

InterLab FCC Measurement/Technical Report on

TOBY-L280 GSM/UMTS/HSPA/LTE Data Module

FCC ID: XPYTOBYL280 IC:8595A-TOBYL280

Report Reference: MDE_UBLOX_1510_FCCb

according to FCC Part 22, Subpart H

Test Laboratory: 7Layers AG Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H. Ansorge Registergericht · registered in: Düsseldorf, HRB 44096 USt-IdNr · VAT No.: DE 203159652 TAX No. 147/5869/0385 *A Bureau Veritas Group Company*

Table of Contents

0 Su	mmary	4
0.1	Technical Report Summary	4
0.2	Measurement Summary	6
1 Ad	ministrative Data	8
1.1	Testing Laboratory	8
1.2	Project Data	8
1.3	Applicant Data	8
1.4	Manufacturer Data	8
2 Te	st object Data	9
2.1	General EUT Description	9
2.2	EUT Main components	10
2.3	Ancillary Equipment	10
2.4	Auxiliary Equipment	10
2.5	EUT Setups	11
2.6	Operating Modes	11
2.7	Special software used for testing	12
2.8	Product labeling	12
3 Te	st Results	13
3.1	RF Power Output	13
3.2	Frequency stability	16
3.3	Spurious emissions at antenna terminals	19
3.4	Emission and Occupied Bandwidth	21
3.5	Band edge compliance	23
3.6	Peak to Average Ratio	25
4 Te	st Equipment	26
5 Ph	oto Report	29
6 Se	tup Drawings	30
7 Co	mparison of new Hard and Software to the	e original results 32
7.1	RF Power Output	32
7.2	Frequency stability	32
7.3	Spurious emissions at antenna terminals	32
7.4	Emission and Occupied Bandwidth	33
7.5	Band edge compliance	33

- 7.6 Peak to Average Ratio7.7 Field strength of spurious radiation
- 7.8 Test Equipment

8 Annex measurement plots

33

34

35

40

- 8.1 RF Power Output §2.1046, §22.913 40
- 8.2 Peak to Average Ratio RSS-132, §5.4
- 8.3 Spurious emissions at antenna terminals §2.1051, §22.917 42
- 8.4 Emission and Occupied Bandwidth §2.1049, §22.917 43
- 8.5 Band edge compliance §2.1053, §22.917

The results in chapter 3 show the results of the original variant of the module, Report Reference: MDE_UBLOX_1409_FCCd (conducted results) and RF140820C14 (radiated results).

Chapter 7 provides the measurement results of the new version of the module and a comparison to the original values.

41

50

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for a GSM/WCDMA/LTE cellular radiotelephone device. This report covers only the LTE portion of this device.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 69. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output
§ 2.1049 Measurement required: Occupied bandwidth
§ 2.1051 Measurement required: Spurious emissions at antenna terminals
§ 2.1053 Measurement required: Field strength of spurious radiation*
§ 2.1055 Measurement required: Frequency stability
§ 2.1057 Frequency spectrum to be investigated

*Covered by external report.

- Part 22, Subpart C Operational and Technical Requirements
- § 22.355 Frequency tolerance

Part 22, Subpart H – Cellular Radiotelephone Service

§ 22.913 Effective radiated power limits

§ 22.917 Emission limitations for cellular equipment

Additional documents

Note:

ANSI TIA-603-C-2004

Correlation of measurement requirements for Cellular Equipment from FCC and IC

FCC Rule / IC Standard	Part 22 /	Part 22 / RSS-132		Part 24 / RSS-133 (NA)		RSS-139 /	/ RSS-199	
Effective (isotropic) Radiated Power	§2.1046 §22.913	RSS-GEN, §4.8 RSS-132, §5.4	§2.1046 §24.232	RSS-GEN, §4.8 RSS-133, §6.4	§2.1046 §27.50 (d)	RSS-GEN, §4.8 RSS-139; §6.4	RSS-GEN, §4.8 RSS-199; §4.4	
Occupied Bandwidth	§2.1049	RSS-GEN §4.6	§2.1049	RSS-GEN §4.6	§2.1049	RSS-GEN §4.6	RSS-GEN §4.6	
"Spuri″ at Antenna Terminal	§2.1051 §22.917	RSS-GEN, §4.9 RSS-132, §5.5	§2.1051 §24.238	RSS-GEN, §4.9 RSS-132, §6.5	§2.1051 §27.5 (h)	RSS-GEN, §4.9 RSS-139, §6.5	RSS-GEN, §4.9 RSS-199, §4.6	
Band Edge compliance	§2.1051 §22.917	RSS-GEN, §4.6	§2.1051 §24.238	RSS-GEN, §4.6	§2.1051 §27.5 (h)	RSS-GEN, §4.6	RSS-GEN, §4.6	
Frequency Stability	§2.1055 §22.355	RSS-GEN, §4.7	§2.1055 §24.235	RSS-GEN, §4.7 RSS-132, §6.3	§2.1055 §27.51	RSS-GEN, §4.7 RSS-139, §6.3	RSS-GEN, §4.7 RSS-199, §4.3	
Peak to Average Ration	N/A	RSS-132, §5.3	§2.1046 §24.232	RSS-133, §6.4	§2.1046 §27.50 (d)	RSS-139, §6.4	NA	
Modulation Characteristics	§2.1047	RSS-132, §5.4	§2.1047	RSS-133, §6.2	§2.1047	RSS-139, §6.2	RSS-199, §4.1	
Field Strength of Spurious Radiation	§2.1053 §22.917	RSS-132, §5.2	§2.1053 §24.235	RSS-GEN, §4.9 RSS-133, §6.5	§2.1053 §27.51	RSS-GEN, §4.9 RSS-139, §6.5	RSS-GEN, §4.9 RSS-199, §4.6	

*) Receivers which are part of Transceivers are exempted with respect to Notice 2012-DRS0126.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 22, Sub	part H	§2.1046, §22.913		
RF Power Output				
	Setup	Port	Final Result	
	Setup_01	AC Port (power line)	passed 09-18-2014	
FCC Part 22, Sub	part H	§2.1055		
Frequency stability				
	Setup	Port	Final Result	
	Setup_02	Temp.ant.connector	passed 09-18-2014	
FCC Part 22, Sub	part H	§2.1051, §22.917		
	s at antenna terminals			
	Setup	Port	Final Result	
	Setup_01	Temp.ant.connector	passed 09-18-2014	
FCC Part 22, Sub	part H	§2.1049, §22.917		
Emission and Occu				
	Setup	Port	Final Result	
	Setup_01	Temp.ant.connector	passed 09-18-2014	
FCC Part 22, Sub	part H	§2.1053, §22.917		
Band edge complia				
	Setup	Port	Final Result	
	Setup_01	Temp.ant.connector	passed 09-18-2014	
FCC Part 22, Sub Issue 5	part H , RSS-132	§5.4, §22.913		
Peak-Average Rati	0			
5	Setup	Port	Final Result	
	Setup_01	Temp.ant.connector	passed 09-18-2014	
FCC Part 22, Sub	part H	§2.1046, §22.917		
Field strength of sp		• -		
	Setup	Port	Final Result	
	na	na	Not performed see external report	

This test report incorporates results of variants of this Module that were previously already tested (original conducted results: TOBY-L210 test report reference: MDE_UBLOX_1409_FCCb, original radiated results: TOBY-L200 test report reference: RF140820C14A).

