

## FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

**CERTIFICATION TEST REPORT** 

FOR

**Z-WAVE WIRELESS MOTION DETECTOR** 

**MODEL NUMBER: PIRZWAVE1** 

FCC ID: XQC-PIRZ1 IC: 9863B-PIRZ1

REPORT NUMBER: 12U14241-1, Revision A

ISSUE DATE: APRIL 06, 2012

Prepared for ECOLINK INTELLIGENT TECHNOLOGY, INC. 2055 CORTE DEL NOGAL CARLSBAD, CALIFORNIA 92011, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

(R)

NVLAP LAB CODE 200065-0

### **Revision History**

| Rev. | Issue<br>Date | Revisions                    | Revised By |
|------|---------------|------------------------------|------------|
|      | 02/08/12      | Initial Issue                | F. Ibrahim |
| A    | 04/06/12      | Revised sections 2 and 8.1.2 | F. Ibrahim |

Page 2 of 27

# TABLE OF CONTENTS

| 1. | ΑΤ٦                          | ESTATION OF TEST RESULTS                          | 4       |
|----|------------------------------|---------------------------------------------------|---------|
| 2. | TES                          | ST METHODOLOGY                                    | 5       |
| 3. | FAC                          | CILITIES AND ACCREDITATION                        | 5       |
| 4. | CAI                          | -IBRATION AND UNCERTAINTY                         | 5       |
| 4  | <sup>1</sup> .1.             | MEASURING INSTRUMENT CALIBRATION                  | 5       |
| 4  | <sup>1</sup> .2.             | SAMPLE CALCULATION                                | 5       |
| 4  | 1.3.                         | MEASUREMENT UNCERTAINTY                           | 5       |
| 5. | EQI                          | JIPMENT UNDER TEST                                | 6       |
| 5  | 5.1.                         | DESCRIPTION OF EUT                                | 6       |
| 5  | 5.2.                         | DESCRIPTION OF AVAILABLE ANTENNAS                 | 6       |
| 5  | 5.3.                         | SOFTWARE AND FIRMWARE                             | 6       |
| 5  | 5.4.                         | WORST-CASE CONFIGURATION AND MODE                 | 6       |
| 5  | 5.5.                         | MODIFICATIONS                                     | 6       |
| 5  | 5.6.                         | DESCRIPTION OF TEST SETUP                         | 7       |
| 6. | TES                          | ST AND MEASUREMENT EQUIPMENT                      | 8       |
| 7. | AN                           | FENNA PORT TEST RESULTS                           | 9       |
| 7  | <b>.</b> 1.                  | 20 dB AND 99% BW                                  | 9       |
| 7  | 7.2.                         | DUTY CYCLE 1                                      | 3       |
| 7  | 7.3.                         | TRANSMISSION TIME1                                | 5       |
| 8. | RAI                          | DIATED EMISSION TEST RESULTS1                     | 6       |
| 8  | 8. <i>1.</i><br>8.1.<br>8.1. | 2. HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz | 9<br>20 |
| 8  | 8.2.                         | RX RADIATED SPURIOUS EMISSION2                    | 1       |
| 0  | 9ET                          |                                                   | 1       |

Pass

# 1. ATTESTATION OF TEST RESULTS

**INDUSTRY CANADA RSS-GEN Issue 3** 

| COMPANY NAME:    | ECOLINK INTELLIGENT TECHNO<br>2055 CORTE DEL NOGAL<br>CARLSBAD, CA 92011, U.S.A. | LOGY, INC.   |
|------------------|----------------------------------------------------------------------------------|--------------|
| EUT DESCRIPTION: | Z-WAVE WIRELESS MOTION DET                                                       | TECTOR       |
| MODEL:           | PIRZWAVE1                                                                        |              |
| SERIAL NUMBER:   | PIR-012 AND PIR-016                                                              |              |
| DATE TESTED:     | FEBRUARY 7, 2012                                                                 |              |
|                  | APPLICABLE STANDARDS                                                             |              |
| ST               | ANDARD                                                                           | TEST RESULTS |
| FCC PART         | T 15 SUBPART C                                                                   | Pass         |
| INDUSTRY CANADA  | A RSS-210 Issue 8, Annex 1                                                       | Pass         |

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

FRANK IBRAHIM **EMC SUPERVISOR UL CCS** 

Mautonaufm

THANH NGUYEN **EMC ENGINEER** UL CCS

Page 4 of 27

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

# 4. CALIBRATION AND UNCERTAINTY

# 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

# 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

# 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz | 3.52 dB     |
| Radiated Disturbance, 30 to 1000 MHz  | 4.94 dB     |

Uncertainty figures are valid to a confidence level of 95%.

