

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

WIRELESS LIGHT SENSOR

MODEL NUMBER: WLS

FCC ID: XQC-WLS100

REPORT NUMBER: 09U12846-1, Revision B

ISSUE DATE: MARCH 30, 2010

Prepared for ECOLINK INTELLIGENT TECHNOLOGY 5817 DRYDEN PLACE. SUITE D CARLSBAD, CA 92008, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

(R)

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	11/03/09	Initial Issue	T. Chan
A	03/19/10	Revised Sections 5.1 "Description Of EUT" and 7.3 "Transmission Time"	T. Chan
В	03/30/10	Re-inserted Transmission Time Plot and Updated limits to 15.231(b)	T. Chan

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4701C47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 2 of 27

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	4
2.	TES	T METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CAL	IBRATION AND UNCERTAINTY	5
4	.1.	MEASURING INSTRUMENT CALIBRATION	5
4	.2.	SAMPLE CALCULATION	5
4	.3.	MEASUREMENT UNCERTAINTY	5
5.	EQI	JIPMENT UNDER TEST	6
5	5.1.	DESCRIPTION OF EUT	6
5	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5	.3.	SOFTWARE AND FIRMWARE	6
5	5.4.	WORST-CASE CONFIGURATION AND MODE	6
5	5.5.	MODIFICATIONS	6
5	6.	DESCRIPTION OF TEST SETUP	7
6.	TES	T AND MEASUREMENT EQUIPMENT	8
7.	AN	ENNA PORT TEST RESULTS	9
7	.1.	20 dB AND 99% BW	9
7	.2.	DUTY CYCLE	3
7	.3.	TRANSMISSION TIME1	7
8.	RA	DIATED EMISSION TEST RESULTS1	8
8	8.1.	TX RADIATED SPURIOUS EMISSION1	8
8	.2.	RX RADIATED SPURIOUS EMISSION2	3
9.	SET	UP PHOTOS	4

Page 3 of 27

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	ECOLINK INTELLIGENT TECHNO 5817 DRYDEN PLACE. SUITE D CARLSBAD, CA 92008	LOGY	
EUT DESCRIPTION:	WIRELESS LIGHT SENSOR		
MODEL:	WLS		
SERIAL NUMBER: 02119			
DATE TESTED:	DATE TESTED: OCTOBER 9 and NOVEMBER 03 - 04, 2009		
	APPLICABLE STANDARDS		
ST	ANDARD	TEST RESULTS	
FCC PART	T 15 SUBPART C	Pass	
INDUSTRY CANADA	A RSS-210 Issue 7, Annex 1	Pass	
INDUSTRY CAN	IADA RSS-GEN Issue 2	Pass	

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC MANAGER COMPLIANCE CERTIFICATION SERVICES

TOM CHEN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 27

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 27

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a wireless lighting control sensor.

Equipment Type	433.92 MHz Transmitter	
Fundamental Frequency	433.92 MHz	
Power Source	3V Type CR123A Battery	
Transmitting Time	Periodic > 5 seconds	
Manufacturer	Ecolink Intelligent Technology	

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an internal loop antenna, with a maximum gain of -15 dBi.

5.3. SOFTWARE AND FIRMWARE

The EUT is modified to transmit continuously.

5.4. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined by X flat surface and Y upward position. The highest measured output power was at X-Axis.

5.5. MODIFICATIONS

No modifications were made during testing.

Page 6 of 27

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

None

I/O CABLES

None, the EUT is battery operated.

TEST SETUP

The EUT is stand-alone unit

SETUP DIAGRAM FOR TESTS

Page 7 of 27

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	02/04/10		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01171	01/14/10		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	12/16/09		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	04/20/10		
Antenna, Horn, 18 GHz	EMCO	3115	C00872	04/22/10		

 COMPLIANCE CERTIFICATION SERVICES
 FORM NO: CCSUP4701C

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

 This report shall not be reproduced except in full, without the written approval of CCS.

