

# **Test Report**

Report Number:

F1900149E3

Equipment under Test (EUT):

NINA-B306 / NINA-B316

Applicant:

u-blox AG

Manufacturer:

u-blox AG



Deutsche Akkreditierungsstelle D-PL-17186-01-01 D-PL-17186-01-02 D-PL-17186-01-03



# References

- [1] ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- [2] FCC CFR 47 Part 15, Radio Frequency Devices
- [3] RSS-247 Issue 2 (February 2017), Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
- [4] RSS-Gen Issue 5 (April 2018), General Requirements for Compliance of Radio Apparatus
- [5] 558074 D01 15.247 Meas Guidance v05 (August 2018), GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES



# **Test Result**

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test. The complete test results are presented in the following.

| Tested and written by:          | Bernward ROHDE | B. Pall     | 18.03.2019 |  |
|---------------------------------|----------------|-------------|------------|--|
| _                               | Name           | / Signature | Date       |  |
| Reviewed<br>and approved<br>by: | Bernd STEINER  | B. Shu      | 18.03.2019 |  |

#### This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.



# **Contents:**

# Page

| 1           | lde                                    | ntification                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                            |  |  |  |  |
|-------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
|             | 1.1                                    | Applicant                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                            |  |  |  |  |
|             | 1.2                                    | Manufacturer5                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |  |  |  |  |
|             | 1.3                                    | Test Laboratory                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                            |  |  |  |  |
|             | 1.4                                    | EUT (Equipment under Test)                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                            |  |  |  |  |
|             | 1.5                                    | Technical Data of Equipment                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                            |  |  |  |  |
|             | 1.6                                    | Dates                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                            |  |  |  |  |
| 2           | Ор                                     | erational States                                                                                                                                                                                                                                                                                                                                                                                | .10                                                                          |  |  |  |  |
|             | 2.1                                    | Description of function of the EUT                                                                                                                                                                                                                                                                                                                                                              | . 10                                                                         |  |  |  |  |
|             | 2.2                                    | The following states were defined as the operating conditions                                                                                                                                                                                                                                                                                                                                   | . 10                                                                         |  |  |  |  |
|             | 2.3                                    | .1 Operation Modes/Power settings                                                                                                                                                                                                                                                                                                                                                               | . 11                                                                         |  |  |  |  |
|             | 2.3                                    | .2 Radio tests                                                                                                                                                                                                                                                                                                                                                                                  | . 11                                                                         |  |  |  |  |
| 3           | Ade                                    | ditional Information                                                                                                                                                                                                                                                                                                                                                                            | .12                                                                          |  |  |  |  |
| 4           | Ov                                     | erview                                                                                                                                                                                                                                                                                                                                                                                          | .12                                                                          |  |  |  |  |
| 5           | Re                                     | sults                                                                                                                                                                                                                                                                                                                                                                                           | .13                                                                          |  |  |  |  |
|             | 5.1                                    | Duty cycle                                                                                                                                                                                                                                                                                                                                                                                      | . 13                                                                         |  |  |  |  |
