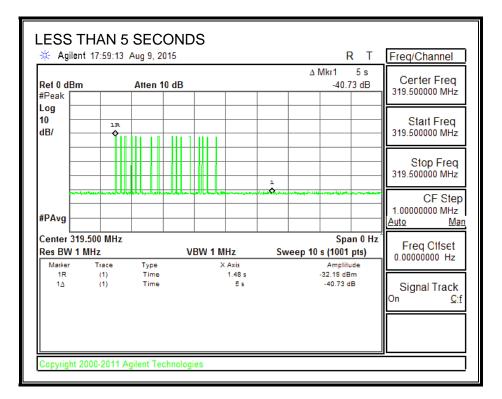
Page 19 of 37

7.3. TRANSMISSION TIME

LIMITS

FCC §15.231 (a) (2)

IC A1.1.1 (b)


A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1MHz and the VBW is set to 1MHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

RESULTS

No non-compliance noted:

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..

Page 20 of 37

8. RADIATED EMISSION TEST RESULTS 8.1. TX RADIATED SPURIOUS EMISSION

<u>LIMITS</u>

FCC §15.231 (b) IC A1.1.2

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 – 13.41	322 - 335.4		

Page 21 of 37

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

quency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

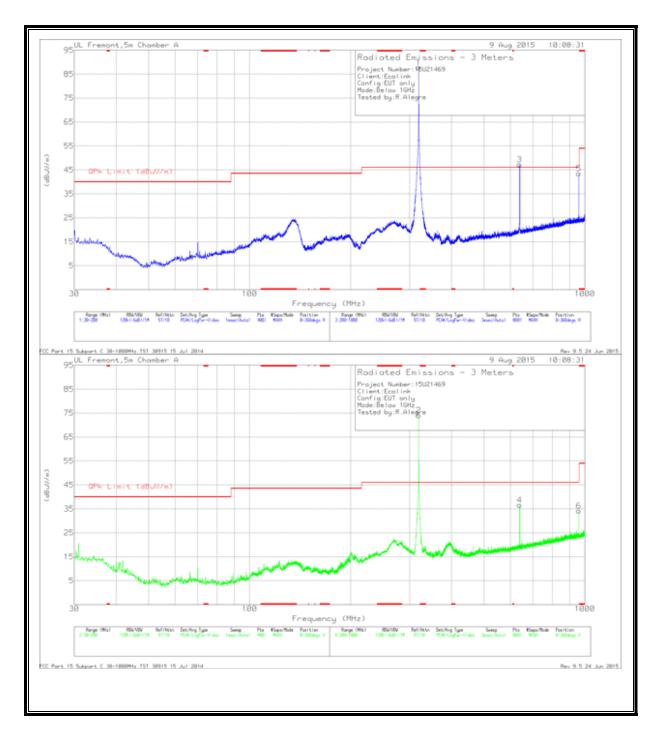
Page 22 of 37

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz and 150cm for above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and apply DCCF for average measurements.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

No non-compliance noted:

Page 23 of 37

FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 - 1000 MHz)

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..

Page 24 of 37

BELOW 1GHZ RADIATED EMISSIONS

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	319.5	103.16	Pk	14	-29.3	87.86			0-360	101	Н
2	319.5	89.41	Pk	14	-29.3	74.11			0-360	101	V
3	639	56.35	Pk	19.4	-28.4	47.35			0-360	101	Н
4	639	45.65	Pk	19.4	-28.4	36.65	46.02	-9.37	0-360	101	V
5	958.5	47.68	Pk	22.7	-26.9	43.48	46.02	-2.54	0-360	101	Н
6	958.5	38.41	Pk	22.7	-26.9	34.21	46.02	-11.81	0-360	101	V