# 5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

The EUT is a Z-Wave Motion Detector.

# 5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an internal antenna, with a maximum gain of -5dBi.

# 5.3. SOFTWARE AND FIRMWARE

The "Continuous TX" sample contained firmware ESW1037P-01-001 (Rev 001) and firmware ESW1037ZTEST-01-001 (Rev 001). The "Factory Product" sample contained ESW1037P-01-001 (Rev 001) and ESW1037Z-01-001 (Rev 001).

# 5.4. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in three orthogonal orientations X,Y and Z to find worst-case orientation, it was determined that X orientation is the worst-case orientation, therefore, all final radiated testing was conducted with EUT in X orientation.

The EUT operates at a single frequency, which is 908.42 MHz.

EUT in continuous transmission mode was used for the following test items:

- Peak Fundamental, Harmonics and Spurious radiated emission.
- RX Spurious emission.
- 99% BW.
- 20 dB BW.

EUT (factory default) in normal operation was triggered to transmit and the following was measured:

- Duty Cycle
- Transmission Time

# 5.5. MODIFICATIONS

No modifications were made during testing.

# 5.6. DESCRIPTION OF TEST SETUP

### SUPPORT EQUIPMENT

Not Applicable; EUT is stand-alone unit.

### I/O CABLES

Not Applicable; EUT is stand-alone unit.

### TEST SETUP

The EUT is a stand-alone unit that is powered by battery.

Page 7 of 27

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| Test Equipment List    |              |        |        |           |           |  |  |  |  |
|------------------------|--------------|--------|--------|-----------|-----------|--|--|--|--|
| Description            | Manufacturer | Mode   | Asset  | Cal Date  | Cal Due   |  |  |  |  |
| Preamplifier, 26.5 GHz | Agilent/HP   | 8449B  | C01052 | 6/13/2011 | 6/13/2012 |  |  |  |  |
| Preamplifier, 1300 MHz | Agilent/HP   | 8447D  | C01048 | 7/16/2011 | 7/16/2012 |  |  |  |  |
| BiLog Antenna          | ETS          | 3117   | C01005 | 7/25/2011 | 7/25/2012 |  |  |  |  |
| Antenna, Horn, 18 GHz  | EMCO         | 31158  | C00945 | 6/26/2011 | 6/26/2012 |  |  |  |  |
| Preamplifier, 26.5 GHz | Agilent/HP   | 8449B  | C01052 | 8/7/2007  | 6/17/2012 |  |  |  |  |
| PSA                    | Agilent      | E4440A | T129   | 4/28/2011 | 4/28/2012 |  |  |  |  |

Page 8 of 27

# 7. ANTENNA PORT TEST RESULTS

## 7.1. 20 dB AND 99% BW

### <u>LIMITS</u>

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

IC A1.1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.5% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

### TEST PROCEDURE

ANSI C63.4

The transmitter output is connected to the spectrum analyzer.

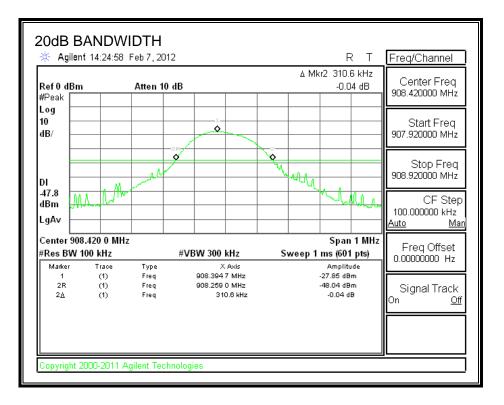
20dB Bandwidth: The RBW is set to 100 KHz. The VBW is set to 300 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Page 9 of 27