|             | 5.2                                    | Maximum peak output power                                                                                                                                                                                                                                                                                                                                                                       | . 13                                                                         |  |  |  |  |
|             | 5.3                                    |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |  |  |  |  |
|             |                                        | DIS Bandwidth / 99% Bandwidth                                                                                                                                                                                                                                                                                                                                                                   | . 13                                                                         |  |  |  |  |
|             | 5.4                                    | DTS Bandwidth / 99% Bandwidth     Peak Power Spectral Density                                                                                                                                                                                                                                                                                                                                   | . 13<br>. 13                                                                 |  |  |  |  |
|             | 5.4<br>5.5                             | DTS Bandwidth / 99% Bandwidth<br>Peak Power Spectral Density<br>Band-edge compliance                                                                                                                                                                                                                                                                                                            | . 13<br>. 13<br>. 13                                                         |  |  |  |  |
|             | 5.4<br>5.5<br>5.6                      | DTS Bandwidth / 99% Bandwidth<br>Peak Power Spectral Density<br>Band-edge compliance<br>Maximum unwanted emissions                                                                                                                                                                                                                                                                              | . 13<br>. 13<br>. 13<br>. 13<br>. 13                                         |  |  |  |  |
|             | 5.4<br>5.5<br>5.6<br>5.6               | DTS Bandwidth / 99% Bandwidth<br>Peak Power Spectral Density<br>Band-edge compliance<br>Maximum unwanted emissions                                                                                                                                                                                                                                                                              | . 13<br>. 13<br>. 13<br>. 13<br>. 13<br>. 13                                 |  |  |  |  |
|             | 5.4<br>5.5<br>5.6<br>5.6<br>5.6        | DTS Bandwidth / 99% Bandwidth     Peak Power Spectral Density     Band-edge compliance     Maximum unwanted emissions     1   Method of measurement (radiated emissions)     6.1.1   Test results (radiated emissions)                                                                                                                                                                          | . 13<br>. 13<br>. 13<br>. 13<br>. 13<br>. 13<br>. 21                         |  |  |  |  |
|             | 5.4<br>5.5<br>5.6<br>5.6<br>5.7        | DTS Bandwidth / 99% Bandwidth<br>Peak Power Spectral Density<br>Band-edge compliance<br>Maximum unwanted emissions<br>1 Method of measurement (radiated emissions)<br>6.1.1 Test results (radiated emissions)<br>Conducted emissions on power supply lines (150 kHz to 30 MHz)                                                                                                                  | . 13<br>. 13<br>. 13<br>. 13<br>. 13<br>. 13<br>. 21<br>. 28                 |  |  |  |  |
| 6           | 5.4<br>5.5<br>5.6<br>5.6<br>5.7<br>Tes | DTS Bandwidth / 99% Bandwidth<br>Peak Power Spectral Density<br>Band-edge compliance<br>Maximum unwanted emissions<br>1 Method of measurement (radiated emissions)<br>6.1.1 Test results (radiated emissions)<br>Conducted emissions on power supply lines (150 kHz to 30 MHz)<br>st Equipment used for Tests                                                                                   | . 13<br>. 13<br>. 13<br>. 13<br>. 13<br>. 13<br>. 21<br>. 28<br>. 29         |  |  |  |  |
| 6<br>7      | 5.4<br>5.5<br>5.6<br>5.7<br>Tes<br>Tes | DTS Bandwidth / 99% Bandwidth     Peak Power Spectral Density     Band-edge compliance     Maximum unwanted emissions     .1   Method of measurement (radiated emissions)     .1   Test results (radiated emissions)     6.1.1   Test results (radiated emissions)     Conducted emissions on power supply lines (150 kHz to 30 MHz)     st Equipment used for Tests     st site Validation     | . 13<br>. 13<br>. 13<br>. 13<br>. 13<br>. 21<br>. 28<br>. 29<br>. 30         |  |  |  |  |
| 6<br>7<br>8 | 5.4<br>5.5<br>5.6<br>5.7<br>Tes<br>Re  | DTS Bandwidth / 99% Bandwidth     Peak Power Spectral Density     Band-edge compliance     Maximum unwanted emissions     .1   Method of measurement (radiated emissions)     .1   Test results (radiated emissions)     .6.1.1   Test results (radiated emissions)      Conducted emissions on power supply lines (150 kHz to 30 MHz)     .st Equipment used for Tests     .st site Validation | . 13<br>. 13<br>. 13<br>. 13<br>. 13<br>. 21<br>. 28<br>. 29<br>. 30<br>. 30 |  |  |  |  |



# **1** Identification

### 1.1 Applicant

| Name:                                                          | u-blox AG                    |
|----------------------------------------------------------------|------------------------------|
| Address:                                                       | Zürcherstr. 68, 8800 Thalwil |
| Country:                                                       | Switzerland                  |
| Name for contact purposes:                                     | Mr. Filip KRUZELA            |
| Phone:                                                         | +46 40 630 71 70             |
| Fax:                                                           | N/A                          |
| eMail address:                                                 | Filip.Kruzela@u-blox.com     |
| Applicant represented during the test by the following person: | -                            |

