

FCC Measurement/Technical Report on

TOBY-L280 LTE/3G/2G data and voice module

acc. to FCC Part 24 Subpart E

FCC ID: XPYTOBYL280

IC: 8595A-TOBYL280

Test Report Reference: MDE_UBLOX_1807_FCCb

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbHBorsigstraße 11
40880 Ratingen, Germany

T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

8	Photo Report	25
7	Measurement Uncertainties	25
6.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	24
6.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	23
6.3 6.4	Antenna R&S HL562 (30 MHz – 1 GHz) Antenna R&S HF907 (1 GHz – 18 GHz)	21 22
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	20
6.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	19
6	Antenna Factors, Cable Loss and Sample Calculations	19
5	Test Equipment	17
4.2	Field strength of spurious radiation	13
- 4.1	RF power output	10
4	Test Results	10
3.7	Product labelling	9
3.6	Operating Modes	9
3.4 3.5	Auxiliary Equipment EUT Setups	8
3.3	Ancillary Equipment	8
3.2	EUT Main components	7
3.1	General EUT Description	7
3	Test object Data	7
2.4	Manufacturer Data	6
2.3	Applicant Data	6
2.2	Project Data	6
2 2.1	Administrative Data Testing Laboratory	6
1.3	Measurement Summary / Signatures	5
1.1 1.2	Applied Standards FCC-IC Correlation Table	3 4
	le or Contents	2

Applied Standards and Test Summary

1.1 APPLIED STANDARDS

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 24, (10/1/16 Edition). The following subparts are applicable to the results in this test report.

Part 24, Subpart E - Broadband PCS

§ 24.232 – Power and antenna height limits § 24.238 – Emission limitations for Broadband PCS equipment

The tests were selected and performed with reference to:

• FCC Public Notice 971168 applying "Measurement guidance for certification of licensed digital transmitters" 971168 D01 v03,2017-10-27

ANSI C63.26: 2015

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Cellular Radiotelephone Service from FCC and ISED Canada

Measurement	FCC reference	ISED reference
Effective radiated power, mean output power	§2.1046 §24.232	RSS-GEN Issue 4, 6.12 RSS-133 Issue 6, 6.4 SRSP-510, Issue 7, 5.1.1 RSS-131 Issue 3: 5.2.3
Field strength of spurious radiation	§2.1053 §24.236	RSS-GEN Issue 4, 6.13 RSS-133 Issue 6: 6.5

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 24 Subpart E §2.1046, §24.232

RF Power Output

The measurement was performed according to ANSI C63.26, KDB

Final Result

971168 D01 v03,2017-10-27

OP-Mode Frequency Band, Modulation, Channel, Frequency Setup **FCC** IC

WCDMa eFDD2, QPSK, 9400, 1880 MHz

S01_AA01

Passed

Passed

47 CFR CHAPTER I FCC PART 24 Subpart E

§2.1053, §24.238

Field strength of spurious radiation

The measurement was performed according to ANSI C63.26

Final Result

OP-Mode

Setup

FCC

IC

Frequency Band, Modulation, Channel, Frequency

WCDMa eFDD2, QPSK, 9400, 1880 MHz

S01_AB01

Passed

Passed

Revision History

	Report version control					
Version	Release date	Change Description	Version validity			
initial	2019-02-21		valid			

COMMENT:

On applicants demand not all applicable tests were tested.