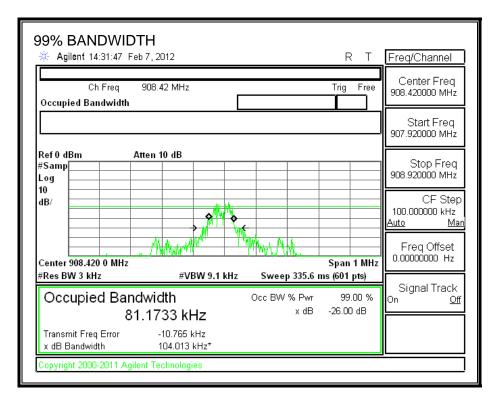
#### **RESULTS**

20dB Bandwidth


| Frequency | 20dB Bandwidth | Limit  | Margin  |
|-----------|----------------|--------|---------|
| (MHz)     | (kHz)          | (kHz)  | (kHz)   |
| 908.42    | 310.6          | 4542.1 | -4231.5 |

99% Bandwidth

| Frequency | 99% Bandwidth | Limit  | Margin     |  |  |
|-----------|---------------|--------|------------|--|--|
| (MHz)     | (kHz)         | (kHz)  | (kHz)      |  |  |
| 908.42    | 81.1733       | 4542.1 | -4460.9267 |  |  |


Page 10 of 27

#### 20dB BANDWIDTH



Page 11 of 27

### 99% BANDWIDTH



Page 12 of 27

# 7.2. DUTY CYCLE

## LIMITS

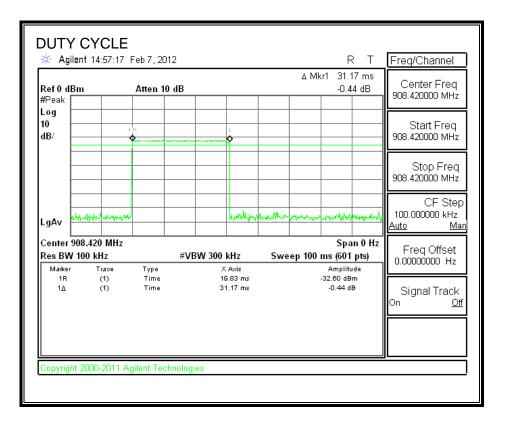
### FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

### CALCULATION


Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses \* long pulse width) + (# of short pulses \* short pulse width) / 100 or T

#### **RESULT**

| One    | Long Pulse | # of   | Short | # of   | Duty  | 20*Log     |
|--------|------------|--------|-------|--------|-------|------------|
| Period | Width      | Long   | Width | Short  | Cycle | Duty Cycle |
|        | (          | Dulasa | (     | Dulasa |       |            |
| (ms)   | (ms)       | Pulses | (ms)  | Pulses |       | (dB)       |

Page 13 of 27

#### **DUTY CYCLE**



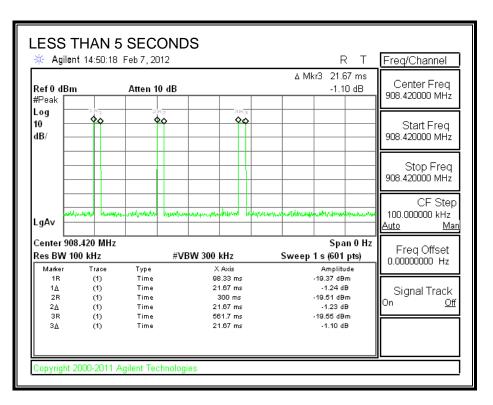
COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 14 of 27

## 7.3. TRANSMISSION TIME

### LIMITS

FCC §15.231 (a) (2)


IC A1.1.1 (b)

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

### **RESULTS**



Page 15 of 27

# 8. RADIATED EMISSION TEST RESULTS

## 8.1. TX RADIATED SPURIOUS EMISSION

### <u>LIMITS</u>

FCC §15.231 (b) IC A1.1.2

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

| Fundamental   | Field Strength of     | Field Strength of  |
|---------------|-----------------------|--------------------|
| Frequency     | Fundamental Frequency | Spurious Emissions |
| (MHz)         | (microvolts/meter)    | (microvolts/meter) |
| 40.66 - 40.70 | 2,250                 | 225                |
| 70 - 130      | 1,250                 | 125                |
| 130 - 174     | 1,250 to 3,7501       | 125 to 3751        |
| 174 - 260     | 3,750                 | 375                |
| 260 - 470     | 3,750 to 12,5001      | 375 to 1,2501      |
| Above 470     | 12,500                | 1,250              |