For this variant the eFDD20 band was removed while the non FCC relevant band eFDD28 was added. According to the applicant the changes in Hard- and Software are only related to these two bands and will not affect the other bands. Due to this the old results were reused and only partial testing of the previous worst case results were performed. These results and a comparison to the old results are added to this report as an additional chapter (chapter 8).

Responsible for Accreditation Scope: Responsible for Test Report:

Administrative Data 1

1.1 Testing Laboratory

Company Name:	7Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

Daniel Gall

u-blox AG

Zürcherstrasse 68, CH-8800 Thalwil Switzerland

Mr. Giulio Comar

+41 44 722 7462

The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Marco Kullik Dipl.-Ing. Andreas Petz 2014-09-18

Report Template Version:

1.2 Project Data

Responsible for testing and report:

Date of original Tests: 2014-07-14 to 2014-09-10 Date of comparison Tests: 2015-03-31 to 2015-04-25 Date of Report: 2015-05-29

1.3 Applicant Data

Company Name:

Address:

Contact Person: Phone: Email Address:

1.4 Manufacturer Data

Company Name:

please see applicant data

giulio.comar@u-blox.com

Address:

Contact Person:

2 Test object Data

2.1 General EUT Description

Equipment under Test: Type Designation: Kind of Device:	GSM/UMTS/HSPA/LTE Data Module TOBY-L280 Module
(optional)	
Voltage Type:	DC
Voltage Level:	3.8 V
Tested Modulation Type:	QPSK;16QAM

General product description:

The Module is able to operate in the following bands: GSM 850/1900 900/1800 UMTS/HSDPA/HSUPA FDD1,2,5,8 LTE eFDD 1,3,5,7,8,28

The EUT provides the following ports:

Ports Temporary antenna connector Enclosure

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	
EUT A (Code:	GSM/UMTS/	TOBY-L210	352255060018185	192BA04	09.41	
DE1015004AX12)	LTE Module	TODV 1 210	25225506017006	1028400	00.20	
EUT B (Code: DE1015004BC13)	GSM/UMTS/ LTE Module	TOBY-L210	352255060017906	192BA00	09.39	
EUT C (Code:	GSM/UMTS/	TOBY-L280	358503060011765	217001	09.90	
DE1015016aa01)	LTE Module					
EUT D (Code:	GSM/UMTS/	TOBY-L280	358503060012011	217001	09.90	
DE1015016ag01)	LTE Module					
Remark: EUT A is equipped with a temporary antenna connector. The Module is not sold with a predefined antenna.						

NOTE: The code mentioned in short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
AE 1	AC/DC converter	UUX324- 1215	-	-	E04- 0392137	-
AE 2	Evaluation test board	EVB-WL1	HP02_HW_C S_136000	-	BS 081110	-
AE 3	AC/DC converter	UUX324- 1215	-	-	F02- 0117096	-
AE 4	Evaluation test board	EVB-WL3	EVB-WL3	-	-	-
AE 5	AC/DC converter	UUX324- 1215	-	-	F02- 0117108	-
AE 6	Evaluation test board	EVB-WL3	EVB-WL3	-	-	-

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
*						

* No auxiliary equipment was required to operate the module

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_01	EUT A + AE 1 + AE 2	setup for conducted measurements
Setup_02	EUT B + AE 1 + AE 2	setup for conducted measurements
Setup_03	EUT C + AE 3 + AE 4	setup for conducted and radiated measurements
Setup_04	EUT D + AE 5 + AE 6	setup for conducted measurements

2.6 Operating Modes

The below table shows the test frequencies and channels bandwidths used for testing.

			RF Channel	
TEST MODE	TX / RX	Low	Mid	High
		20407	20525	20643
	TX (1.4M)	824.7 MHz	836.5 MHz	848.3 MHz
		CH 20415	CH 20525	CH 20635
	TX (3M)	825.50 MHz	836.50 MHz	847.50 MHz
		CH 20425	CH 20525	CH 20625
	TX (5M)	826.50 MHz	836.50 MHz	846.50 MHz
		CH 20450	CH 20525	CH 20600
LTE eFDD 5	TX (10)	829.00 MHz	836.50 MHz	844.00 MHz
LIE GFDD 5		CH 2407	CH 20525	CH 2643
	RX (1.4M)	869.70 MHz	881.50 MHz	893.70 MHz
		CH 2415	CH 20525	CH 2635
	RX (3M)	870.50 MHz	881.50 MHz	892.50 MHz
		CH 2425	CH 2525	CH 2625
	RX (5M)	871.50 MHz	881.50 MHz	891.50 MHz
		CH 2450	CH 2525	CH 2600
	RX (10M)	874.00 MHz	881.50 MHz	889.00 MHz

		(eFDD 5 Test configuration	on	
Setup Number	Test ITEM	Channel Band width	Channels tested	Modulation	RB Allocation
		1.4 MHz	20407, 20525, 20643	QPSK, 16QAM	1RB, 3RB, 6RB
	RF OUTPUT	3 MHz	20415, 20525, 20635	QPSK, 16QAM	1RB, 15RB
01	POWER	5 MHz	20425, 20525, 20625	QPSK, 16QAM	1RB , 12RB , 25RB
		10 MHz	20450, 20525, 20635	QPSK, 16QAM	1RB, 50RB
02	FREQUENCY STABILITY	1.4	20525	QPSK	1RB
	OCCUPIED BANDWIDTH	1.4 MHz	20407, 20525, 20643	QPSK, 16QAM	6RB
01		3 MHz	20415, 20525, 20635	QPSK, 16QAM	15RB
01		5 MHz	20425, 20525, 20625	QPSK, 16QAM	25RB
		10 MHz	20450, 20525, 20635	QPSK, 16QAM	50RB
01	PEAK TO AVERAGE RATIO	5 MHz	20425, 20525, 20625	QPSK, 16QAM	25RB
		1.4 MHz	20407, 20525, 20643	QPSK, 16QAM	6RB / Max offset
	BAND FDGF	3 MHz	20415, 20525, 20635	QPSK, 16QAM	15RB/ Max offset
01	Compliance	5 MHz	20425, 20525, 20625	QPSK, 16QAM	25RB/ Max offset
		10 MHz	20450, 20525, 20635	QPSK, 16QAM	50RB/ Max offset
01	CONDUCTED EMISSION	5 MHz	20425, 20525, 20625	QPSK, 16QAM	1RB
NA	RADIATED EMISSION	NA	See external report	NA	NA

2.7 Special software used for testing

- NA

2.7.1 Software to control the EUT directly

- NA

2.7.2 Software to enable control the EUT by a signaling unit

- NA

2.8 Product labeling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 RF Power Output

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1046

3.1.1 Test Description (conducted procedure)

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.
- 4) Important Settings:
- 5) Channel (Frequency): please refer to the detailed results
- 6) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

- 1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.
- 2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.
- 1) Important Settings:
- 2) Output Power: Maximum
- 3) Channel: please refer to the detailed results
- 4) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lamda/2 dipole).
- 5) The output power was measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the EUT have been measured.
- 6) The test procedure according to TIA-603-C-2004 has been considered.

3.1.2 Test Requirements / Limits

- §2.1046 Measurements Required: RF Power Output
 - (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the output terminals when this test is made shall be stated.

