

RF Exposure and Maximum **ERP/EIRP Assessment**

for

SARA-R520M10X

CAT-M1 /NB-IoT Data Modules

FCC ID: XPYUBX19KM01

IC: 8595A-UBX19KM01

NB-IoT Part

Assessment Reference: MDE UBLOX 2219 MPE 03 rev01

Test Laboratory:

7layers GmbH Borsigstraße 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

Geschäftsführer / Managing Directors: Sebastian Doose Stefan Kischka Bernhard Retka

Registergericht/registered:

USt-Id.-Nr./VAT No. DE203159652

Steuer-Nr./TAX No. 147/5869/0385

Düsseldorf HRB 75554

Akkreditierungsstelle D-PL-12140-01-01 D-PL-12140-01-02

D-PL-12140-01-03

a Bureau Veritas Group Company

www.7layers.com

Table of Contents

0 Su	mmary	3
0.1	Technical Report Summary	3
1 Ad	ministrative Data	4
1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	4 4 4 4
2 Tes	st object Data	5
2.1 2.2 2.3 2.4	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment	5 5 5 6
3 Eva	aluation Results	7
3.1 3.2	Maximum ERP / EIRP RF Exposure Evaluation for Module	7 9

0 Summary

0.1 Technical Report Summary

Type of Report

RF Exposure and Maximum ERP/EIRP Assessment for a CAT-M1/NB-IoT radio module. Including RF Exposure for use with co-located radios on generic host device.

Applicable FCC and ISED Rules

For RF Exposure:

OET Bulletin 65 Edition 97-01 August 1997 FCC 47 CFR §1.1307 FCC 47 CFR §1.1310 RSS-102 Issue 5 – March 2015 AMD 1 (February 2, 2021)

For Maximum ERP/EIRP:

FCC 47 CFR §22.913
ISED RSS-132, Issue 4
FCC 47 CFR §24.232
ISED RSS-133 Issue 6, Amendment 1
FCC 47 CFR §27.50(b), (c), (d)
ISED RSS-139, Issue 4 / SRSP-513, RSS-130, Issue 2, ISED RSS-195, Issue 2, ISED RSS-199, Issue 3
FCC 47 CFR §90.635
ISED RSS-140, Issue 1

Report version control					
Rev Version Release date Changes Version validition					
i n	2023-07-05 Initial version Invalid		Invalid		
Adding family products SARA-R520 and					
01	2023-08-02	SARA-R520M10	Valid		

Responsible for Accreditation Scope:

M. Jullih

Responsible for Report:

Madul

1 Administrative Data

1.1 Testing Laboratory

Company Name:	7layers GmbH
Address	Borsigstr. 11 40880 Ratingen Germany
FCC accreditation	Designation Number: DE0015 Test Firm Registration #: 929146
Industry Canada Test Site Acceptance	CAB identifier: DE0007 Test Firm Registration #: 3699A
The test facility is also accredited by the following Laboratory accreditation no.:	accreditation organisation: DAkkS D-PL-12140-01-01 DAkkS D-PL-12140-01-02 DAkkS D-PL-12140-01-03
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Andreas Petz DiplIng. Marco Kullik
Report Template Version:	2023-08-02, V19
1.2 Project Data	
Responsible for assessment and report:	Robert Machulec
Date of Report:	2023-08-02
1.3 Applicant Data	
Company Name:	u-blox AG
Address:	Zürcherstrasse 68, CH-8800 Thalwil Switzerland
Contact Person:	Giulio Comar
1.4 Manufacturer Data	
Company Name:	please see applicant data
Address:	
Contact Person:	

2 Test object Data

2.1 General EUT Description

Equipment under TestSARA-R520M10X **Type Designation:**SARA-R520M10X

Kind of Device: CAT-M1 / NB-IoT Data Modules

 GSM MSC/UMTS/LTE CAT
 CAT-M1 / NB2

 FCC ID:
 XPYUBX19KM01

 IC ID:
 8595A-UBX19KM01

General product description:

The EUTs are Cellular radio modules supporting CAT-M1/NB-IoT

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment	Type	Serial No.	HW	SW
-	under Test	Designation		Status	Status
EUT A Code: DE1015162aa01	SARA-R520M10X	SARA-R520M10X	359521490011477	UBX-417002	05.04,A00.01
Remark: EUT A is equipp antenna.	ed with a tempora	ry antenna conne	ctor. The Module is	not sold with	a predefined

NOTE: The short description is used to simplify the identification of the EUT in this test report.

