

CC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS 210

CIIPC CERTIFICATION TEST REPORT

FOR

4-BUTTON WIRELESS SECURITY REMOTE KEY FOB

MODEL NUMBER: WST-101

FCC ID: XQC-WST101 IC: 9863B-WST101

REPORT NUMBER: 11377729-E1V2

ISSUE DATE: 08/30/16

Prepared for ECOLINK INTELLIGENT TECHNOLOGY 2055 CORTE DEL NOGAL CARLSBAD, CA 92011, U.S.A

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	08/01/16	Initial Issue	
V2	08/30/16	Added statement in Page 26 and Updated Section 7.2.	C. Vergonio

Page 2 of 34

TABLE OF CONTENTS

1.	AT	ESTATION OF TEST RESULTS 4
2.	TES	ST METHODOLOGY
3.	FAC	CILITIES AND ACCREDITATION
4.	CAI	LIBRATION AND UNCERTAINTY
4	l.1.	MEASURING INSTRUMENT CALIBRATION
4	1.2.	SAMPLE CALCULATION
4	1.3.	MEASUREMENT UNCERTAINTY 6
5.	EQ	JIPMENT UNDER TEST7
5	5.1.	DESCRIPTION OF EUT
5	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS
5	5.3.	SOFTWARE AND FIRMWARE7
5	5.4.	WORST-CASE CONFIGURATION AND MODE 7
5	5.5.	MODIFICATIONS
5	5.6.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE
5	5.7.	DESCRIPTION OF TEST SETUP 8
6.	TES	ST AND MEASUREMENT EQUIPMENT9
7.	AN	TENNA PORT TEST RESULTS10
7	7.1.	DUTY CYCLE
7	7.2.	20 dB AND 99% BW17
7	7.3.	TRANSMISSION TIME
8.	RAI	DIATED EMISSION TEST RESULTS21
8	8.1.	TX RADIATED SPURIOUS EMISSION21
9.	SEI	TUP PHOTOS

Page 3 of 34

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Econlink Intelligent Technology. 2055 CORTE DEL NOGAL CARLSBAD CA 92011, USA
EUT DESCRIPTION:	4-BUTTON WIRELESS SECURITY REMOTE KEY FOB
MODEL:	WST-101
Serial Number:	Non-serialized production unit
DATE TESTED:	July 28 – August 30, 2016
	APPLICABLE STANDARDS

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	Pass
INDUSTRY CANADA RSS-210 Issue 8, Annex 1	Pass
INDUSTRY CANADA RSS-GEN Issue 4	Pass

UL Verification Services Inc tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc By:

Choon Sian Ooi PROJECT LEAD UL Verification Services Inc.

Prepared By:

Jason Qian WISE LABORATORY ENGINEER UL Verification Services Inc.

Page 4 of 34

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
🛛 Chamber B	Chamber E
Chamber C	Chamber F

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 5 of 34

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 9KHz to 30 MHz	2.14 dB
Radiated Disturbance, 30 to 1000 MHz	4.98 dB
Radiated Disturbance,1000 to 6000 MHz	3.86 dB
Radiated Disturbance,6000 to 18000 MHz	4.23 dB
Radiated Disturbance, 18000 to 26000 MHz	5.30 dB
Radiated Disturbance,26000 to 40000 MHz	5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 34

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Wireless Security Remote Key Fob. The EUT operates from a 3VDC, internal CR2032 battery.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an internal, loop antenna, with a maximum gain of -15 dBi.

5.3. SOFTWARE AND FIRMWARE

Not Applicable. The manufacturer configured a sample of the device to constantly transmit and a sample to operate as intended when normally operated.

5.4. WORST-CASE CONFIGURATION AND MODE

The EUT has only one channel (319.5MHz) and after preliminary testing it was determined that the X axis was the worst case configuration.

5.5. MODIFICATIONS

No modifications were made during testing.