§22.913 Effective radiated power limits

(a)(2) Maximum ERP. ... The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

[IC		
							EIRP		
							limit		
					RMS	FCC	per		
					Conducted	EIRP	SRSP-	Maximum	
Test	Band				power	limit	503	antenna	
Band	width	Channel	Modulation	RB	(dBm)	(W)	(W)	gain (dBi)	Verdict
eFDD5	1.4	Low	QPSK	RB 1	24.17	11.48	11.5	16.43	Passed
eFDD5	1.4	Low	QPSK	RB 3	24.1	11.48	11.5	16.5	Passed
eFDD5	1.4	Low	QPSK	RB 6	24.17	11.48	11.5	16.43	Passed
eFDD5	1.4	Low	16QAM	RB 1	24.18	11.48	11.5	16.42	Passed
eFDD5	1.4	Low	16QAM	RB 6	23.07	11.48	11.5	17.53	Passed
eFDD5	1.4	MID	QPSK	RB 1	24.12	11.48	11.5	16.48	Passed
eFDD5	1.4	MID	QPSK	RB 3	24.08	11.48	11.5	16.52	Passed
eFDD5	1.4	MID	QPSK	RB 6	24.19	11.48	11.5	16.41	Passed
eFDD5	1.4	MID	16QAM	RB 1	24.19	11.48	11.5	16.41	Passed
eFDD5	1.4	MID	16QAM	RB 6	23.06	11.48	11.5	17.54	Passed
eFDD5	1.4	High	QPSK	RB 1	24.04	11.48	11.5	16.56	Passed
eFDD5	1.4	High	QPSK	RB 3	24.09	11.48	11.5	16.51	Passed
eFDD5	1.4	High	QPSK	RB 6	24.03	11.48	11.5	16.57	Passed
eFDD5	1.4	High	16QAM	RB 1	23.92	11.48	11.5	16.68	Passed
eFDD5	1.4	High	16QAM	RB 6	23.07	11.48	11.5	17.53	Passed
eFDD5	3	Low	QPSK	RB 1	24.33	11.48	11.5	16.27	Passed
eFDD5	3	Low	QPSK	RB 15	24.12	11.48	11.5	16.48	Passed
eFDD5	3	Low	16QAM	RB 1	24.21	11.48	11.5	16.39	Passed
eFDD5	3	Low	16QAM	RB 15	22.98	11.48	11.5	17.62	Passed
eFDD5	3	Mid	QPSK	RB 1	24.21	11.48	11.5	16.39	Passed
eFDD5	3	Mid	QPSK	RB 15	24.13	11.48	11.5	16.47	Passed
eFDD5	3	Mid	16QAM	RB 1	24.17	11.48	11.5	16.43	Passed
eFDD5	3	Mid	16QAM	RB 15	23.04	11.48	11.5	17.56	Passed
eFDD5	3	High	QPSK	RB 1	24.09	11.48	11.5	16.51	Passed
eFDD5	3	High	QPSK	RB 15	24.03	11.48	11.5	16.57	Passed

3.1.3 Test Protocol

eFDD5	3	High	16QAM	RB 1	23.9	11.48	11.5	16.7	Passed
eFDD5	3	High	16QAM	RB 15	22.97	11.48	11.5	17.63	Passed
eFDD5	5	Low	QPSK	RB 1	24.25	11.48	11.5	16.35	Passed
eFDD5	5	Low	QPSK	RB 12	24.12	11.48	11.5	16.48	Passed
eFDD5	5	Low	QPSK	RB 25	24.22	11.48	11.5	16.38	Passed
eFDD5	5	Low	16QAM	RB 1	24.13	11.48	11.5	16.47	Passed
eFDD5	5	Low	16QAM	RB 25	23.04	11.48	11.5	17.56	Passed
eFDD5	5	MID	QPSK	RB 1	24.14	11.48	11.5	37.6	Passed
eFDD5	5	MID	QPSK	RB 12	24.08	11.48	11.5	16.52	Passed
eFDD5	5	MID	QPSK	RB 25	24.2	11.48	11.5	16.4	Passed
eFDD5	5	MID	16QAM	RB 1	24.05	11.48	11.5	16.55	Passed
eFDD5	5	MID	16QAM	RB 25	23.02	11.48	11.5	17.58	Passed
eFDD5	5	High	QPSK	RB 1	24.1	11.48	11.5	16.5	Passed
eFDD5	5	High	QPSK	RB 12	24.03	11.48	11.5	16.57	Passed
eFDD5	5	High	QPSK	RB 25	24.1	11.48	11.5	16.5	Passed
eFDD5	5	High	16QAM	RB 1	23.96	11.48	11.5	16.64	Passed
eFDD5	5	High	16QAM	RB 25	23.07	11.48	11.5	17.53	Passed
eFDD5	10	Low	QPSK	RB 1	24.15	11.48	11.5	16.45	Passed
eFDD5	10	Low	QPSK	RB 50	24.14	11.48	11.5	16.46	Passed
eFDD5	10	Low	16QAM	RB 1	24.08	11.48	11.5	16.52	Passed
eFDD5	10	Low	16QAM	RB 50	23.04	11.48	11.5	17.56	Passed
eFDD5	10	MID	QPSK	RB 1	24.11	11.48	11.5	16.49	Passed
eFDD5	10	MID	QPSK	RB 50	24.13	11.48	11.5	16.47	Passed
eFDD5	10	MID	16QAM	RB 1	24.2	11.48	11.5	16.4	Passed
eFDD5	10	MID	16QAM	RB 50	23.04	11.48	11.5	17.56	Passed
eFDD5	10	High	QPSK	RB 1	24.21	11.48	11.5	16.39	Passed
eFDD5	10	High	QPSK	RB 50	24.14	11.48	11.5	16.46	Passed
eFDD5	10	High	16QAM	RB 1	24.13	11.48	11.5	16.47	Passed
eFDD5	10	High	16QAM	RB 50	23.05	11.48	11.5	17.55	Passed

3.2 Frequency stability

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1055

3.2.1 Test Description

1) The EUT was placed inside a temperature chamber.

2) The EUT was coupled to a Digital Communication Tester. Refer to chapter "Setup Drawings".

3) The climatic chamber was cycled down/up to a certain temperature, starting with the EUT minimum temperature.

4) After the temperature was stabilized the EUT was switched on and a call was established on a Traffic Channel between the EUT and the Digital Communication Tester. Important Settings:

- Output Power: Maximum

- Mid Channel

5) The frequency error of the EUT was recorded by using an internal measurement function of the Digital Communication Tester immediately after the call was established, five minutes after the call was established and ten minutes after the call was established.
6) This measurement procedure was performed for temperature variation from −30°C to +50°C in increments of 10°C, if not otherwise stated in the detailed results.

When the EUT did not operate at certain temperature levels, these measurements were left out.

3.2.2 Test Requirements / Limits

§2.1055 Measurements required: Frequency stability

(a) The frequency stability shall be measured with variation of ambient temperature as follows:

(1) From -30° to $+50^{\circ}$ centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

(b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.

(d) The frequency stability shall be measured with variation of primary supply voltage as follows:

(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

(2) For hand carried, battery powered equipment, reduce primary supply voltage to the

battery operating end point which shall be specified by the manufacturer.