(responsible for accreditation scope) Dipl.-Ing. Daniel Gall

(responsible for testing and report) B.Sc. Jens Dörwald

yers GmbH, Borsigstr. 11 1986 Hollingen, Germany Phone +49 (0)2102 749 0

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY				
Company Name:	7layers GmbH			
Address:	Borsigstr. 11 40880 Ratingen Germany			
FCC designation number:	DE0015			
This facility has been fully described in the registration number: Site# 3699A-	a report submitted to the ISED and accepted under $\cdot 1$.			
The test facility is also accredited by the	ne following accreditation organisation:			
Laboratory accreditation no:	DAkkS D-PL-12140-01-00			
Responsible for accreditation scope:	DiplIng. Daniel Gall			
Report Template Version:	2017-07-14			
2.2 PROJECT DATA Responsible for testing and report: Employees who performed the tests: Date of Report:	B.Sc. Jens Dörwald documented internally at 7Layers 2019-02-21			
Testing Period:	2018-11-23 to 2018-11-27			
2.3 APPLICANT DATA Company Name: Address:	u-blox AG u-blox AG CH-8800 Thalwil			
Contact Person:	Switzerland Mr. Giulio Comar			
2.4 MANUFACTURER DATA Company Name: Address:	please see applicant data			

TEST REPORT REFERENCE: MDE-UBLOX_1807_FCCb

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	GSM / UMTS and LTE module.	
Product name	TOBY-L280 LTE/3G/2G data and voice module	
Туре	-	
Declared EUT data by	the supplier	
General Product Description	The EUT is a GSM / UMTS and LTE module.	
Voltage Type	DC	
Voltage Level	3.8 V	

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
DE1015015	ab01	radiated & conducted sample
Sample Parameter		Value
Serial Number	358503060599298	
HW Version	217B00	
SW Version	v16.16	
Comment	-	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
AUX1	UBLOX, EVB-WL3, -, -	Evaluation board
AUX2	TAOGLAS, -, -, -	External Cellular Antenna

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale		
S01_AA01	ab01 + AUX1	Setup for conducted tests		
S01_AB01	ab01 + AUX1 + AUX2	Setup for radiated tests		

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1 TEST CHANNELS

		Center Frequency
Band	Uplink Channel	[MHz]
WCDMa FDD2	9400	1880

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

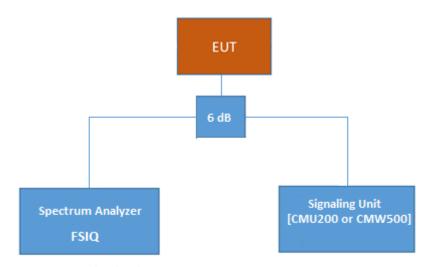
Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 RF POWER OUTPUT


Standard FCC Part 24, §24.232

The test was performed according to:

ANSI C63.26, KDB 935210 D05 v01r01: 3.5

4.1.1 TEST DESCRIPTION

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 RF Output Power

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

Page 11 of 25

4.1.2 TEST REQUIREMENTS / LIMITS

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

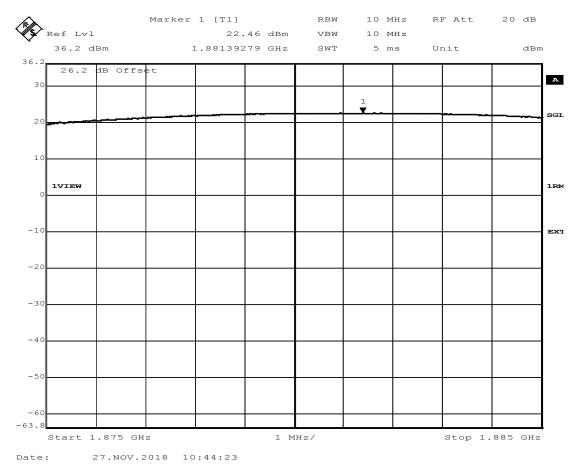
FCC Part 24, § 24.232

- (c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.
- (e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

RSS 133

6.4 Transmitter Output Power and Equivalent Isotropically Radiated Power The equivalent isotropically radiated power (e.i.r.p.) for transmitters shall not exceed the limits given in SRSP-510.

In addition, the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.


4.1.3 TEST PROTOCOL

	Radio Channel		Peak	Average	RMS
Radio Technology		Bandwidth (MHz)	Conducted	Conducted	Conducted
recimology			Power	Power	Power
			(dBm)	(dBm)	(dBm)
FDD II	mid	5	-	-	22.46

Remark: Please see next sub-clause for the measurement plot.