Additional information for not tested family products SARA-R520 and SARA-R520M10

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
EUT B Code: DE1015164ca01	SARA-R520	SARA-R520	353824620012928	UBX-4170B2	05.04,A00.01
EUT C Code: DE1015165da01	SARA-R520M10	SARA-R520M10	350428920011177	UBX-4170C2	05.04,A00.01
Remark: EUTs are equipped with a temporary antenna connector. The Module is not sold with a predefined antenna.					

NOTE: According to the Release Note supplied by the applicant EUTs B and C of the product family are technically identical to EUT A related to the cellular technology standards evaluated in this report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
N/A						_

Assessment Reference: MDE_UBLOX_2219_MPE_03_rev01 Page 5 of 10

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
N/A						_

3 Evaluation Results

3.1 Maximum ERP / EIRP

Standard	Frequency Band
FCC 47 CFR §22.913	eFDD5
ISED RSS-132, Issue 4	
FCC 47 CFR §24.232	eFDD2
ISED RSS-133 Issue 6, Amendment 1	
FCC 47 CFR §27.50(d)	eFDD4/66
ISED RSS-139, Issue 4 / SRSP-513	
FCC 47 CFR §27.50(c)	eFDD12/71/85
ISED RSS-130, Issue 2	
FCC 47 CFR §27.50(b)	eFDD13
ISED RSS-130, Issue 2	
FCC 47 CFR §27.1507(a)	eFDD8

3.1.1 Test Limits

For the 850MHz band, FCC §22.913 states that the maximum ERP of this device shall not exceed 7 Watts. IC SRSP-503 Issue 7, states that this device shall not exceed a maximum EIRP of 11.5 Watts

For the purposes of this test report, the 7 Watt ERP limit stipulated in FCC §22.913 has been converted to an equivalent EIRP value of 11.5 Watts.

For all other limits, refer to the values stipulated in the corresponding tables.

3.1.2 Test Protocol

Maximum antenna gain to comply with EIRP limits for FCC and Industry Canada

Band	Mode	Duty Cycle	Frequency Range (MHZ)	Maximum Conducted output power (dBm)	Maximum Conducted output power (mW)	FCC EIRP limit (mW)	Maximum antenna gain to meet EIRP Limit (dBi)
eFDD 2	LTE	100.0%	1850-1910	24.27	267.3006409	2000	8.7
eFDD 4	LTE	100.0%	1710-1755	24.7	295.1209227	1000	5.3
eFDD 5	LTE	100.0%	824 - 849	24.35	272.2701308	11484	16.3
eFDD 12	LTE	100.0%	699-716	24.94	311.8889584	4920	12.0
eFDD 13	LTE	100.0%	777-787	24.86	306.1963434	4920	12.1
eFDD 66	LTE	100.0%	1710-1780	25.3	338.8441561	1000	4.7
eFDD 71	LTE	100.0%	663-698	22.57	180.7174126	4920	14.3
eFDD 85	LTE	100.0%	698-716	24.81	302.6913428	4920	12.1
eFDD 8	LTE	100.0%	898-890	22.82	191.4255925	4920	14.1

3.1.3 Conclusion

Use this table if you are also considering MPE \max gain in the same report

Band	Max gain to be used to comply with EIRP Limits	Max gain to be used to comply with FCC MPE Limits	Max gain to be used to comply with IC MPE Limits	Maximum gain to be compliant with all limits
eFDD 2	8.	7 12.0) 8.	5 8.5
eFDD 4	5.3	3 12.0) 8.:	3 5.3
eFDD 5	16.	3 9.4	1 6.:	1 6.1
eFDD 12	12.0	0 8.7	7 5.0	5.6
eFDD 13	12.:	1 9.2	2 6.0	0 6.0
eFDD 66	4.	7 12.0) 8.:	3 4.7
eFDD 71	14.	3 8.5	5	5 5.5
eFDD 85	12.:	1 8.	7 5.0	5.6
eFDD 8	14.:	1 9.8	3	- 9.8

Gain expressed in dBi

3.2 RF Exposure Evaluation for Module

Standards
OET Bulletin 65 Edition 97-01 August 1997
RSS-102 Issue 5 – March 2015 AMD 1 (February 2, 2021)

3.2.1 Test limits

As specified in Table 1B of 47 CFR 1.1310 – Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure.