5.6. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The purpose of this C2PC:

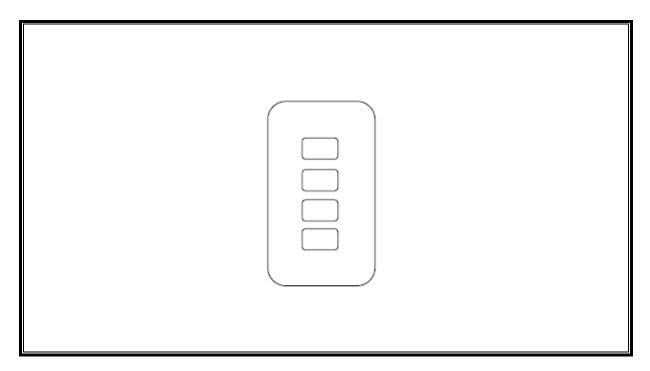
1. PCB with dome switches and new RF running component values.

Page 7 of 34

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

NONE


I/O CABLES

NONE

TEST SETUP

The EUT was tested as a standalone device.

SETUP DIAGRAM FOR TESTS

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..

Page 8 of 34

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	Asset	Cal Due			
Antenna, Biconolog, 30MHz-1GHz	Sunol Sciences	JB3	T899	05/26/17			
Antenna, Horn, 18GHz	ETS Lindgren	3117	T346	02/22/17			
Antenna, Loop, 30 MHz	ETS Lindgren	80465	T35	03/24/17			
Preamplifier, 10kHz to 1GHz	Sonoma	310	T300	11/05/16			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	10/22/16			
PXA Signal Analyzer, 44 GHz	Keysight	N9030A	N/A	12/21/16			
PXA Signal Analyzer, 44 GHz	Keysight	N9030A	T908	04/13/17			

Test Software List							
Description	Manufacturer	Model	Version				
Radiated Software	UL	UL EMC	Ver 9.5, Apr 26, 2016				

Page 9 of 34

7. ANTENNA PORT TEST RESULTS

7.1. DUTY CYCLE

<u>LIMITS</u>

FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1MHz and the VBW is set to 1MHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

CALCULATION

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of 1^{st} pulses* 1^{st} pulses width) + (# of 2^{nd} pulses* 2^{nd} pulses width) + (# of 3^{rd} pulses* 3^{rd} pulses width) + (# of 4^{th} pulses* 4^{th} pulses width) / 100 or T

RESULTS

No non-compliance noted:

One	1st	# of	2nd	# of	3rd	# of	4th	# of	Duty	20*Log
Period	Width	1st	Width	2nd	Width	3rd	Width	4th	Cycle	Duty
(ms)	(ms)	Pulses	(ms)	Pulses	(ms)	Pulses	(ms)	Pulses		(dB)
100	0.9517	2	0.12	60	0.48	1	0.11	1	0.097	-20.27

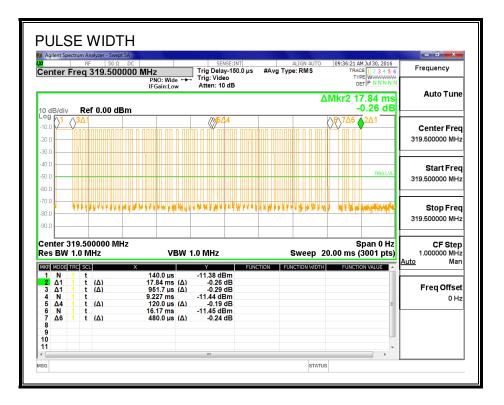
Page 10 of 34

100ms PERIOD

6 Marker	09:33:51 AM Jul 29, 2016 TRACE 1 2 3 4 5 6 TYPE WWWWWW	ALIGN AUTO	#Avg Typ		SENS		Ω DC 0 ms	RF 50		rke
Marker Table	DET P N N N N N				Atten: 10 c	PNO: Wide +++ IFGain:Low				
	kr2 100.0 ms -0.13 dB	ΔΙ					dBm	ef 0.00	iv R	dB/d
Marker Count										
[0.1]			1						1	
Couple										
On <u>Of</u>										- 0
4	andada ana ana ana ana ana ana ana ana a	terrest and the second states of the second states	II materia	all method		hale have ground		 ,	- land	0 🚕
-										
										머니
	Span 0 Hz .0 ms (1001 pts)	Sweep 20	:		1.0 MHz	VBW 1	MHz	00000 MHz	· 319.5 N 1.0 I	
	FUNCTION VALUE	NCTION WIDTH	TION FUN	FUNC	-34.32 dBr	11.60 ms	Х	CL t	E TRC S	N MOL
All Markers Of	E			3	-0.13 dl	100.0 ms (Δ)		t (Δ)	1 1	Δ1
More										
2 of 2										

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.. FORM NO: CCSUP4701I FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..