(3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

§22.355 Frequency tolerance

...the carrier frequency of each transmitter in the Public Mobile Service must be maintained within the tolerances given in table C-1 of this section.

Frequency range	Base, fixed (ppm)	Mobile up to 3 watts	Mobile above 3
(MHz)		(ppm)	watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929	5.0	n/a	n/a
929 to 960	1.5	n/a	n/a
2110 to 2220	10.0	n/a	n/a

Table C-1.- Frequency Tolerance for Transmitters in the Public Mobile Services

3.2.3 Test Protocol

Channel: 20525 / 1.4MHz Bandwidth / 1 Resource Block / QPSK Modulation

Temp. °C	Duration min	Voltage	Limit Hz	Freq. error Average (Hz)	Freq. error Max. (Hz)	Verdict
-30	0			-5	-13	passed
-30	5	normal	2091.25	0	-7	passed
-30	10			-3	-7	passed
-20	0			-3	12	passed
-20	5	normal	2091.25	1	7	passed
-20	10			-5	-10	passed
-10	0			4	9	passed
-10	5	normal	2091.25	-1	-13	passed
-10	10			-2	-13	passed
0	0			0	-5	passed
0	5	normal	2091.25	0	5	passed
0	10			-1	-9	passed
10	0			-1	16	passed
10	5	normal	2091.25	-6	-16	passed
10	10			-1	-12	passed
20	0			0	-11	passed
20	5	low	2091.25	-4	-16	passed
20	10			-1	-11	passed
20	0	normal		1	10	passed
20	5	=	2091.25	5	17	passed
20	10	high 1)		-4	-11	passed
20	0			-2	-11	passed
20	5	high	2091.25	1	10	passed
20	10			-4	-15	passed
30	0			-5	-10	passed
30	5	normal	2091.25	-4	-12	passed
30	10			-4	-9	passed
40	0			6	12	passed
40	5	normal	2091.25	0	-2	passed
40	10			2	7	passed
50	0			2	-15	passed
50	5	normal	2091.25	2	11	passed
50	10			-3	-7	passed

3.3 Spurious emissions at antenna terminals

Standard FCC Part 22, Subpart H

The test was performed according to FCC §2.1051

3.3.1 Test Description

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

4) Important Analyser Settings

- [Resolution Bandwidth]:

a) [>=1% of wanted signal bandwidth] in the Span of 1 MHz directly below and above the PCS-Band,

b) otherwise [100 kHz] (or [1 MHz] for accelerated sweep times)

c) [reduced resolution bandwidth] in case the curve of the analyser IF-Filter or the wanted EUT signal leads to an exceeding of the limit, in this case a correction factor was used

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

5) The spurious emissions peaks were measured in the frequency range from 9 kHz to 10 GHz (up to the 10th harmonic) during the call was established

3.3.2 Test Requirements / Limits

§ 2.1051 Spurious emissions at antenna terminals

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in Sec. 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

(1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.

(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the

permissible value need not be reported.

(d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 22.917 Emission limitations for cellular equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Remark of the test laboratory: This is calculated to be -13 dBm.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. (c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Band	Band width	Modul- ation	Channel	detector	trace	resolution band width /kHz	frequency /MHz	peak value /dBm	margin to limit /dB	limit /dBm	verdict						
			20425	rms	maxhold	100	823.00	-25.4	12.4	-13.0	passed						
							20425	rms	maxhold	50	823.99	-21.9	8.9	-13.0	passed		
		QPSK	20525	peak	maxhold	100	6985.972	-44.40	31.40	-13	passed						
		5 AHz							20625	rms	maxhold	50	849.01	-20.8	7.8	-13.0	passed
eFDD5	5					20025	rms	maxhold	100	850.00	-23.8	10.8	-13.0	passed			
erdds	MHz			MHz		20425	rms	maxhold	100	822.96	-28.5	15.5	-13.0	passed			
	16QAM				20425	rms	maxhold	50	824.00	-22.4	9.4	-13.0	passed				
		16QAM	20525	peak	maxhold	100	6991.984	-44.83	31.83	-13	passed						
			20625	rms	maxhold	50	849.00	-22.0	9.0	-13.0	passed						
			20025	rms	maxhold	100	850.00	-26.2	13.2	-13.0	passed						

3.3.3 Test Protocol

3.4 Emission and Occupied Bandwidth

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1049

3.4.1 Test Description

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

4) Important Analyser Settings:

- Resolution Bandwidth: >1% of the manufacturer's stated occupied bandwidth

5) The maximum spectral level of the modulated signal was recorded as the reference.

6) The emission bandwidth is measured as follows:

the two furthest frequencies above and below the frequency of the maximum reference level where the spectrum is -26 dB down have to be found.

7) The occupied bandwidth (99% Bandwidth) is measured as follows:

the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 percent of the total mean power.

The maximum number of resource blocks are used for each channel bandwidth.

3.4.2 Test Requirements / Limits

§ 2.1049 Measurements required: Occupied bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions (as applicable):

(h) Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

3.4.3 Test Protocol

The maximum number of resource blocks are used for each channel bandwidth.

			LTE Bai	nd 5				
Channel BW: 1.4 MHz Channel BW: 3 MHz								
	Frequency	99% BW	′ (MHz)		Frequency	Frequency 99% BW (MHz)		
Channel	(MHz)	QPSK	16QAM	Channel	(MHz)	QPSK	16QAM	
low	824.7 MHz	1.11577424	1.11577424	low	825.50 MHz	2.691751	2.691751	
mid	836.5 MHz	1.11577424	1.11143271	mid	836.50 MHz	2.691751	2.683068	
High	848.3 MHz	1.111432706	1.12879884	High	847.50 MHz	2.691751	2.691751	

LTE Pand E									
	LTE Band 5 Channel BW: 5MHz Channel BW: 10 MHz								
	Frequency	99% BW	(MHz)		Frequency	99% BW (MHz)			
Channel	(MHz)	QPSK	16QAM	Channel	(MHz)	QPSK	16QAM		
low	826.50 MHz	4.529667149	4.51519537	low	829.00 MHz	8.94356	8.94356		
mid	836.50 MHz	4.544138929	4.54413893	mid	836.50 MHz	8.972504	8.972504		
High	846.50 MHz	4.529667149	4.54413893	High	844.00 MHz	8.972504	8.94356		

3.5 Band edge compliance

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §22.913

3.5.1 Test Description

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

4) Important Analyser Settings:

- Resolution Bandwidth = Video Bandwidth: >1% of the manufacturer's stated occupied bandwidth

3.5.2 Test Requirements / Limits

§ 22.917 Emission limitations for cellular equipment

Refer to chapter "Field strength of spurious radiation".