Pk - Peak detector


Frequency (MHz)	Meter Reading	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading	FCC 15.231	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
	(dBuV)				(dBuV/m)	Limit				
						(dBuV/m)				
319.5067	90.29	Pk	14	-29.3	74.99	95.89	-20.9	250	129	V
		Av			53.84	75.89	-22.05	250	129	V
319.5106	103.07	Pk	14	-29.3	87.77	95.89	-8.12	347	101	Н
		Av			66.62	75.89	-9.27	347	101	н
639.0101	56.07	Pk	19.4	-28.4	47.07	75.89	-28.82	173	102	н
		Av			25.92	55.89	-29.97	173	102	н
958.5173	49	Pk	22.7	-26.9	44.8	75.89	-31.09	341	153	н
		Av			23.65	55.89	-32.24	341	153	Н

FUNDAMENTAL AND HARMONICS SPURIOUS EMISSIONS

* Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T Refer to section 7.2 for duty cycle factor calculation (-21.15dB) Note: Radiated peak result is based on 100% duty cycle sample; average reading = peak reading + DCCF

Page 25 of 37

HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz

Page 26 of 37

Radiated Emissions

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T345 (dB/m)	Amp/Cbl (dB)	Corrected Avg Reading (dBuV/m)	Class B Avg Limit (dBuV/m)	Margin (dB)	Corrected Peak Reading (dBuV/m)	Class B Pk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1.597	68.5	Pk	28.8	-35.3	40.85	54.00	-13.15	62	74.00	-12.00	360	298	Н
1.917	62.23	Pk	31.9	-34.7	38.28	55.89	-17.61	59.43	75.89	-16.46	171	137	Н
2.876	66.23	Pk	32.6	-34	43.68	54.00	-10.32	64.83	74.00	-9.17	192	393	Н
3.195	65.41	Pk	32.4	-33.1	43.56	55.89	-12.33	64.71	75.89	-11.18	314	223	Н
3.195	64.67	Pk	32.4	-33.1	42.82	55.89	-13.07	63.97	75.89	-11.92	245	379	V
3.834	59.43	Pk	33.4	-32.9	38.78	54.00	-15.22	59.93	74.00	-14.07	296	103	Н

* Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..

Page 27 of 37

BELOW 30MHz

FCC Part 15, Subpart B & C 3 Meter Distance Measurement At Open Field

Company: Ecolink Project #: 15U21469 EUT configuration #: EUT ONLY Cont. TX. Mode of operation: 9KHz-30MHz Tester: R.A Date: 8/9/15

Frequency	PK	QP	AV	AF	Distance	Distance	PK Corrected	AV Corrected	PK Limit	AV Limit	PK Margin	AV Margin	Notes
(MHz)	(dBu/V)	(dBu/V)	(dBuV)	dB/m	(m)	Correction (dB)	Reading (dBuV/m)	Reading (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	
Loop Antenn	a Face Or	1:											
0.05	68.51		57.12	11.3	3	-80.00	-0.19	-11.58	53.62	33.62	-53.8	-45.2	
0.11	52.98		43.01	10.88	3	-80.00	-16.14	-26.11	46.78	26.78	-62.9	-52.9	
1.01	38.26	35.26		10.7	3	-40.00	5.96		27.52		-21.6		
3.91	37.85	35.51		10.89	3	-40.00	6.40		29.54		-23.1		
19.5	38.54	36.27		10.15	3	-40.00	6.42		29.54		-23.1		
Loop Antenn	a Face Of	f:											
0.05	69.04		57.26	11.3	3	-80.00	0.34	-11.44	53.62	33.62	-53.3	-45.1	
0.11	50.89		41.89	10.88	3	-80.00	-18.23	-27.23	46.78	26.78	-65.0	-54.0	
1.01	36.56	34.03		10.7	3	-40.00	4.73		27.52		-22.8		
3.91	35.89	33.55		10.89	3	-40.00	4.44		29.54		-25.1		
19.5	36.49	34.19		10.15	3	-40.00	4.34		29.54		-25.2		

No more emissions were found up to 30MHz

Note: The emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 10000Mhz. Radiated emission limits in these three bands are based on measurements employing an average detector.

P.K. = Peak Q.P. = Quasi Peak Readings A.F. = Antenna factor

Below 150kHz => RBW=VBW=200 or 300Hz Above 150kHz =>RBW=VBW=9 or 10kHz (Average => VBW=10Hz)

Rev. 060314

Page 28 of 37