Page 11 of 34

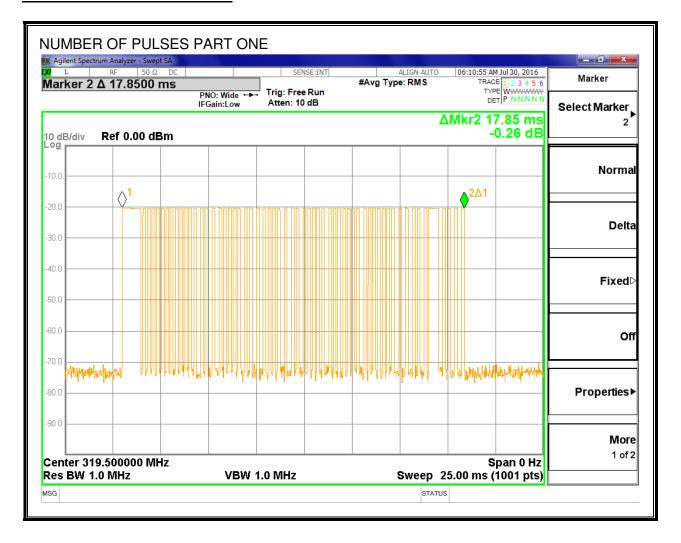

ONE PERIOD

Marker	AM Jul 30, 2016 ACE 1 2 3 4 5 6 YPE WWWWWW DET P N N N N N	TRAC	ALIGN AUTO De: RMS	#Avg Ty	NSE:INT		PNO: Wide ↔	50 Ω DC 341 ms	3 Δ 98	arker
Select Marker 3	98.33 ms 0.00 dB	Mkr3 9	Δ			Atten: 10	IFGain:Low			
Norma				3 ∆1			2∆1	.00 dBm	Ref	0 dB/di
Delta										0.0 0.0 0.0
Fixed	and the second	alan dar Mara	are all to for the second	LUT A			and the second of the	มะกระช _ิ ญญญัก	oonaa ya	0.0 0.0
Of	Span 0 Hz (1001 pts)	50.0 ms (•			1.0 MHz	VBW	00 MHz	1.0 MH	enter es BV
Properties		FUNCTIO	NCTION WIDTH	NCTION F	Bm dB	Y -20.21 dE -0.06 0.00	54.32 ms 17.65 ms (Δ) 98.33 ms (Δ)))	TRC SCL 1 t 1 t 1 t	1 Ν 2 Δ1 3 Δ1 4 5
More 1 of 2										6 7 8 9 0

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.. FORM NO: CCSUP4701I FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..