3.5.3 Test Protocol

Band	Band width (MHz)	Modulation	Resource Blocks / Offset	Channel	Detector	Frequency (MHz)	Peak Value (dBm)	Limit (dBm)	Verdict
eFDD5	1.4	QPSK	6/0	20407	Average	824	-21.28	-13	Passed
eFDD5	1.4	QPSK	6/0	20407	RMS	824	-19.49	-13	Passed
eFDD5	1.4	QPSK	6 / Max	20643	Average	849	-19.75	-13	Passed
eFDD5	1.4	QPSK	6 / Max	20643	RMS	849	-18.53	-13	Passed
eFDD5	1.4	16QAM	6/0	20407	Average	824	-21.82	-13	Passed
eFDD5	1.4	16QAM	6/0	20407	RMS	824	-19.58	-13	Passed
eFDD5	1.4	16QAM	6 / Max	20643	Average	849	-21.28	-13	Passed
eFDD5	1.4	16QAM	6 / Max	20643	RMS	849	-19.93	-13	Passed
eFDD5	3	QPSK	15/0	20415	Average	824	-22.89	-13	Passed
eFDD5	3	QPSK	15/0	20415	RMS	824	-20.11	-13	Passed
eFDD5	3	QPSK	15 / Max	20635	Average	849	-22.28	-13	Passed
eFDD5	3	QPSK	15 / Max	20635	RMS	849	-20.39	-13	Passed
eFDD5	3	16QAM	15/0	20415	Average	824	-25.02	-13	Passed
eFDD5	3	16QAM	15/0	20415	RMS	824	-22.16	-13	Passed
eFDD5	3	16QAM	15 / Max	20635	Average	849	-24.4	-13	Passed
eFDD5	3	16QAM	15 / Max	20635	RMS	849	-22.05	-13	Passed
eFDD5	5	QPSK	25/0	20425	Average	824	-24.7	-13	Passed
eFDD5	5	QPSK	25/0	20425	RMS	824	-22.28	-13	Passed
eFDD5	5	QPSK	25 / Max	20625	Average	849	-23.27	-13	Passed
eFDD5	5	QPSK	25 / Max	20625	RMS	849	-21.28	-13	Passed
eFDD5	5	16QAM	25/0	20415	Average	824	-27	-13	Passed
eFDD5	5	16QAM	25/0	20415	RMS	824	-23.68	-13	Passed
eFDD5	5	16QAM	25 / Max	20635	Average	849	-25.02	-13	Passed
eFDD5	5	16QAM	25 / Max	20635	RMS	849	-22.64	-13	Passed
eFDD5	10	QPSK	50/0	20450	Average	824	-26.41	-13	Passed
eFDD5	10	QPSK	50/0	20450	RMS	824	-24.7	-13	Passed
eFDD5	10	QPSK	50 / Max	20600	Average	849	-25.51	-13	Passed
eFDD5	10	QPSK	50 / Max	20600	RMS	849	-24.1	-13	Passed
eFDD5	10	16QAM	50/0	20450	Average	824	-29.56	-13	Passed
eFDD5	10	16QAM	50/0	20450	RMS	824	-27.41	-13	Passed
eFDD5	10	16QAM	50/ Max	20600	Average	849	-28.3	-13	Passed
eFDD5	10	16QAM	50/ Max	20600	RMS	849	-26.41	-13	Passed

3.6 Peak to Average Ratio

Standard RSS-132, §5.4

The test was performed according to: RSS-132, §5.4

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth.

The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

KDB 971168 v02r01 – Section 5.7.1 was applied.

Test Settings

1. The signal analyzer's CCDF measurement profile is enabled

- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal

4. The signal analyser was set to collect one million samples to generate the CCDF curve

5. The measurement interval was set depending on the type of signal analysed. For continuous

signals (>98% duty cycle), the measurement interval was set to 1ms.

Band	Band width	RB	Channel	Modulation	Measured Value (dB)	Limit	Verdict
		6/0	20407		4.52	13 dB	Passed
		6/0	20525	QPSK	4.7	13 dB	Passed
eFDD5	1.4	6/0	20643		3.91	13 dB	Passed
erdds	1.4	6/0	20407		5.45	13 dB	Passed
		6/0	20525	16QAM	5.68	13 dB	Passed
		6/0	20643		4.75	13 dB	Passed

3.6.1 Test Protocol

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:	Lab 1		
Manufacturer:	Frankonia		
Description:	Anechoic Chamber for radiated testing		
Type:	10.58x6.38x6.00 m ³		
	Calibration Details	Last Execution	Next Exec.
	NSA (FCC)	2014/01/09	2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m³ Calibration Details	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18		2014/01/09 2017/01/08
Controller Maturo	мси	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Radio Lab Test Equipment

Lab ID:	Lab 2
Description:	Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Type	Serial Number	Manufacturer
Broadband Power Divider SMA	WA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
	Standard calibration		2014/07/03 2015/07/02
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/02/12 2015/02/11

Test Equipment Temperature Chamber 05

Lab ID:	Lab 2
Manufacturer:	see single devices
Description:	Temperature Chamber VT4002
Type:	Vötsch
Serial Number:	see single devices

Single Devices for Temperature Chamber 05

Single Device Name	Type	Serial Number	Manufacturer	
Temperature Chamber Vötsch 05	VT 4002	58566080550010	Vötsch	
	Calibration Details		Last Execution	Next Exec.
	Customized calibration		2014/03/11	2016/03/10

Test Equipment Auxiliary Test Equipment

Lab ID:	Lab 1, Lab 2
Manufacturer:	see single devices
Description:	Single Devices for various Test Equipment
Type:	various
Serial Number:	none

Single Devices for Auxiliary Test Equipment

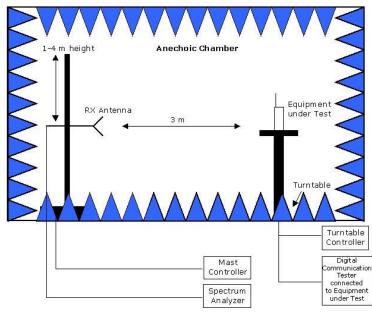
Single Device Name	Type	Serial Number	Manufacturer
Broadband Power Divider N (Aux)	1506A / 93459	LM390	Weinschel Associates
Broadband Power Divider SMA	WA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2014/02/10 2016/02/09
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/07/29 2014/07/28
	Standard calibration		2014/07/29 2015/07/28
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID: Lab 1, Lab 2 Description: Signalling equipment

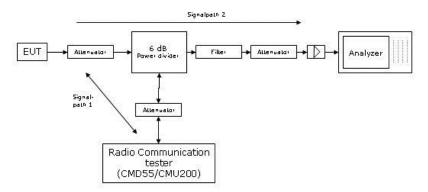
Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

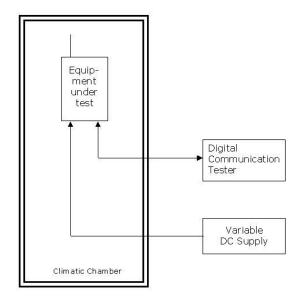

Single Device Name	Туре	Serial Number	Manufacturer	
Bluetooth Signalling Unit CBT	СВТ	100589	Rohde & Schwar Co. KG	rz GmbH &
	Calibration Details		Last Execution	Next Exec.
	Standard calibration		2011/11/24	2014/11/23
CMW500	CMW500	107500	Rohde & Schwar Co.KG	rz GmbH &
	Calibration Details		Last Execution	Next Exec.
	Standard calibration		2014/01/27	2016/01/26
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwar Co. KG	rz GmbH &
	Calibration Details		Last Execution	Next Exec.
	Standard calibration		2011/11/28	2014/11/27
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwar Co. KG	
	HW/SW Status		Date of Start	Date of End
	B53-2, B56V14, B68 3v04, PCMCIA, U Software: K21 4v21, K22 4v21, K23 4v21, K24 4 K43 4v21, K53 4v21, K56 4v22, K57 4 K59 4v22, K61 4v22, K62 4v22, K63 4 K65 4v22, K66 4v22, K67 4v22, K68 4 Firmware: μP1 8v50 02.05.06	v21, K42 4v21, v22, K58 4v22, v22, K64 4v22,		
Universal Radio	CMU 200	837983/052	Rohde & Schwa	rz GmbH &
Communication Tester			Co. KG	
	Calibration Details		Last Execution	Next Exec.
	Standard calibration		2011/12/07	2014/12/06
	HW/SW Status		Date of Start	Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B5 B54V14, B56V14, B68 3v04, B95, PCM SW options: K21 4v11, K22 4v11, K23 4v11, K24 4 K28 4v10, K42 4v11, K43 4v11, K53 4 K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	CIA, U65V02 v11, K27 4v10,	2007/01/02	
	 SW: K62, K69		2008/11/03	
Vector Signal Generator	SMU200A	100912	Rohde & Schwar Co. KG	rz GmbH &

5 Photo Report

Photos are included in an external report.