1 Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                                                                                                                                                                | MHz                                                             | MHz                                         | GHz                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|
| 0.090 - 0.110                                                                                                                                                      | 16.42 - 16.423                                                  | 399.9 - 410                                 | 4.5 - 5.15                                      |
| <sup>1</sup> 0.495 - 0.505                                                                                                                                         | 16.69475 - 16.69525                                             | 608 - 614                                   | 5.35 - 5.46                                     |
| 2.1735 - 2.1905                                                                                                                                                    | 16.80425 - 16.80475                                             | 960 - 1240                                  | 7.25 - 7.75                                     |
| 4.125 - 4.128                                                                                                                                                      | 25.5 - 25.67                                                    | 1300 - 1427                                 | 8.025 - 8.5                                     |
| 4.17725 - 4.17775                                                                                                                                                  | 37.5 - 38.25                                                    | 1435 - 1626.5                               | 9.0 - 9.2                                       |
| 4.20725 - 4.20775                                                                                                                                                  | 73 - 74.6                                                       | 1645.5 - 1646.5                             | 9.3 - 9.5                                       |
| $\begin{array}{c} 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \end{array}$ | 74.8 - 75.2                                                     | 1660 - 1710                                 | 10.6 - 12.7                                     |
|                                                                                                                                                                    | 108 - 121.94                                                    | 1718.8 - 1722.2                             | 13.25 - 13.4                                    |
|                                                                                                                                                                    | 123 - 138                                                       | 2200 - 2300                                 | 14.47 - 14.5                                    |
|                                                                                                                                                                    | 149.9 - 150.05                                                  | 2310 - 2390                                 | 15.35 - 16.2                                    |
|                                                                                                                                                                    | 156.52475 -                                                     | 2483.5 - 2500                               | 17.7 - 21.4                                     |
|                                                                                                                                                                    | 156.52525                                                       | 2655 - 2900                                 | 22.01 - 23.12                                   |
|                                                                                                                                                                    | 156.7 - 156.9                                                   | 3260 - 3267                                 | 23.6 - 24.0                                     |
| 12.29 - 12.293<br>12.51975 - 12.52025<br>12.57675 - 12.57725<br>13.36 - 13.41                                                                                      | 162.0125 - 167.17<br>167.72 - 173.2<br>240 - 285<br>322 - 335.4 | 3332 - 3339<br>3345.8 - 3358<br>3600 - 4400 | 31.2 - 31.8<br>36.43 - 36.5<br>( <sup>2</sup> ) |

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency | Field Strength     | Measurement Distance |
|-----------|--------------------|----------------------|
| (MHz)     | (microvolts/meter) | (meters)             |
| 30 88     | 100 **             | 3                    |
| 88 216    | 150 **             | 3                    |
| 216 960   | 200 **             | 3                    |
| Above 960 | 500                | 3                    |

\*\* Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 72 MHz, 76 88 MHz, 174 216 MHz or 470 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 17 of 27

### TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 18 of 27

#### **RESULTS**

## 8.1.1. FUNDAMENTAL AND TX SPURIOUS 30-1000 MHz

| 56                   | FCC, V                                                                                                                    | CELLICITION<br>CCI, CISPR,<br>A, TUV, BSN<br>Y ROAD, S<br>663-0885 | CE, AUST<br>/II, DHHS, I       | EL, NZ<br>NVLAP      | -9001                         |                                     |                                                        |                            | Rej<br>Date&            | ject #:<br>port #:<br>Time:<br>Engr: | 12U14241<br>12U14241<br>02/07/12<br>Thanh Nguy | en                |                      |                      |
|----------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------|----------------------|-------------------------------|-------------------------------------|--------------------------------------------------------|----------------------------|-------------------------|--------------------------------------|------------------------------------------------|-------------------|----------------------|----------------------|
|                      |                                                                                                                           | Test C                                                             | T Descri<br>onfigur<br>Type oj | ation :<br>f Test:   | Z-Wave<br>Stand-al<br>FCC 15. | Wireless D<br>one EUT, b<br>231 (b) | Technology<br>Door Windo<br>Dattery ope<br>ontinuously | w Sensor<br>rated          |                         |                                      |                                                |                   |                      |                      |
|                      | Duty Cycle         31.17%         Av Reading = Pk Reading + 20*log(M%)           20 * log (M%) = // -10.13         -10.13 |                                                                    |                                |                      |                               |                                     |                                                        |                            |                         |                                      |                                                |                   |                      |                      |
| Freq.                | Pk Rdg                                                                                                                    | Av Rdg                                                             | AF                             | Closs                | Pre-amp                       | Pk Level                            | Av Level                                               | Pk Limit                   | Av Limit                | Pk Margin                            | Avg Margin                                     | Pol               | Az                   | Height               |
| (MHz)                | (dBuV)                                                                                                                    | (dBuV)                                                             | (dB)                           | (dB)                 | (dB)                          | (dBuV/m)                            | (dBuV/m)                                               | FCC_B                      | FCC_B                   | (dB)                                 | (dB)                                           | (H/V)             | (Deg)                | (Meter)              |
| 908.42<br>908.42     | (EUT Lay<br>60.17<br>71.90<br>(EUT Star<br>69.43                                                                          | 50.04<br>61.77                                                     | 17.00<br>17.00<br>17.00        | 1.82<br>1.82<br>1.82 | 0.00<br>0.00<br>0.00          | 78.99<br>90.72<br>88.25             | 68.86<br>80.59<br>78.12                                | 101.94<br>101.94<br>101.94 | 81.94<br>81.94<br>81.94 | -22.95<br>-11.22<br>-13.69           | -13.08<br>-1.35<br>-3.82                       | 3mV<br>3mH<br>3mV | 0.00<br>0.00<br>0.00 | 1.00<br>2.00<br>1.00 |
| 908.42<br>Z-Position | 63.01<br>(EUT Side                                                                                                        | 52.88<br>Lay dowr                                                  | 17.00<br>ו)                    | 1.82                 | 0.00                          | 81.83                               | 71.70                                                  | 101.94                     | 81.94                   | -20.11                               | -10.24                                         | 3mH               | 0.00                 | 2.00                 |
| 908.42<br>908.42     | 69.32<br>59.88                                                                                                            | 59.19<br>49.75                                                     | 17.00<br>17.00                 | 1.82<br>1.82         | 0.00<br>0.00                  | 88.14<br>78.70                      | 78.01<br>68.57                                         | 101.94<br>101.94           | 81.94<br>81.94          | -13.80<br>-23.24                     | -3.93<br>-13.37                                | 3mV<br>3mH        | 0.00<br>0.00         | 1.00<br>2.00         |
|                      |                                                                                                                           |                                                                    |                                |                      |                               |                                     |                                                        |                            |                         |                                      |                                                |                   |                      |                      |