Page 12 of 34

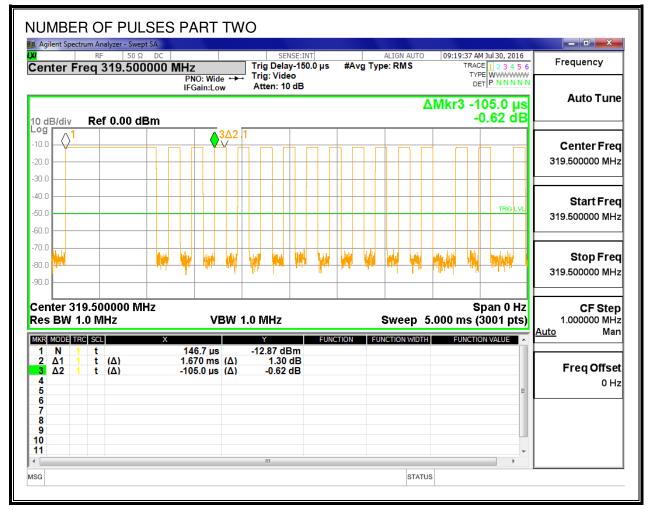
1st, 2nd and 3rd PULSE WIDTH



Page 13 of 34

4th PULSE WIDTH

enter Freq 319.50	PNO: \	Wide 🛶 Trig	SENSE:INT Delay-150.0 µs : Video en: 10 dB	ALIGN AUT #Avg Type: RMS	0 09:19:37 AM Jul 30, 2016 TRACE 1 2 3 4 5 6 TYPE WWAAAAAAA DET P N N N N N	
0 dB/div Ref 0.00 c	IFGain	Low Att	en: 10 ab		ΔMkr3 -105.0 μs -0.62 dB	Auto Tune
		3Δ2 1				Center Free 319.500000 MH:
						Start Free 319.500000 MH;
		M W W	M M M			Stop Free 319.500000 MH:
enter 319.500000 M es BW 1.0 MHz		VBW 1.0 M			Span 0 Hz 5.000 ms (3001 pts)	CF Step 1.000000 MHz Auto Mar
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ms (Δ)	87 dBm 1.30 dB -0.62 dB	ICTION FUNCTION WIL	FUNCTION VALUE	Freq Offse 0 Hz
7 8 9 0						


Page 14 of 34

Page 15 of 34

NUMBER OF PULSES PART TWO

*Note: According one period plot, a whole period is 98.33ms, and an addition part at above plot, from marker 1 to marker 2 is

1.67ms. Therefore, the 100ms period is equal one period plus the additional part.

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..

Page 16 of 34

7.2. 20 dB AND 99% BW

LIMITS

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

IC A1.1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST PROCEDURE

ANSI C63.10

The transmitter output is connected to the spectrum analyzer.

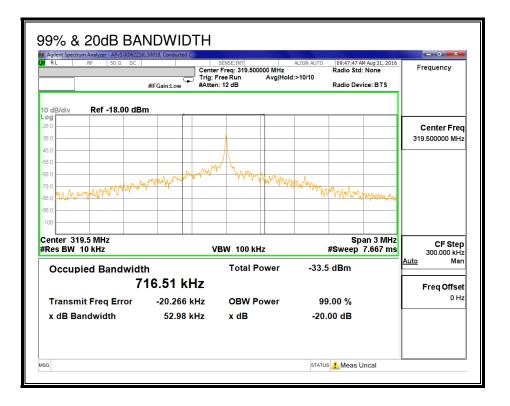
20dB Bandwidth: The RBW is set to 1% to 5% of OBW. The VBW is set to 3 times the RBW. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Page 17 of 34

RESULTS

No non-compliance noted:


20dB Bandwidth

Frequency	20dB Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
319.5	52.98	798.75	-745.77

99% Bandwidth

Frequency	99% Bandwidth	Limit	Margin		
(MHz)	(kHz)	(kHz)	(kHz)		
319.5	716.51	798.75	-82.24		

Page 18 of 34

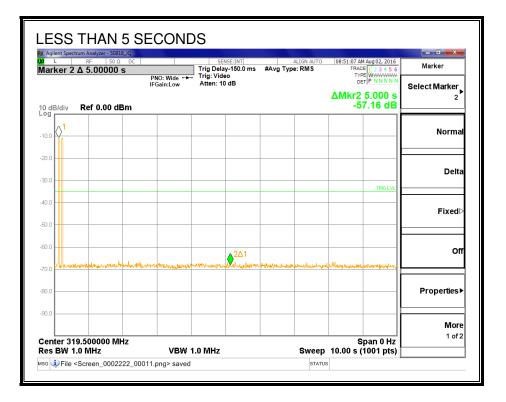
Page 19 of 34

7.3. TRANSMISSION TIME

LIMITS

FCC §15.231 (a) (2)

IC A1.1.1 (b)


A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1MHz and the VBW is set to 1MHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

RESULTS

No non-compliance noted:

Page 20 of 34

8. RADIATED EMISSION TEST RESULTS 8.1. TX RADIATED SPURIOUS EMISSION

0.1. IX RADIATED SPURIOUS

<u>LIMITS</u>

FCC §15.231 (b)

IC A1.1.2

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
$\begin{array}{c} 0.090 - 0.110 \\ {}^{1}0.495 - 0.505 \\ 2.1735 - 2.1905 \\ 4.125 - 4.128 \\ 4.17725 - 4.17775 \\ 4.20725 - 4.20775 \\ 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \\ 12.29 - 12.293 \\ 12.51975 - 12.52025 \end{array}$	$\begin{array}{c} 16.42 - 16.423 \\ 16.69475 - 16.69525 \\ 16.80425 - 16.80475 \\ 25.5 - 25.67 \\ 37.5 - 38.25 \\ 73 - 74.6 \\ 74.8 - 75.2 \\ 108 - 121.94 \\ 123 - 138 \\ 149.9 - 150.05 \\ 156.52475 - \\ 156.52525 \\ 156.7 - 156.9 \\ 162.0125 - 167.17 \\ 167.72 - 173.2 \end{array}$	$\begin{array}{r} 399.9 - 410 \\ 608 - 614 \\ 960 - 1240 \\ 1300 - 1427 \\ 1435 - 1626.5 \\ 1645.5 - 1646.5 \\ 1660 - 1710 \\ 1718.8 - 1722.2 \\ 2200 - 2300 \\ 2310 - 2390 \\ 2483.5 - 2500 \\ 2655 - 2900 \\ 3260 - 3267 \\ 3332 - 3339 \\ 3345.8 - 3358 \end{array}$	$\begin{array}{c} 4.5 - 5.15 \\ 5.35 - 5.46 \\ 7.25 - 7.75 \\ 8.025 - 8.5 \\ 9.0 - 9.2 \\ 9.3 - 9.5 \\ 10.6 - 12.7 \\ 13.25 - 13.4 \\ 14.47 - 14.5 \\ 15.35 - 16.2 \\ 17.7 - 21.4 \\ 22.01 - 23.12 \\ 23.6 - 24.0 \\ 31.2 - 31.8 \\ 36.43 - 36.5 \end{array}$
12.57675 - 12.57725 13.36 – 13.41	240 - 285 322 - 335.4	3600 - 4400	(~)

Page 21 of 34

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

quency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

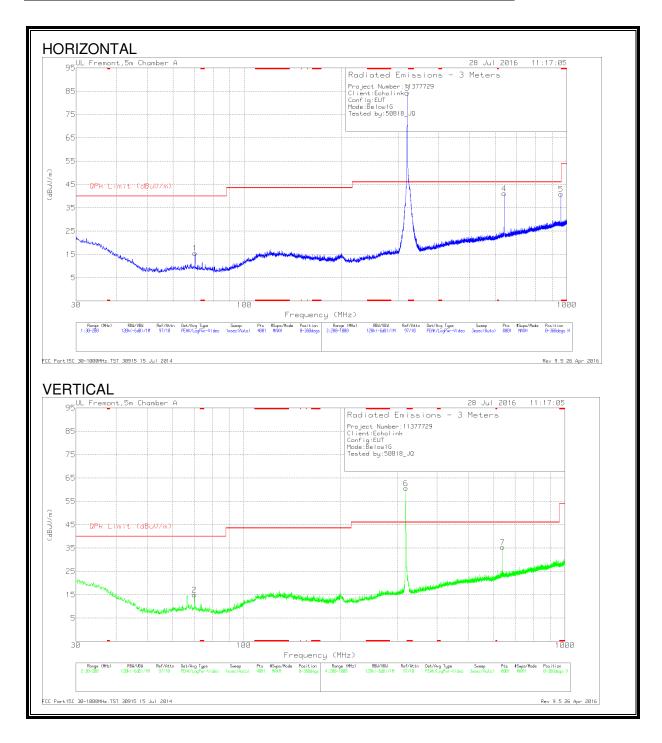
Page 22 of 34

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz and 150cm for above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and apply DCCF for average measurements.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

No non-compliance noted:

Page 23 of 34

FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 - 1000 MHz)

UL VERIFICATION SERVICES INC 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.. FORM NO: CCSUP47011 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc..