Frequency range (MHz)	Power density (mW/cm²)
300 – 1,500	f/1500
1,500 – 100,000	1.0

Limits specified per RSS-102, Issue 5.

Frequency range (MHz)	Power density (W/m²)	Power density (mW/cm²)
300 – 6000	0.02619 <i>f</i> ^{0.6834}	$mW/cm^2 = W/m^2 * 0.1$

Equation OET bulletin 65, page 18, edition 97-01: $S=rac{PG}{4\pi R^2}=rac{EIRP}{4\pi R^2}$

Where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the centre of radiation of the antenna

3.2.2 Test Protocol

Maximum antenna gain to comply with MPE limits for Industry Canada

Band	Mode			Conducted output power		Equivalent conducted output power (mW)	MPE Limit	Maximum antenna gain to meet MPE Limit (dBi)	Separation distance (cm)
eFDD 2	LTE	100%	1850.7	25.0	316.23	316.23	0.4477	8.5	20
eFDD 4	LTE	100%	1710.7	25.0	316.23	316.23	0.4243	8.3	20
eFDD 5	LTE	100%	824.7	25.0	316.23	316.23	0.2577	6.1	. 20
eFDD 12	LTE	100%	699.7	25.0	316.23	316.23	0.2303	5.6	20
eFDD 13	LTE	100%	779.5	25.0	316.23	316.23	0.2480	6.0	20
eFDD 66	LTE	100%	1710.7	25.0	316.23	316.23	0.4243	8.3	20
eFDD 71	LTE	100%	665.5	25.0	316.23	316.23	0.2226	5.5	20
eFDD 85	LTE	100%	700.5	25.0	316.23	316.23	0.2305	5.6	20

Assessment Reference: MDE_UBLOX_2219_MPE_03_rev01 Page 9 of 10

Maximum antenna gain to comply with MPE limits for FCC

Band	Mode		Frequency	Conducted	Maximum Conducted output power (mW)		MPE Limit	Maximum antenna gain to meet MPE Limit (dBi)	Separation distance (cm)
eFDD 2	LTE	100.0%	1850.7	25	316.23	316.23	1.0000	12.0	20
eFDD 4	LTE	100.0%	1710.7	25	316.23	316.23	1.0000	12.0	20
eFDD 5	LTE	100.0%	824.7	25	316.23	316.23	0.5498	9.4	20
eFDD 12	LTE	100.0%	699.7	25	316.23	316.23	0.4665	8.7	20
eFDD 13	LTE	100.0%	779.5	25	316.23	316.23	0.5197	9.2	. 20
eFDD 66	LTE	100.0%	1710.7	25	316.23	316.23	1.0000	12.0	20
eFDD 71	LTE	100.0%	665.5	25	316.23	316.23	0.4437	8.5	20
eFDD 85	LTE	100.0%	700.5	25	316.23	316.23	0.4670	8.7	20
eFDD 8	LTE	100.0%	898.0	25	316.23	316.23	0.5987	9.8	20

3.2.3 Conclusion

Band	Max gain for FCC MPE Limits	Max gain for Industry Canada MPE Limits	Maximum gain to be compliant with all MPE limits
eFDD	2 12.	0 8.	.5 8.5
eFDD	4 12.	0 8.	.3 8.3
eFDD	9.	4 6.	.1 6.1
eFDD 1	2 8.	7 5.	.6 5.6
eFDD 1	9.	2 6.	.0 6.0
eFDD 6	6 12.	0 8.	.3 8.3
eFDD 7	1 8.	5 5.	.5 5.5
eFDD 8	8.	7 5.	.6 5.6
eFDD	9.	8	- 9.8

Gain expressed in dBi