### 1.2 Manufacturer

| Name:                                                             | u-blox AG                    |
|-------------------------------------------------------------------|------------------------------|
| Address:                                                          | Zürcherstr. 68, 8800 Thalwil |
| Country:                                                          | Switzerland                  |
| Name for contact purposes:                                        | Mr. Filip KRUZELA            |
| Phone:                                                            | +46 40 630 71 70             |
| Fax:                                                              | N/A                          |
| eMail address:                                                    | Filip.Kruzela@u-blox.com     |
| Manufacturer represented during the test by the following person: | -                            |

### 1.3 Test Laboratory

The tests were carried out by:

#### PHOENIX TESTLAB GmbH Königswinkel 10 32825 Blomberg Germany

Accredited by Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025 under Reg. No. D-PL-17186-01-05, FCC Test Firm Accreditation designation number DE0004, CAB Identifier DE0003 and ISED# 3469A.



# 1.4 EUT (Equipment under Test)

|                                       | EUT                                                                                                |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|
| Test object: *                        | Stand-alone radio module                                                                           |  |  |  |
| Model series                          | NINA-B3                                                                                            |  |  |  |
| PMN / Model name: *                   | NINA-B306(u-blox PCB trace Antenna)NINA-B316(u-blox PCB trace Antenna)                             |  |  |  |
| FCC ID: *                             | XPYNINAB30 (NINA-B301, NINA-B302, NINA-B306)<br>XPYNINAB31 (NINA-B311, NINA-B312, NINA-B316)       |  |  |  |
| ISED Certification number: *<br>IC: * | 8595A-NINAB30 (NINA-B301, NINA-B302, NINA-B306)<br>8595A-NINAB31 (NINA-B311, NINA-B312, NINA-B316) |  |  |  |
| HVIN: *                               | NINA-B301, NINA-B302, NINA-B306<br>NINA-B311, NINA-B312, NINA-B316                                 |  |  |  |
| HMN: *                                | N/A                                                                                                |  |  |  |
| FVIN: *                               | N/A                                                                                                |  |  |  |
| Serial number: *                      | D82CCF95780330C0500 NINA-B306 (labelled PT2-B306#2)                                                |  |  |  |
| PCB identifier: *                     | N/A                                                                                                |  |  |  |
| Hardware version: *                   | 05                                                                                                 |  |  |  |
| Software version: *                   | Radio test modes nRF5_SDK_15.0.0_a53641a<br>(radio_test_14may.hex)                                 |  |  |  |

\* Declared by the applicant

Note: Phoenix Testlab GmbH does not take samples. The samples used for the tests are provided exclusively by the applicant.



| Bluetooth LE frequencies |    |          |    |          |
|--------------------------|----|----------|----|----------|
| Channel 00               | RX | 2402 MHz | ТХ | 2402 MHz |
| Channel 19               | RX | 2440 MHz | тх | 2440 MHz |
| Channel 39               | RX | 2480 MHz | ТХ | 2480 MHz |

| IEEE 802.15.4 frequencies |    |          |    |          |
|---------------------------|----|----------|----|----------|
| Channel 11                | RX | 2405 MHz | тх | 2405 MHz |
| Channel 19                | RX | 2440 MHz | тх | 2440 MHz |
| Channel 25                | RX | 2475 MHz | тх | 2475 MHz |

| Proprietary frequencies |    |          |    |          |
|-------------------------|----|----------|----|----------|
| Channel 0               | RX | 2402 MHz | тх | 2402 MHz |
| Channel 38              | RX | 2440 MHz | тх | 2440 MHz |
| Channel 78              | RX | 2480 MHz | ТХ | 2480 MHz |

| Ancillary Equipment                                                                                        |                                                 |  |  |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|
| Cables<br>(connected to the EUT):USB 2.0 type A <-> USB 2.0 type B micro, ~0.2 m*1<br>+2 m USB extension*2 |                                                 |  |  |  |
| Fiber optic converter:                                                                                     | Opto USB2.0, MK Messtechnik (PM. No. 482617) *2 |  |  |  |
| Laptop PC:                                                                                                 | Fujitsu Lifebook S751 (PM No. 201036) *2        |  |  |  |