Page 24 of 34

BELOW 1GHZ RADIATED EMISSIONS

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T899 (dB/m)	Amp/Cbl (dB/m)	Correcte d Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	70.2475	34.29	Pk	12.1	-30.8	15.59	40	-24.41	0-360	200	Н
2	70.2475	33.73	Pk	12.1	-30.8	15.03	40	-24.97	0-360	100	V
6	319.5	72.05	Pk	17.9	-29.3	60.65	-	-	0-360	300	V
3	319.8	95.72	Pk	17.9	-29.3	84.32	-	-	0-360	100	Н
7	639	40.1	Pk	23.7	-28.4	35.4	-	-	0-360	200	V
4	639.3	45.88	Pk	23.7	-28.4	41.18	-	•	0-360	100	Н
5	958.8	41.13	Pk	26.7	-26.9	40.93	-	-	0-360	100	Н

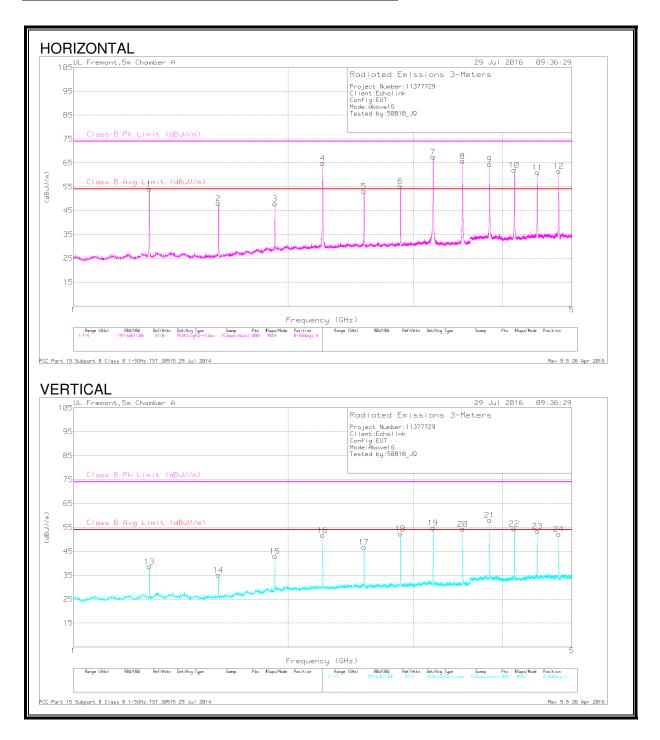
FUNDAMENTAL AND HARMONICS SPURIOUS EMISSIONS

Frequency (MHz)	Meter Reading (dBuV)	Det	AF T899 (dB/m)	Amp/Cbl (dB/m)	Corrected Reading (dBuV/m)	Pk Limit (dBuV/m)	Avg Limit (dBuV/m)	PK Margin (dBuV/m)	Avg Margin (dBuV/m)	Azimuth (Degs)	Height (cm)	Polarity
319.498	90.92	Pk	17.9	-29.3	79.52	95.89	-	-16.37	-	107	156	Н
		Av			59.25	-	75.89	-	-16.64	107	156	Н
319.503	76.91	Pk	17.9	-29.3	65.51	95.89	-	-30.38	-	338	112	V
		Av			45.24	-	75.89	-	-30.65	338	112	V
**638.997	40.41	Pk	23.7	-28.4	35.71	75.89	-	-40.18	-	215	109	V
		Av			15.44	-	55.89	-	-40.45	215	109	V
**639.006	44.95	Pk	23.7	-28.4	40.25	75.89	-	-35.64	-	256	134	Н
		Av			19.98	-	55.89	-	-35.91	256	134	Н
**958.498	40.81	Pk	26.7	-26.9	40.61	75.89	-	-35.28	-	173	148	Н
		Av			20.34	-	55.89	-	-35.55	173	148	Н