Page 19 of 27

## 8.1.2. HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz

| Too; S/N: 2238 @3m       T34 HP 8449B         T34 HP 8449B         T T34 HP 8449B         20' cable 22807500         T T2' cable 22807600       20' cable 22807500         T T2' cable 22807600       20' cable 22807500         T T2' cable 22807600       20' cable 22807500         T T34 HP 8449B       20' cable 22807500         T T2' cable 22807600       20' cable 22807500         T T2' cable 22807600       20' cable 22807500         T T2' cable 22807600       20' cable 22807600         T T2' cable 22807600       20' cable 22807600         T T2' cable 22807600       T T2' Cable 22807600         T T2' cable 22807600       T T2' Cable 22807600         T T2' cable 22807600 <th c<="" th=""><th>-10.1  18GHz  Reject Filt  Lim Pk Mar  V/m dB  94 -40.5 .00 -30.3 .94 -39.6 .00 -29.8</th><th>ter <u>Pe</u><br/>R</th><th>Limit<br/>FCC 15.231(b)<br/>eak Measurements<br/>BW=VBW=1MHz<br/>erage Measurements<br/>/=1MHz ; VBW=10Hz<br/>r Notes<br/>(V/H)<br/>v<br/>V<br/>V<br/>H<br/>H<br/>H</th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <th>-10.1  18GHz  Reject Filt  Lim Pk Mar  V/m dB  94 -40.5 .00 -30.3 .94 -39.6 .00 -29.8</th> <th>ter <u>Pe</u><br/>R</th> <th>Limit<br/>FCC 15.231(b)<br/>eak Measurements<br/>BW=VBW=1MHz<br/>erage Measurements<br/>/=1MHz ; VBW=10Hz<br/>r Notes<br/>(V/H)<br/>v<br/>V<br/>V<br/>H<br/>H<br/>H</th> | -10.1  18GHz  Reject Filt  Lim Pk Mar  V/m dB  94 -40.5 .00 -30.3 .94 -39.6 .00 -29.8 | ter <u>Pe</u><br>R                                                                                                              | Limit<br>FCC 15.231(b)<br>eak Measurements<br>BW=VBW=1MHz<br>erage Measurements<br>/=1MHz ; VBW=10Hz<br>r Notes<br>(V/H)<br>v<br>V<br>V<br>H<br>H<br>H |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Too; SIN: 2238 @3m       T34 HP 8449B         T34 HP 8449B         T34 HP 8449B         Colspan="2">Intervention of the product                                                                                                                                         | Reject Filt           Lim         Pk Man           V/m         dB           .94         -40.5           .00         -30.3           .94         -39.6                                                                                                                                                    | r Avg Mar<br>dB<br>30.7<br>-20.4<br>-29.7                                             | FCC 15.231(b)<br>eak Measurements<br>2BW=VBW=1MHz<br>erage Measurements<br>V=1MHz ; VBW=10Hz<br>r Notes<br>(V/H)<br>V<br>V<br>H |                                                                                                                                                        |
| Image: Second S | Lim Pk Man<br>V/m dB<br>94 -40.5<br>.00 -30.3<br>.94 -39.6                                                                                                                                                                                                                                               | r Avg Mar<br>dB<br>30.7<br>-20.4<br>-29.7                                             | eak Measurements<br>BBW=VBW=1MHz<br>erage Measurements<br>V=1MHz ; VBW=10Hz<br>r Notes<br>(V/H)<br>V<br>V<br>V<br>H             |                                                                                                                                                        |
| 3' cable 22807700         3' cable 22807700       12' cable 22807600       20' cable 22807500       HPF_         12' cable 2280700       12' cable 22807600       20' cable 22807500       Pitting       HPF_         f       Dist       Read Pk       Read Avg.       AF       CL       Amp       D Corr       Fltr       Peak       Avg       Pk Lim       Avg         GHz       (m)       dBuV       dBuV       dB/m       dB       dB       dB       dB       dB       dB       Multication       Avg       Pk Lim       Avg         1817       3.0       46.4       36.3       27.5       3.8       -36.6       0.0       0.3       41.4       31.3       81.94       61.         1.817       3.0       44.3       34.2       29.5       4.9       -35.5       0.0       0.6       43.7       33.6       74.00       54.         2.725       3.0       44.8       34.7       29.5       4.9       -35.5       0.0       0.6       44.2       34.1       74.00       54.         Note: AV = PK + 20 log (duty cycle)       L       L       L       L       L       L       L <thl< th="">       L       <thl< th="">       L</thl<><td>Lim Pk Man<br/>V/m dB<br/>94 -40.5<br/>.00 -30.3<br/>.94 -39.6</td><td>r Avg Mar<br/>dB<br/>30.7<br/>-20.4<br/>-29.7</td><td>BBW=VBW=1MHz<br/>erage Measurements<br/>V=1MHz ; VBW=10Hz<br/>r Notes<br/>(V/H)<br/>V<br/>V<br/>V<br/>H</td></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lim Pk Man<br>V/m dB<br>94 -40.5<br>.00 -30.3<br>.94 -39.6                                                                                                                                                                                                                                               | r Avg Mar<br>dB<br>30.7<br>-20.4<br>-29.7                                             | BBW=VBW=1MHz<br>erage Measurements<br>V=1MHz ; VBW=10Hz<br>r Notes<br>(V/H)<br>V<br>V<br>V<br>H                                 |                                                                                                                                                        |
| GHz         (m)         dBuV         dBuV         dB/m         dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V/m dB<br>94 -40.5<br>.00 -30.3<br>.94 -39.6                                                                                                                                                                                                                                                             | dB<br>-30.7<br>-20.4<br>-29.7                                                         | (V/H)<br>V<br>V<br>H                                                                                                            |                                                                                                                                                        |
| Harmonics and Spurious         36.3         27.5         3.8         -36.6         0.0         0.3         41.4         31.3         81.94         61           1.817         3.0         46.4         36.3         27.5         3.8         -36.6         0.0         0.3         41.4         31.3         81.94         61           2.725         3.0         44.3         34.2         29.5         4.9         -35.5         0.0         0.6         43.7         33.6         74.00         54           1.817         3.0         47.4         37.3         27.5         3.8         -36.6         0.0         0.3         42.4         32.2         81.94         61           2.725         3.0         44.8         34.7         29.5         4.9         -35.5         0.0         0.6         44.2         34.1         74.00         54           Note: AV = PK + 20 log (duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .94 -40.5<br>.00 -30.3<br>.94 -39.6                                                                                                                                                                                                                                                                      | -30.7<br>-20.4<br>-29.7                                                               | V<br>V<br>H                                                                                                                     |                                                                                                                                                        |
| L817         3.0         46.4         36.3         27.5         3.8         -36.6         0.0         0.3         41.4         31.3         81.94         61.           2.725         3.0         44.3         34.2         29.5         4.9         -35.5         0.0         0.6         43.7         33.6         74.00         54.           1.817         3.0         47.4         37.3         27.5         3.8         -36.6         0.0         0.3         42.4         32.2         81.94         61.           2.725         3.0         44.8         34.7         29.5         4.9         -35.5         0.0         0.6         44.2         34.1         74.00         54.           2.725         3.0         44.8         34.7         29.5         4.9         -35.5         0.0         0.6         44.2         34.1         74.00         54.           Note: AV = PK + 20 log (duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00 -30.3<br>.94 -39.6                                                                                                                                                                                                                                                                                   | -20.4<br>-29.7                                                                        | V<br>H                                                                                                                          |                                                                                                                                                        |
| .817         3.0         47.4         37.3         27.5         3.8         -36.6         0.0         0.3         42.4         32.2         81.94         61.           .725         3.0         44.8         34.7         29.5         4.9         -35.5         0.0         0.6         44.2         34.1         74.00         54.           sote: AV = PK + 20 log (duty cycle) <t< td=""><td>.94 -39.6</td><td>-29.7</td><td>Н</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .94 -39.6                                                                                                                                                                                                                                                                                                | -29.7                                                                                 | Н                                                                                                                               |                                                                                                                                                        |
| .725         3.0         44.8         34.7         29.5         4.9         -35.5         0.0         0.6         44.2         34.1         74.00         54.           iote: AV = PK + 20 log (duty cycle)                   54.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                          |                                                                                       |                                                                                                                                 |                                                                                                                                                        |
| Note: AV = PK + 20 log (duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .00 -29.8                                                                                                                                                                                                                                                                                                | -19.9                                                                                 | H                                                                                                                               |                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                          |                                                                                       |                                                                                                                                 |                                                                                                                                                        |
| No other emissions were detected above 3rd harmonics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |                                                                                       |                                                                                                                                 |                                                                                                                                                        |
| So other emissions were detected above 3rd harmonics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |                                                                                       |                                                                                                                                 |                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                          |                                                                                       |                                                                                                                                 |                                                                                                                                                        |
| Dist Distance to Antenna D Corr Distance Correct to 3 meters Pk Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mar Margin v                                                                                                                                                                                                                                                                                             | eld Strength                                                                          | Limit<br>Limit                                                                                                                  |                                                                                                                                                        |