\*<sup>1</sup> Provided by the applicant
\*<sup>2</sup> Provided by the laboratory



# 1.5 Technical Data of Equipment

| General radio module                            |                                      |                               |                    |                              |                    |       |
|-------------------------------------------------|--------------------------------------|-------------------------------|--------------------|------------------------------|--------------------|-------|
| Radio chip                                      | Nordic Sem                           | Nordic Semiconductor nRF52840 |                    |                              |                    |       |
| Antenna type: *                                 | NINA-B306<br>NINA-B316               |                               | (u-blox<br>(u-blox | PCB Antenna)<br>PCB Antenna) |                    |       |
| Antenna name: *                                 | u-blox PCB                           | Antenna                       |                    |                              |                    |       |
| Antenna gain: *                                 | Max +3 dBi                           |                               |                    |                              |                    |       |
| Antenna connector: *                            | NINA-B306 (none)<br>NINA-B316 (none) |                               |                    |                              |                    |       |
| Evaluation board: * EVB-NINA-B3                 |                                      |                               |                    |                              |                    |       |
| Power supply EUT: *                             | DC                                   |                               |                    |                              |                    |       |
| Supply voltage eval board: *                    | U <sub>nom</sub> =                   | 9 V                           | U <sub>min</sub> = | 5 V                          | U <sub>max</sub> = | 12 V  |
| Supply voltage radio module: *                  | U <sub>nom</sub> =                   | 3.3                           | U <sub>min</sub> = | 1.7 V                        | U <sub>max</sub> = | 3.6 V |
| Temperature range: *                            | -40 °C to +85 °C                     |                               |                    |                              |                    |       |
| Lowest / highest internal clock<br>frequency: * | 32.768 kHz to 2480 MHz               |                               |                    |                              |                    |       |

\* Declared by the applicant



| Radio module             |                              |                      |                                                               |                    |                |                    |       |  |
|--------------------------|------------------------------|----------------------|---------------------------------------------------------------|--------------------|----------------|--------------------|-------|--|
| Radio chip*              |                              | Nordic S             | Semicondu                                                     | uctor nR           | F52840         |                    |       |  |
| Power supply EUT: *      |                              |                      |                                                               |                    |                |                    |       |  |
| Supply voltage radio mo  | odule: *                     | U <sub>nom</sub> =   | 3.3                                                           | U <sub>min</sub> = | 1.7 V          | U <sub>max</sub> = | 3.6 V |  |
| Fulfils specification: * |                              |                      | Bluetooth Low Energy; IEEE 802.15.4;<br>Proprietary mode; NFC |                    |                |                    |       |  |
| Bluetooth Low Energy     | Conducted output power: *    | Typical 8            | 8 dBm                                                         |                    |                |                    |       |  |
| Bluetooth Low Energy     | Type of modulation: *        | GFSK (1              | I Mbit/s; 2                                                   | Mbit/s;            | 500 kbit/s;    | 125 kbit/s         | 6)    |  |
| Bluetooth Low Energy     | Operating frequency range: * | 2402 – 2             | 2480 MHz                                                      |                    |                |                    |       |  |
| Bluetooth Low Energy     | Number of channels: *        | 40 (2 Mł             | Hz channe                                                     | el spacin          | g)             |                    |       |  |
| IEEE 802.15.4            | Conducted output power: *    | Typical 8            | 8 dBm                                                         |                    |                |                    |       |  |
| IEEE 802.15.4            | Type of modulation: *        | O-QPSk               | K (250 kbit                                                   | t/s)               |                |                    |       |  |
| IEEE 802.15.4            | Operating frequency range: * | 2405 – 2             | 2475 MHz                                                      |                    |                |                    |       |  |
| IEEE 802.15.4            | Number of channels: *        | 15 (5 Mł             | Hz channe                                                     | el spacin          | g)             |                    |       |  |
| Proprietary mode         | Conducted output power: *    | Typical 8            | 8 dBm                                                         |                    |                |                    |       |  |
| Proprietary mode         | Type of modulation: *        | GFSK (1              | I Mbit/s; 2                                                   | Mbit/s)            |                |                    |       |  |
| Proprietary mode         | Operating frequency range: * | 2402 – 2             | 2480 MHz                                                      |                    |                |                    |       |  |
| Proprietary mode         | Number of channels: *        | 79 (1 Mł             | Hz spacing                                                    | g)                 |                |                    |       |  |
| NFC                      | Conducted output power: *    | No trans             | mitter, rea                                                   | ceiver or          | nly            |                    |       |  |
| NFC                      | Type of modulation: *        | receiver<br>(106 kbi | uses loac<br>t/s)                                             | l modula           | ation to "trar | nsmit" da          | ta    |  |
| NFC                      | Operating frequency range: * | 13.56 M              | Hz                                                            |                    |                |                    |       |  |
| NFC                      | Number of channels: *        | 1                    |                                                               |                    |                |                    |       |  |