Page 8 of 27

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB AND 99% BW

<u>LIMITS</u>

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

IC A1.1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST PROCEDURE

ANSI C63.4

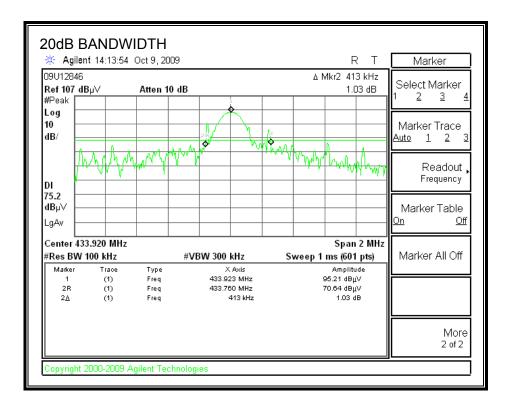
The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 100 KHz. The VBW is set to 300 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

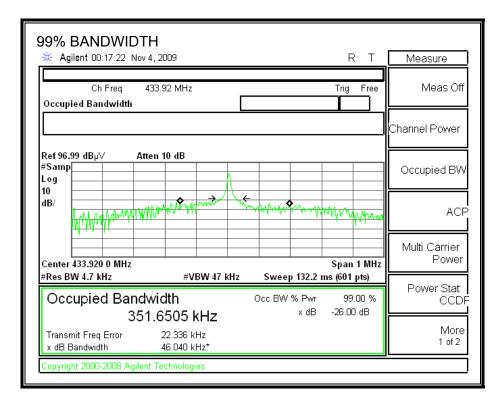
99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Page 9 of 27

RESULTS


20dB Bandwidth

Frequency	20dB Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
433.92	413	1084.8	-671.8


99% Bandwidth

Frequency	99% Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
433.92	351.7	1084.8	-733.2

Page 10 of 27

Page 11 of 27

Page 12 of 27

7.2. DUTY CYCLE

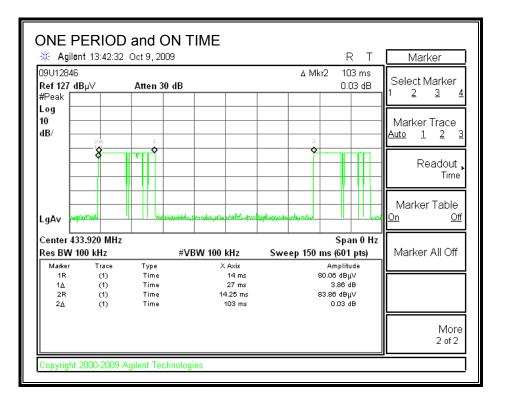
LIMITS

FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

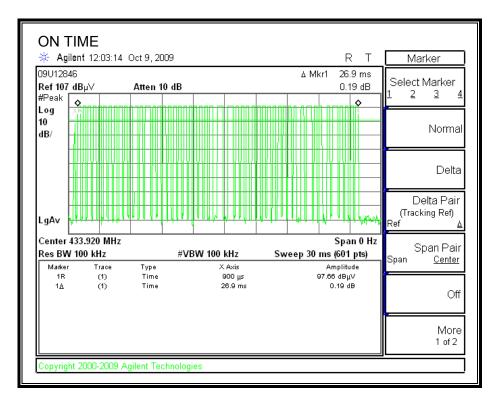
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

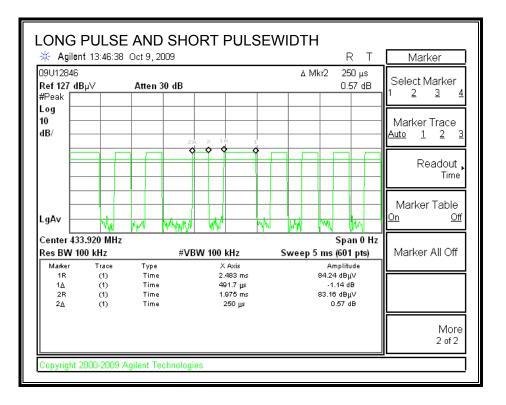

CALCULATION

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

RESULTS


One	Long Pulse	# of	Short	# of	Duty	20*Log
Period	Width	Long	Width	Short	Cycle	Duty Cycle
(ms)	(ms)	Pulses	(ms)	Pulses		(dB)
103	0.492	7	0.25	44	0.144	-16.81

ONE PERIOD and ON TIME


Page 14 of 27

ON TIME

Page 15 of 27

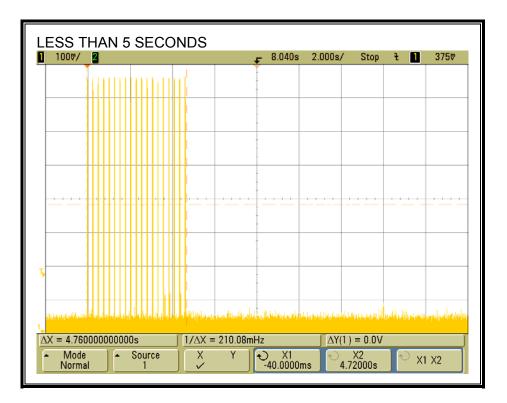
LONG PULSE AND SHORT PULSE WIDTH

Page 16 of 27

7.3. TRANSMISSION TIME

LIMITS

FCC §15.231 (a) (2)


IC A1.1.1 (b)

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz.