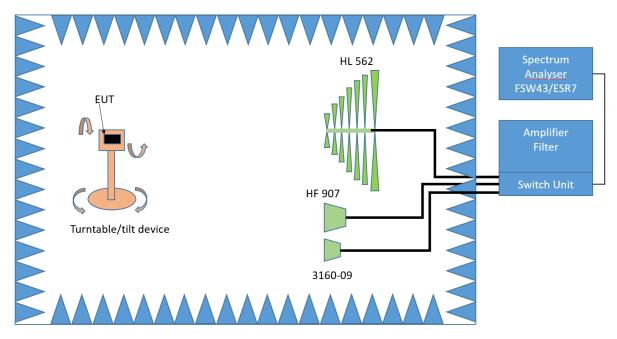
4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

4.1.5 TEST EQUIPMENT USED

- Radio Lab

4.2 FIELD STRENGTH OF SPURIOUS RADIATION

Standard FCC Part 2.1051


The test was performed according to:

ANSI C63.26

4.2.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per $\S~2.1053$

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90; Industrial Signal Booster – Test Setup; Field Strength of Spurious Radiation

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 – 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: \pm 45 ° around the determined value

- Height variation range: \pm 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 1 MHzMeasuring time: 1 s

4.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

Part 24, Subpart E - Broadband PCS

§ 24 238 - Emission limitations for Broadband PCS equipment

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

RSS-133; 6.5 Transmitter Unwanted Emissions

Equipment shall comply with the limits in (i) and (ii) below.

(i)

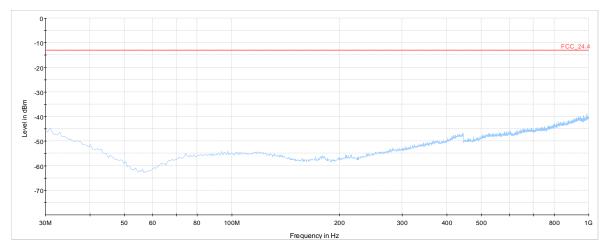
In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p(watts).

(ii)

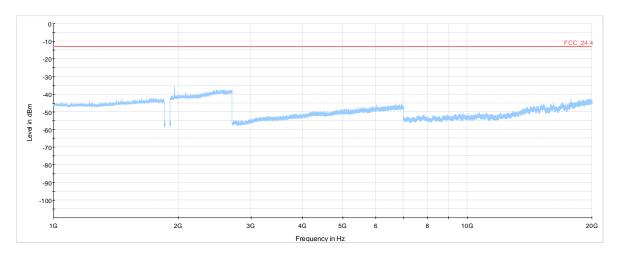
After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated(in dB) below the transmitter output power P (dBW) by at least 43+10log10p(watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0MHz is required.

4

4.2.3 TEST PROTOCOL


WCDMa FDD 2, Test Frequency = mid						
Spurio Fred [MH	٦.	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
_	•	-	-	-	-13.0	

Remark: Please see next sub-clause for the measurement plot.


COMMENT:

No (further) spurious emissions in the range 20dB below the limit were found, therefore no measurement values are reported in the tables.

4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Frequency Band = WCDMa FDD 2, Test Frequency = mid

30 MHz - 1 GHz

1 GHz - 20 GHz

4.2.5 TEST EQUIPMENT USED

- Radiated Emissions

5 TEST EQUIPMENT

1 Radio Lab FCC22/24/27 cond. Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
1.1	FSIQ	Spectrum Analyzer	Rohde & Schwarz	840061/005	2017-05	2019-05
1.2	WA1515	Broadband Power Divider SMA		A856		
1.3	SMA Attenuator 4T-10	Coax Attenuator 10dB SMA 2W	Weinschel Associates	F9401		
1.4	SMA Attenuator 56-10	Coax Attenuator 10dB SMA 2W	Weinschel Associates	W3702		
1.5	SMA Attenuator 56-10	Coax Attenuator 10dB SMA 2W	Weinschel Associates	W3711		
1.6	Coax Cable Sucotest 2.0m	Coax Cable	Huber&Suhner	-		
1.7	Coax Cable Micro Coax SMA/SMA 1.0m	Coax Cable FA210A00100 03030	Rosenberger	544912		