6 Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.


Drawing 1: Setup in the anechoic chamber.

<u>Remark:</u> Depending on the frequency range suitable attenuators and/or filters and/or amplifiers are used.

Principle set-up for conducted measurements under nominal conditions

Principle set-up for tests under extreme test conditions

7 Comparison of new Hard and Software to the original results

See original results for Test Description / Requirements / Limits. The same settings were used as in the original test run.

7.1 RF Power Output

Test Band	Bandwidth	Channel	Modulation	RB	RMS Conducted power (dBm)	Deviation to original results	Limit (ERP)	Verdict				
			QPSK	RB 1	23.21	-1.12	38.45	Passed				
		Low	QF3K	RB 15	22.07	-2.05	38.45	Passed				
		Low	16QAM	RB 1	22.23	-1.98	38.45	Passed				
			IOQAIVI	RB 15	21.1	-1.88	38.45	Passed				
			QPSK	RB 1	23.3	-0.91	38.45	Passed				
BAND 5	3	Mid	QF3K	RB 15	22.12	-2.01	38.45	Passed				
DAND J	5		Wild	IVIIC	IVIIC	IVIIC	16QAM	RB 1	22.37	-1.8	38.45	Passed
				IUQAIVI	RB 15	21.03	-2.01	38.45	Passed			
			QPSK	RB 1	22.93	-1.16	38.45	Passed				
		High	QF3N	RB 15	21.83	-2.2	38.45	Passed				
		ingri	16QAM	RB 1	21.91	-1.99	38.45	Passed				
			TOCAIVI	RB 15	20.89	-2.08	38.45	Passed				

Negative deviation => values of new hard- / software are lower than original result values

7.2 Frequency stability

Not tested since no Frequency Stability relevant Hardware was changed.

7.3 Spurious emissions at antenna terminals

				Frequency	Highest	Deviation to original	
Band	Bandwidth	Modulation	Channel	(MHz)	value	results	Verdict
			low	824	-25.6	-3.7	Passed
	5 MHz	QPSK	high	849	-25.9	-5.1	Passed
eFDD5			low	824	-26.3	-3.9	Passed
	5 MHz	16QAM	high	849	-27.6	-5.6	Passed

Negative deviation => values of new hard- / software are lower than original result values

7.4 Emission and Occupied Bandwidth

		LTE Band	5		
	Char	nnel BW: 3	3 MHz		
	Frequency	99% B\	N (MHz)		tion to Il values
Channel	(MHz)	QPSK	16QAM	QPSK	16QAM
low	825.5	2.8	2.8	0.1	0.1
mid	836.5	2.8	2.8	0.1	0.1
High	847.5	2.8	2.8	0.1	0.1

Negative deviation => values of new hard- / software are lower than original result values

7.5 Band edge compliance

Band	Bandwidth (MHz)	Modulation	Resource Blocks / Offset	Channel	Detector	Peak Value (dBm)	Deviation to original values	Limit (dBm)	Verdict				
			15 / 0	20415	Average	-26.22	-3.33	-13	Passed				
		QPSK	ODCK	15/0	20415	RMS	-22.52	-2.41	-13	Passed			
			15 / Max	20635	Average	-26.8	-4.52	-13	Passed				
eFDD5	3				RMS	-23.27	-2.88	-13	Passed				
erdds	5	10000					15/0	20415	Average	-27	-1.98	-13	Passed
			15/0	20415	RMS	-23.41	-1.25	-13	Passed				
		16QAM	15 / Max	20635	Average	-28.07	-3.67	-13	Passed				
			T2 / INIAX	20055	RMS	-24.55	-2.5	-13	Passed				

Negative deviation => values of new hard- / software are lower than original result values

7.6 Peak to Average Ratio

Band	Bandwidth	Channel	Modulation	Measured Value (dB)	Deviation to original values (dB)	Verdict
eFDD5	1.4	mid	QPSK	5.59	0.89	Passed
erddo	1.4	mid	16-QAM	6.52	0.84	Passed

Positive deviation => values of new hard- / software are higher than original result values

7.7 Field strength of spurious radiation

As in original measurement, no peaks closer than 20 dB to the limit found.

Comparison of second harmonic:

					Highest	Deviation to original	
Band	Bandwidth	Modulation	Channel	Frequency	value	results	Verdict
eFDD5	10 MHz, 1 RB	QPSK	mid	1674	-47.31	-1.31	Passed

Negative deviation => values of new hard- / software are lower than original result values

7.8 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:	Lab 1	
Manufacturer:	Frankonia	
Description:	Anechoic Chamber for radiated testing	
Туре:	10.58x6.38x6.00 m ³	
	Calibration Details	Last Execution Next Exec.
	NSA (FCC)	2014/01/09 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ Calibration Details	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18		2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID:	Lab 1
Description:	Equipment for emission measurements
Serial Number:	see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/11920 13	5 Maturo GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck
Biconical dipole	VUBA 9117	9117-108	Schwarzbeck
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.0 2	1- Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.0 2	2- Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/05/18 2015/05/17

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	2 BBHA 9170	BBHA9170262	
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Standard Gain / Pyramidal Horn Antenna 26,5 GHz	a 3160-09	00083069	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Digital Signalling Devices

Lab ID:	Lab 1, Lab 2		
Description:	Signalling equipment for various wireless technologies.		
Single Devices for	Digital Signalling Devices		
Single Device Name	Туре	Serial Number	Manufacturer
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/27 2016/01/26

Test Equipment Auxiliary Test Equipment

Lab ID:	Lab 1, Lab 2
Manufacturer:	see single devices
Description:	Single Devices for various Test Equipment
Type:	various
Serial Number:	none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide N (Aux)	r1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	erWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2014/02/10 2016/02/09
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/07/29 2015/07/28
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Emission measurement devices

Lab ID:	Lab 1
Description:	Equipment for emission measurements
Serial Number:	see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer	
Personal Computer	Dell	30304832059	Dell	
Signal Generator	SMR 20	846834/008	Rohde & Schw KG	varz GmbH & Co.
	Calibration Details		Last Execution	Next Exec.
	Standard Calibration		2014/06/24	2017/06/23
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwa KG	arz GmbH & Co.
	Calibration Details		Last Execution	Next Exec.
	Standard Calibration		2014/01/07	2016/01/31
	HW/SW Status		Date of Start	Date of End
	Firmware-Update 4.34.4 from 3.45 during calibration		2009/12/03	