Pk - Peak detector

* Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is 0.1

(# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T


Refer to section 7.2 for duty cycle factor calculation (-20.27dB)

Note: Radiated peak result is based on 100% duty cycle sample; average reading = peak reading + DCCF

** Harmonics of fundamental 319.5 MHz

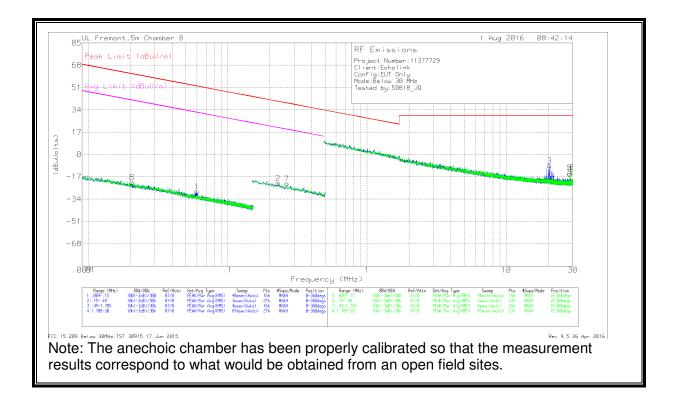
Page 25 of 34

HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz

Page 26 of 34

REPORT NO: 11377729-E1V2 FCC ID: XQC-WST101 Radiated Emissions

Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T346 (db/m)	Amp/Cbl (dB)	Corrected Avg Reading (dBuV/m)	Class B Avg Limit (dBuV/m)	Av(CISPR) Margin (dB)	Corrected pk Reading (dBuV/m)	Class B Pk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1.278	61.36	Pk	28.8	-34.6	-	-	-	55.56	75.89	-20.33	40	191	Н
		Av			35.29	55.89	-20.6	-	-	-	40	191	Н
1.278	52.27	Pk	28.8	-34.6	-	-	-	46.47	75.89	-29.42	77	393	V
		Av			26.3	55.89	-29.69	-	-	-	77	393	V
*1.598	56.25	Pk	28.2	-34.3	-	-	-	50.15	74	-23.85	7	358	Н
		Av			39.88	54	-24.12	-	-	-	7	358	Н
*1.597	50.59	Pk	28.2	-34.3	-	-	-	44.49	74	-29.51	166	347	V
		Av			24.22	54	-29.78	-	-	-	166	347	V
1.917	56.41	Pk	31.2	-33.9	-	-	-	53.71	75.89	-22.18	115	249	Н
		Av			33.44	55.89	-22.45	-	-	-	115	249	Н
1.917	51.05	Pk	31.2	-33.9	-	-	-	48.35	75.89	-27.54	77	337	V
		Av			28.08	55.89	-27.81	-	-	-	77	337	V
*2.236	67.23	Pk	31.8	-33.5	-	-	-	65.53	74	-8.47	74	294	Н
		Av			45.26	54	-8.74	-	-	-	74	294	Н
*2.236	59.62	Pk	31.8	-33.5	-	-	-	57.92	74	-16.08	256	322	V
		Av			37.65	54	-16.35	-	-	-	256	322	V
2.556	55.87	Pk	32.4	-33.1	-	-	-	55.17	75.89	-20.72	134	200	Н
		Av			34.9	55.89	-20.99	-	-	-	134	200	Н
2.556	51.28	Pk	32.4	-33.1	-	-	-	50.58	75.89	-25.31	282	321	V
		Av			30.31	55.89	-25.58	-	-	-	282	321	V
*2.875	56.75	Pk	32.6	-32.3	-	-	-	57.05	74	-16.95	291	205	Н
		Av			36.78	54	-17.22	-	-	-	291	205	Н
*2.876	55.64	Pk	32.6	-32.4	-	-	-	55.84	74	-18.16	125	387	V
		Av			35.57	54	-18.43	-	-	-	125	387	V
3.195	68.31	Pk	33.2	-32.1	-	-	-	69.41	75.89	-6.48	39	116	Н
		Av			49.14	55.89	-6.75	-	-	-	39	116	Н
3.195	64.44	Pk	33.2	-32.1	-	-	-	65.54	75.89	-10.35	173	369	V
		Av			45.27	55.89	-10.62	-	-	-	173	369	V
3.515	66.27	Pk	33	-31.8	-	-	-	67.47	75.89	-8.42	38	124	Н
		Av			47.2	55.89	-8.69	-	-	-	38	124	Н
3.515	63.37	Pk	33	-31.8	-	-	-	64.57	75.89	-11.32	169	400	V
		Av			44.3	55.89	-11.59	-	-	-	169	400	V
*3.834	65.78	Pk	33.6	-31	-	-	-	68.38	74	-5.62	214	378	Н
*0.004	01.00	Av	00.0	01	48.11	54	-5.89	-	-	-	214	378	H
*3.834	61.83	Pk	33.6	-31	-	-	-	64.43	74	-9.57	153	397	V V
*4 154	60.26	Av Pk	20.0	20.0	44.16	54	-9.84	-	- 74	-	153	397	
*4.154	00.20	PK Av	33.6	-30.8	42.79	- 54		63.06	- 14	-10.94	108 108	164 164	H
*4.153	58.74	Pk	22.6	-30.8	42.79	- 54	-11.21	61.54	- 74	-12.46		394	H V
4.103	30.74	Av	33.6	-30.8	- 41.27	- 54	-12.73	61.54	- 74	-12.46	158 158	394 394	V
4.474	58.33	Pk	34.2	-30.4	41.27	54	-12.73	62.13	75.89	-13.76	342	394 113	H
4.4/4	00.00	Av	34.2	-30.4	41.86	55.89	-14.03		- 15.89	-13.76	342	113	Н
4.473	56.97	Pk	34.2	-30.4	41.80	55.69	-14.03	60.77	75.89	-15.12	246	361	V
4.4/3	20.97		34.2	-30.4		- EE 90	15.20	60.77	/5.89	-15.12	-	361	V
*4.793	61.3	Av Pk	24.0	-29.8	40.5	55.89	-15.39	_	- 74	-8.2	246 0	110	H
4./93	01.3	Av	34.3	-29.0	45.53	- 54		65.8	- 74	-8.2	0	110	Н
*4.792	56.35	Pk	34.3	-29.8	40.03	- 54	-8.47	60.85	74	-13.15	216	352	V
4./92	00.00	Av	34.3	-29.0	40.58	54	-13.42	00.00	/4	-13.13	216	352	V
	1	AV			40.00	04	-10.42	-	-		210	302	v