<u>RESULTS</u>

Page 17 of 27

8. RADIATED EMISSION TEST RESULTS

8.1. TX RADIATED SPURIOUS EMISSION

<u>LIMITS</u>

FCC §15.231 (b) IC A1.1.2

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental	Field Strength of	Field Strength of
Frequency	Fundamental Frequency	Spurious Emissions
(MHz)	(microvolts/meter)	(microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,7501	125 to 3751
174 - 260	3,750	375
260 - 470	3,750 to 12,5001	375 to 1,2501
Above 470	12,500	1,250

1 Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 – 13.41	322 - 335.4		

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
30 88	100 **	3	
88 216	150 **	3	
216 960	200 **	3	
Above 960	500	3	

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 72 MHz, 76 88 MHz, 174 216 MHz or 470 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 19 of 27

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

<u>RESULTS</u>

Page 20 of 27

FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 - 1000 MHz)

	FCC, VC		n Serv CE, AUSTEL II, DHHS, N ¹ EMONT, CA	-, NZ VLAP	8				Rep Date &	Time:	09U12846 09U12846-1 11/3/2009 Tom Chen		
		Test C	Com Descri onfigura Type of of Oper	tion : Test:	SECURE V Wireless L EUT Batter FCC 15.23 Continuous	ight Senso ries Operat 1(b)	r						
MOV - 144		n _		4.4.40/	I			De e die		- Jin 1 20*	().40 (3)		
WI% = ((t') - t')	+t2+t3+)/	i) =		14.4%				Av Reading = Pk Reading + 20 20 * log (M%) = -16.83					
								izu ~ iog (N	170)	-16.83	(Max=-20dB)	
Freq.	Pk Rdg	Av Rdg	AF	Closs	Pre-amp	Pk Level	Av Level	Pk Limit	Av Limit	Pk Margin	Avg Margin	Pol	
(MHz)	(dBuV)	(dBuV)	(dB)	(dB)	(dB)		(dBuV/m)	FCC B	FCC B	(dB)	(dB)	(H/V)	
EUT At X F 433.92 433.92 EUT At Y F 433.92 433.92	63.02 73.65 Position 57.90 72.33	46.19 56.82 41.07 55.50	14.00 14.00 14.00 14.00 14.00	1.62 1.62 1.62 1.62	0.00 0.00 0.00 0.00	78.64 89.27 73.52 87.95	61.81 72.44 56.69 71.12	100.83 100.83 100.83 100.83	80.83 80.83 80.83 80.83	-22.19 -11.56 -27.31 -12.88	-19.02 -8.39 -24.14 -9.71	3m∨ 3mH 3mH 3m∨	
EUT At Z F 433.92 433.92 Y-Position 367.80 367.80	70.96	54.13 51.19 t case 29.41 27.72	14.00 14.00 18.90 18.90	1.62 1.62 2.40 2.40	0.00 0.00 28.50 28.50	86.58 83.64 39.04 37.35	69.75 66.81 22.21 20.52	100.83 100.83 80.83 80.83	80.83 80.83 60.83 60.83	-14.25 -17.19 -41.79 -43.48	-11.08 -14.02 -38.62 -40.31	3mH 3m∨ 3mV 3mH	
Note:	No other e	missions	were dete	ected abc	we system (noise floor	from 30 Mł	Hz to 1000	MHz.				

HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz

	ıy:		Secure Wireles	55											
Project #: 09U12846															
Date: 10/09/09															
Test Engineer: Tom Chen Configuration: EUT Battery Operated															
Mode: Continuous Transmit															
est Eq	uipment	<u>t:</u>													
Horn 1-18GHz Pre-amplifer 1-26GF T73; S/N: 6717 @3m T144 Miteg 3008A0093					Hz	Pre-amplifer 26-40GHz Horn > 18							GHz Limit		
					31 🖵	-								FCC 15.209	
	quency Cab	oles	12' c	able 22	28076	ng	20' ca	ble 22	807500		HPF	Re	eject Filte	, <u>Peak</u>	<u>k Measurements</u>
													geerne	RB	W=VBW=1MHz
3' ca	able 228	07700	• 12' ca	ble 2280)7600	•	20' cab	le 2280				-		T	e = Peak - Duty cycle
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m		Pk Mar dB	Avg Mar dB	Notes (V/H)
	3.0	37.6	20.8	24.3	2.5	-39.3	0.0	0.0	25.2	8.3	74	54	-48.8	-45.7	н
40	5.0				2.9	-38.9	0.0	0.0	26.1	9 <i>3</i>	74	54	-47.9	-44.7	Н
438	3.0	36.7	19.9	25.3								÷	••		
438 048	3.0 3.0	36.7 41.4	19.9 24.6	30.1	4.4	-37.3	0.0 വ	0.0 0.0	38.6 26.3	21.8 9.4	74 74	54 54	-35.4 -47.7	-32.2 -44.6	H V
438 048 140 438	3.0 3.0 3.0 3.0 3.0	36.7 41.4 38.7 39.6	19.9 24.6 21.9 22.8	30.1 24.3 25.3	4.4 2.5 2.9	-39.3 -38.9	0.0 0.0	۵0 ۵0	26.3 28.9	9.4 12.1	74 74	54 54	-47.7 -45.1	-44.6 -41.9	v v
438 048 140 438	3.0 3.0 3.0	36.7 41.4 38.7	19.9 24.6 21.9	30.1 24.3	4.4 2.5	-39.3	0.0	0.0	26.3	9.4	74	54	-47.7	-44.6	v
438 048 140 438 048	3.0 3.0 3.0 3.0 3.0	36.7 41.4 38.7 39.6 41.8	199 24.6 21.9 22.8 25.0	30.1 24.3 25.3	4.4 2.5 2.9	-39.3 -38.9	0.0 0.0	۵0 ۵0	26.3 28.9	9.4 12.1	74 74	54 54	-47.7 -45.1	-44.6 -41.9	v v
438 048 140 438 048	3.0 3.0 3.0 3.0 3.0	36.7 41.4 38.7 39.6 41.8	19.9 24.6 21.9 22.8	30.1 24.3 25.3	4.4 2.5 2.9	-39.3 -38.9	0.0 0.0	۵0 ۵0	26.3 28.9	9.4 12.1	74 74	54 54	-47.7 -45.1	-44.6 -41.9	v v
438 048 140 438 048 0 other e	3.0 3.0 3.0 3.0 3.0 3.0 emissions	36.7 41.4 38.7 39.6 41.8	199 24.6 21.9 22.8 25.0	30.1 24.3 25.3	4.4 2.5 2.9	-39.3 -38.9	0.0 0.0	۵0 ۵0	26.3 28.9	9.4 12.1	74 74	54 54	-47.7 -45.1	-44.6 -41.9	v v
438 048 140 438 048 0 other e	3.0 3.0 3.0 3.0 3.0 3.0 0.08	36.7 41.4 38.7 39.6 41.8 s above system Measurem	19.9 24.6 21.9 22.8 25.0 m noise floor	30.1 24.3 25.3 30.1	44 25 29 44	-39.3 -38.9 -37.3 Amp	0.0 0.0 0.0 Preamp (0.0 0.0 0.0 Gain	26.3 28.9 39.0	9.4 12.1 22.1	74 74	54 54 54 Avg Lim	-47.7 -45.1 -35.0 Average F	-44.6 -41.9 -31.9	v v v
438 048 140 438 048 0 other e	3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.08	36.7 41.4 38.7 39.6 41.8 s above syste: Measurem Distance to	19.9 24.6 21.9 22.8 25.0 m noise floor	30.1 24.3 25.3 30.1	44 25 29 44	-39.3 -38.9 -37.3 -37.3 Amp D Corr	0.0 0.0 0.0 Preamp (Distance	0.0 0.0 0.0 Gain Corre	26.3 28.9 39.0	9.4 12.1 22.1	74 74	54 54 54 Avg Lim Pk Lim	47.7 45.1 -35.0 Average F Peak Field	-44.6 -41.9 -31.9 ield Strengti I Strength Li	v v v
.140 .438 .048 .140 .438 .048 .048 .048 .ev. 11.10	3.0 3.0 3.0 3.0 3.0 3.0 0.08 f Dist Read	36.7 41.4 38.7 39.6 41.8 s above syste: Measurem Distance to Analyzer R	19.9 24.6 21.9 22.8 25.0 m noise floor ment Frequency > Antenna Reading	30.1 24.3 25.3 30.1	4.4 2.5 2.9 4.4	-39.3 -38.9 -37.3 -37.3 Amp D Corr Avg	0.0 0.0 0.0 Preamp (Distance Average	0.0 0.0 Gain Corre Field \$	26.3 28.9 39.0 ct to 3 mete Strength @	9.4 12.1 22.1 ers 3 m	74 74	54 54 54 Avg Lim Pk Lim Avg Mar	47.7 45.1 -35.0 Average F Peak Field Margin vs.	-44.6 -41.9 -31.9 -ield Strengti I Strength Li Average Li	v v v
438 048 .140 .438 048	3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.08	36.7 41.4 38.7 39.6 41.8 s above syste: Measurem Distance to	19.9 24.6 21.9 22.8 25.0 m noise floor ent Frequency > Antenna Reading actor	30.1 24.3 25.3 30.1	4.4 2.5 2.9 4.4	-39.3 -38.9 -37.3 -37.3 Amp D Corr	0.0 0.0 0.0 Preamp (Distance Average	0.0 0.0 Gain Corre Field S	26.3 28.9 39.0 ct to 3 mete Strength @ k Field Stre	9.4 12.1 22.1 ers 3 m	74 74	54 54 54 Avg Lim Pk Lim Avg Mar	47.7 45.1 -35.0 Average F Peak Field Margin vs.	-44.6 -41.9 -31.9 ield Strengti I Strength Li	v v v