Test Equipment Radio Lab Test Equipment

Lab ID:
Description:

Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Lab 2

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide SMA	rWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Rubidium Frequency	Datum, Model: MFS	5489/001	Datum-Beverly
Standard	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/07/03 2015/07/02
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Calibration after reparation		2015/04/02 2017/04/01

Test Equipment T/A Logger 13

Lab ID:	Lab 1, Lab 2
Description:	Lufft Opus10 TPR
Type:	Opus10 TPR
Serial Number:	13936

Single Devices for T/A Logger 13

Single Device Name	Туре	Serial Number	Manufacturer
ThermoAirpressure Datalogger 13 (Environ)	Opus10 TPR (8253.00)	13936	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2015/02/27 2017/02/26

Test Equipment T/H Logger 03

Lab ID:	Lab 2
Description:	Lufft Opus10
Serial Number:	7482

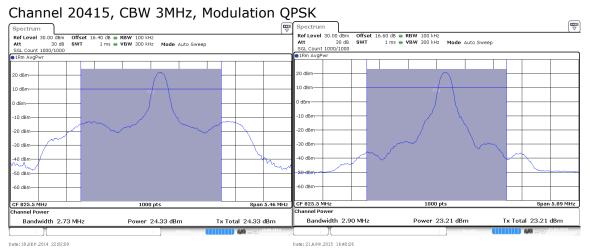
Single Devices for T/H Logger 03

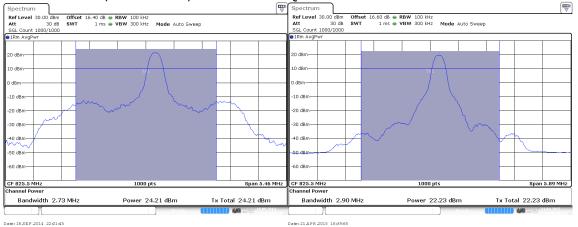
Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogge 03 (Environ)	erOpus10 THI (8152.00)	7482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2015/02/27 2017/02/26

Test Equipment T/H Logger 12

Lab ID:	Lab 1
Description:	Lufft Opus10
Serial Number:	12482

Single Devices for T/H Logger 12

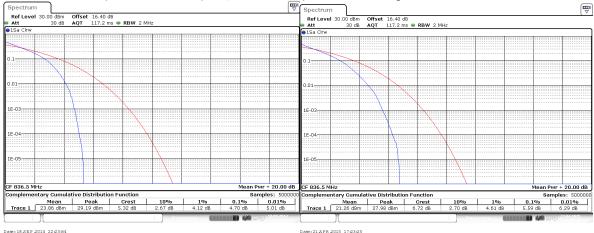

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogge 12 (Environ)	rOpus10 THI (8152.00)	12482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2015/03/10 2017/03/09


Annex measurement plots 8

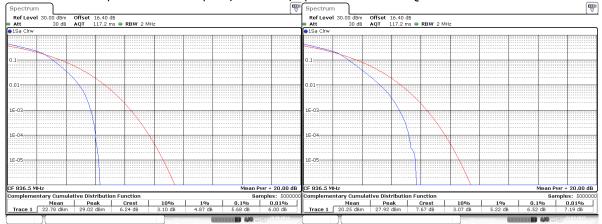
Where tested the result plots of the original measurement with the previous module and the new module variant are shown next to each other, previous module plot on the left, new module on the right.

8.1 RF Power Output §2.1046, §22.913

Channel 20415, CBW 3MHz, Modulation 16QAM



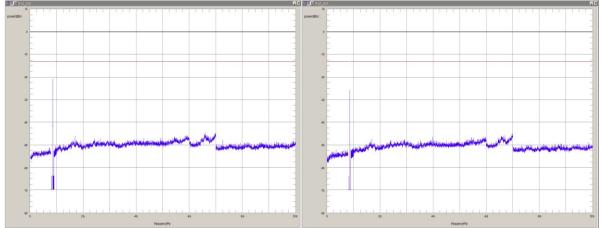
Date: 18.SEP.2014 22:01:45



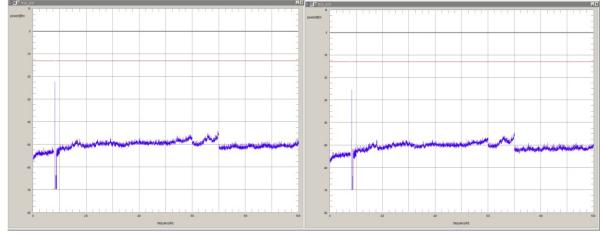
8.2 Peak to Average Ratio RSS-132, §5.4

Channel 20525, CBW 1.4MHz, RB/Offset 6/0, Modulation QPSK

Channel 20525, CBW 1.4MHz, RB/Offset 6/0, Modulation 16QAM

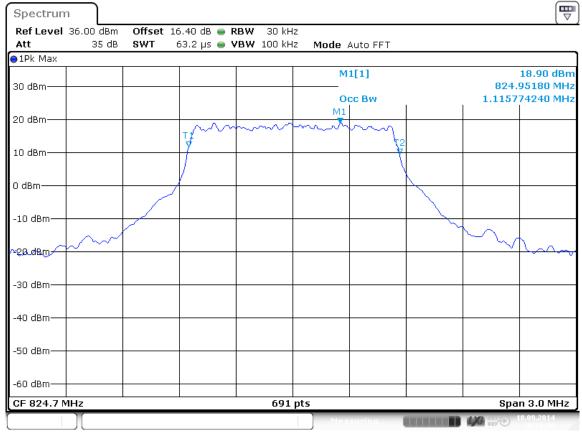

Date:18.SEP.2014 22:23:30

Date:21 APR 2015 17:24:14



8.3 Spurious emissions at antenna terminals §2.1051, §22.917

Channel 20625, CBW 1.4MHz, RB/Offset 1/0, Modulation QPSK



Channel 20425, CBW 1.4MHz, RB/Offset 1/0, Modulation 16QAM

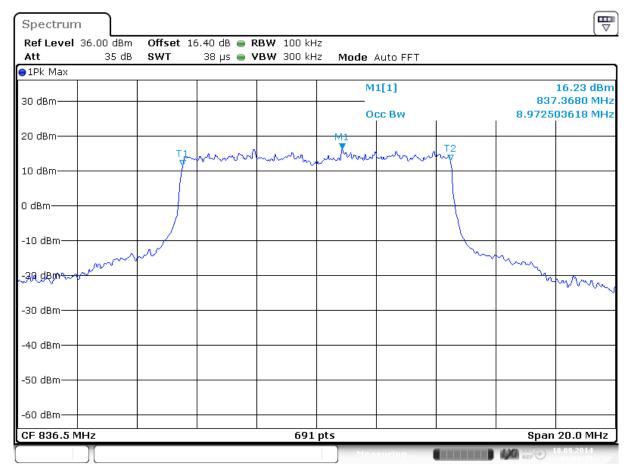
8.4 Emission and Occupied Bandwidth §2.1049, §22.917