Pk - Peak detector

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T Refer to section 7.2 for duty cycle factor calculation (-20.27dB) Note: Radiated peak result is based on 100% duty cycle sample; average reading = peak reading + DCCF

RBW = 1MHz, VBW = 3MHz for the final Peak and Average readings

Page 27 of 34

BELOW 1GHZ RADIATED EMISSIONS

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr 300m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
8	.02056	43.81	Pk	13.8	1.4	-80	-20.99	61.35	-82.34	41.35	-62.34	0-360
1	.06017	39.38	Pk	11.1	1.4	-80	-28.12	52.02	-80.14	32.02	-60.14	0-360
2	.23011	45.79	Pk	10.8	1.5	-80	-21.91	40.37	-62.28	20.37	-42.28	0-360
7	.26623	45.51	Pk	10.8	1.5	-80	-22.19	39.1	-61.29	19.1	-41.29	0-360

Pk - Peak detector

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (dB/m)	Cbl (dB)	Dist Corr 30m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
3	20.43695	19.9	Pk	10	1.7	-40	-8.4	29.54	-37.94	-	-	0-360
4	28.64174	15.13	Pk	8.3	1.7	-40	-14.87	29.54	-44.41	-	-	0-360
5	28.71144	16.16	Pk	8.3	1.7	-40	-13.84	29.54	-43.38	-	-	0-360
6	29.94755	17	Pk	8	1.7	-40	-13.3	29.54	-42.84	-	-	0-360

Pk - Peak detector