Page 22 of 27

8.2. RX RADIATED SPURIOUS EMISSION

LIMITS

IC RSS-Gen Issue 2, section 7.2.3.2

All spurious emissions shall comply with the limits shown below:

Limits for radiated disturbance of Class B ITE at measuring distance of 3 m						
Frequency range	Quasi-peak limits					
(MHz)	(dBµV/m)					
30 to 88 40						
88 to 216 43.5						
216 to 960 46						
Above 960 MHz 54						
Note: The lower limit shall apply at the transition frequency.						

TEST PROCEDURE

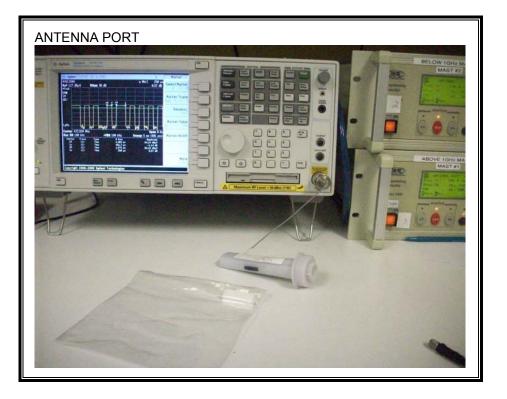
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to receive in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 5th harmonic is investigated with the transmitter set to the middle channel.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


RESULTS

Not applicable, this EUT is transmitter only.

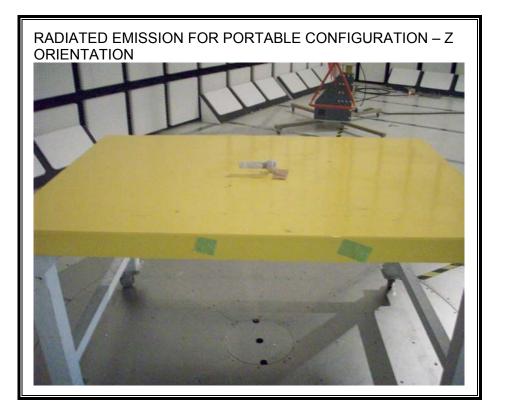
Page 23 of 27

9. SETUP PHOTOS

ANTENNA PORT

Page 24 of 27

RADIATED EMISSION FOR PORTABLE CONFIGURATION – X ORIENTATION


Page 25 of 27

RADIATED EMISSION FOR PORTABLE CONFIGURATION – Y ORIENTATION

Page 26 of 27

RADIATED EMISSION FOR PORTABLE CONFIGURATION – Z ORIENTATION

END OF REPORT

Page 27 of 27