Channel 20407, CBW 1.4MHz, RB/Offset 6/0, Modulation QPSK

Date:18.SEP.2014 19:19:30

Original measurement

Channel 20415, CBW 3MHz, RB/Offset 15/0, Modulation QPSK

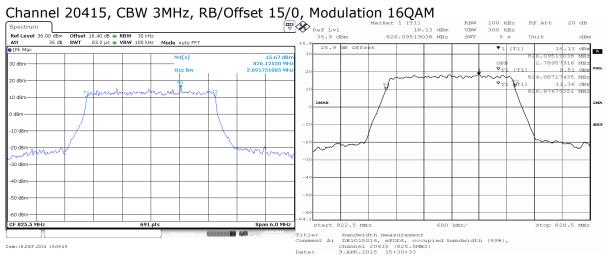

Spectrum Ref Level 36.00 dBm Offset 16.40 dB 🖷 RBW 100 kHz 19 µs 🔵 **VBW** 300 kHz Att 35 dB SWT Mode Auto FFT ⊖1Pk Max M1[1] 18.62 dBm 30 dBm-835.5880 MHz 4.544138929 MHz Occ Bw 41 20 dBm-₽2 T; 10 dBm· 0 dBm--10 dBm· -20 dBm--30 dBm--40 dBm· -50 dBm--60 dBm-691 pts Span 10.0 MHz CF 836.5 MHz 1 120

Channel 20525, CBW 5MHz, RB/Offset 25/0, Modulation QPSK

Date:18.SEP.2014 19:45:28

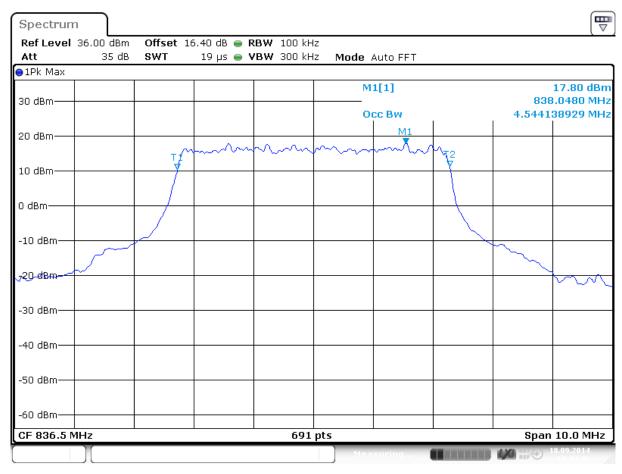
Channel 20525, CBW 10MHz, RB/Offset 50/0, Modulation QPSK

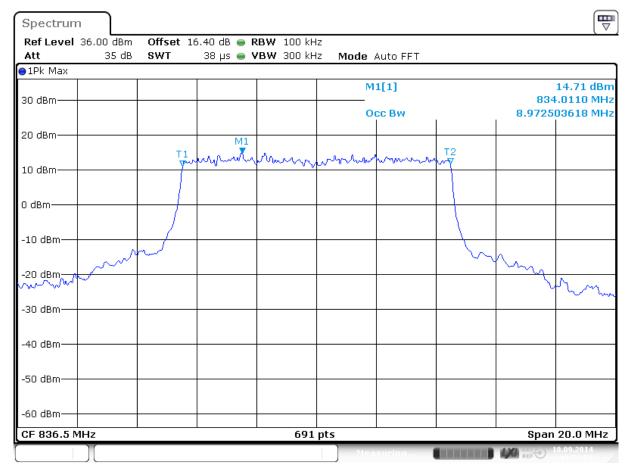
Date:18.SEP.2014 19:53:45



Channel 20643, CBW 1.4MHz, RB/Offset 6/0, Modulation 16QAM

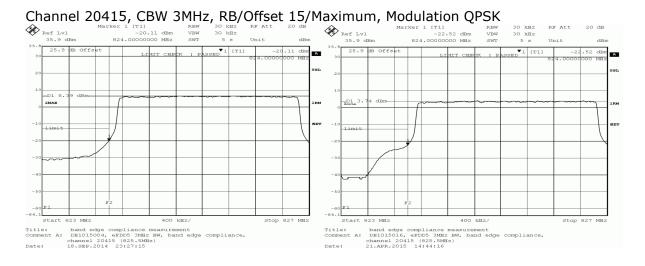
Spectrum	 							
Ref Level 36.00 dBr Att 35 d	6.40 dB 👄 F 63.2 us 👄 V	RBW 30 kHz /BW 100 kHz	Mode	Auto FFT				
●1Pk Max	 . • כח 200	BII 100 MIL	mode /	Autorin				
30 dBm			M1[1]			18.01 dBn 847.89620 MH:		
20 dBm	M1		0	cc Bw		1.1287	98842 MH	
10 dBm	$\checkmark \sim \sim$			transferration of the second s				
0 dBm	 /			\				
-10 dBm					<u> </u>			
-20 dBm-						×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm			•					
CF 848.3 MHz		691 p	ts				n 3.0 MHz	


Date:18.SEP.2014 19:29:29

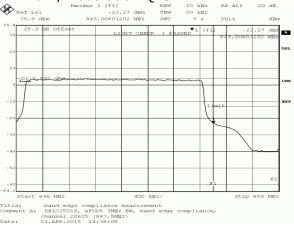


Channel 20525, CBW 5MHz, RB/Offset 25/0, Modulation 16QAM

Date:18.SEP.2014 19:44:46

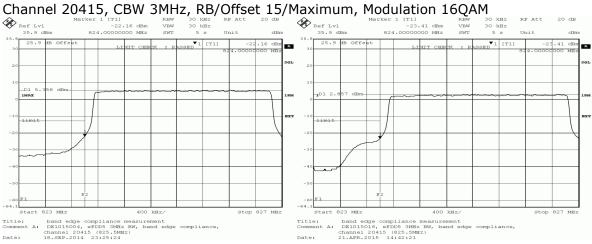

Channel 20525, CBW 10MHz, RB/Offset 50/0, Modulation 16QAM

Date: 18.SEP.2014 19:52:51


8.5 Band edge compliance §2.1053, §22.917

Channel 20635, CBW 3MHz, RB/Offset 15/Maximum, Modulation QPSK

25.9 dB Offse							_
25.9 dB OTISE	e	LIMIT CHR	CK : PA	SSED 1		-20.39	
							SGL
							_
-D1_6 <u>,42_SBR</u> 1MAX		~~~~~					1.834
				1			
					limit-		EXT
,					X		_
							~
							_
					Fl		F2


Title: band edge compliance measurement Comment A: DE105004, eFD5 3MEZ EW, band edge complia channel 20635 (847.5MEZ) Date: 18.5EP.2014 23:19:00

Date:

Channel 20415, CBW 3MHz, RB/Offset 15/Maximum, Modulation 16QAM

25.9

-101-2

Channel 20635, CBW 3MHz, RB/Offset 15/Maximum, Modulation 16QAM rker 1 [T1] -24.55 dBm 849.00601202 MHz 30 kHz 30 kHz 5 -RBW VBW SWT

Date:

-64.1 46 MH2 Title: band edge compliance measurement Comment A: DE1015016, eFDD5 3MHZ BW, band edge compliance channel 20053 (047.5MHZ) Date: 21.APR.2015 14:39:50 Date:

LIMIT CHECK : P

RF Att

Unit

▼1 [T1 SSED

20 dB

ъ

nor.

EXT