Page 20 of 27

# 8.2. RX RADIATED SPURIOUS EMISSION

### <u>LIMITS</u>

IC RSS-Gen Issue 2, section 7.2.3.2

All spurious emissions shall comply with the limits shown below:

| Limits for radiated disturbance of Class B ITE at measuring distance of 3 m |                   |  |  |
|-----------------------------------------------------------------------------|-------------------|--|--|
| Frequency range                                                             | Quasi-peak limits |  |  |
| (MHz)                                                                       | (dBµV/m)          |  |  |
| 30 to 88                                                                    | 40                |  |  |
| 88 to 216                                                                   | 43.5              |  |  |
| 216 to 960                                                                  | 46                |  |  |
| Above 960 MHz                                                               | 54                |  |  |
| Note: The lower limit shall apply at the transition frequency.              |                   |  |  |

#### TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to receive in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 5th harmonic is investigated with the transmitter set to the middle channel.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 21 of 27

#### **RESULTS**

### **RECEIVER SPURIOUS EMISSION (30MHz - 1GHz)**

No signals were observed in the RX mode above the system noise floor.

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4701D47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 22 of 27

#### **RECEIVER SPURIOUS EMISSION ABOVE 1GHz**

No signals were observed in the RX mode above the system noise floor.

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701D TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 23 of 27