2 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
2.1	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005	2018-07	2019-07
2.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2018-10	2020-10
2.3	Opus10 TPR (8253.00)	•	Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
2.4	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none	2016-05	2019-05
2.5	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2018-07	2021-07
2.6		High Pass Filter	Trilithic	9942012		
2.7	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
2.8	Fully Anechoic Room	8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB	2018-06	2021-06
2.9	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
2.10	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.11	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-12	2018-12

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.12	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
2.13	8SS	High Pass Filter	Wainwright	09		
2.14	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
2.15	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
2.16	42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.17	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.18	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
2.19	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.20	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
2.21	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006		
2.22	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03
2.23	ESR 7		Rohde & Schwarz	101424	2016-11	2018-11
2.24	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
2.25	AS 620 P	Antenna mast	HD GmbH	620/37		
2.26	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg		TD1.5- 10kg/024/37907 09		
2.27	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004		
2.28	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
2.29	AM 4.0	Antenna mast		AM4.0/180/1192 0513		
2.30	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	11.2
30	11.3

	cable
LISN	loss
insertion	(incl. 10
loss	` dB
ESH3-	atten-
Z5	uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	1	
	٨Ε	
Eroguenav	AF	Conn
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

(51.11.12)								
cable	cable	cable	cable	distance	d_{Limit}	d_{used}		
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.		
(inside	(outside	(switch	(to	(-40 dB/	distance	distance		
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)		
dB	dB	dB	dB	dB	m	m		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.2	0.1	-40	30	3		
0.2	0.1	0.2	0.1	-40	30	3		
0.2	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.3	0.1	-40	30	3		
0.4	0.1	0.3	0.1	-40	30	3		
-								

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$d_{Limit} = 3 m)$							
Frequency	AF R&S HL562	Corr.					
MHz	dB (1/m)	dB					
30	18.6	0.6					
50	6.0	0.9					
100	9.7	1.2					
150	7.9	1.6					
200	7.6	1.9					
250	9.5	2.1					
300	11.0	2.3					
350	12.4	2.6					
400	13.6	2.9					
450	14.7	3.1					
500	15.6	3.2					
550	16.3	3.5					
600	17.2	3.5					
650	18.1	3.6					
700	18.5	3.6					
750	19.1	4.1					
800	19.6	4.1					
850	20.1	4.4					
900	20.8	4.7					
950	21.1	4.8					
1000	21.6	4.9					

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{Limit} = 10 m)$

$(a_{Limit} = 10 \text{ m})$	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

Eroguanav	AF R&S HF907	Corr.
Frequency MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside	cable loss 2 (inside	cable loss 3 (outside	cable loss 4 (switch unit, atten- uator &	cable loss 5 (to	used for FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	AF EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-15.6	3	0.5
4.4				-15.6	3	0.5
4.5				-15.6	3	0.5
4.6				-15.6	3	0.5
4.7				-15.6	3	0.5
4.7				-15.6	3	0.5
4.8				-15.6	3	0.5
4.9				-15.6	3	0.5
5.0				-15.6	3	0.5
5.1				-15.6	3	0.5
5.1				-15.6	3	0.5
5.2				-15.6	3	0.5
5.3				-15.6	3	0.5
5.4				-15.6	3	0.5
5.5				-15.6	3	0.5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 MEASUREMENT UNCERTAINTIES

Test Case(s)	Parameter	Uncertainty
- Field strength of spurious radiation	Power	± 5.5 dB
Out-of-band rejectionOccupied BandwidthInput versus output spectrum	Power Frequency	± 2.9 dB ± 11.2 kHz
 Effective radiated power, mean output power and zone enhancer gain Peak to Average Ratio 	Power	± 2.2 dB
Out-of-band emission limitsConducted Spurious Emissions at Antenna Terminal	Power Frequency	± 2.2 dB ± 11.2 kHz

8 PHOTO REPORT

Please see separate photo report.