\* Declared by the applicant

# 1.6 Dates

| Date of receipt of test sample: | 28.01.2019 |
|---------------------------------|------------|
| Start of test:                  | 29.01.2019 |
| End of test:                    | 02.02.2019 |



# 2 **Operational States**

### 2.1 Description of function of the EUT

NINA-B3 is a small size radio module intended for OEM integration utilizing Bluetooth 5, IEEE 802.15.4, 2.4 GHz proprietary mode and/or NFC. All 2.4 GHz RF-signals share the same RF-path thus it is not possible to transmit e.g. BLE, 802.15.4 and 2.4GH proprietary mode signals simultaneously.

The EUT and its physical boundaries:



- Evaluation board
- EUT (radio module NINA-B3)
- U-blox PCB Antenna

### 2.2 The following states were defined as the operating conditions

The NINA-B3 modules are set into a test mode, in which normal operation is not possible, but the full capabilities of the radio are unlocked and can be used in transmission tests. This mode is typically used during spurious emissions testing and requires special firmware to be enabled.

The applicable test firmware was loaded to the radio module:

Radio test modes

nRF5\_SDK\_15.0.0\_a53641a (radio\_test\_14may.hex)



#### 2.3.1 Operation Modes/Power settings

| Operation mode # | Radio technology | Frequency<br>[MHz] | Channel | Modulation / Mode | Data rate     | Power setting |
|------------------|------------------|--------------------|---------|-------------------|---------------|---------------|
| 1                | BLE              | 2402               | 0       | GFSK              | 1 Mbit/s      | +8 dBm        |
| 2                | IEEE 802.15.4    | 2405               | 11      | O-QPSK            | 250<br>kbit/s | +8 dBm        |
| 3                | Prop             | 2402               | 0       | GFSK              | 1 Mbit/s      | +8 dBm        |

#### 2.3.2 Radio tests

For the radio tests the following settings were used:

A connection to the EUT was established via USB cable.

The USB connection was converted to a serial connection on the EUT.

The following COM port settings were used with "tera term".

| 115200 |
|--------|
| 8 bit  |
| None   |
| 1 bit  |
| None   |
|        |

The below shown interface was used to set the EUT in the applicable test-mode.





# **3** Additional Information

This test report incorporates the limited tests with a further internal antenna (u-blox PCB Trace antenna). It contains just limited test cases with the goal to add a new antenna to an existing filing.

The complete radio test for BLE, IEEE 802.15.4 and proprietary mode are documented in test reports: F181014E7, F181014E8 and F181014E9 by PHOENIX TESTLAB GmbH.

# 4 Overview

| Application                           | Frequency<br>range [MHz] | FCC 47 CFR<br>Part 15 section<br>[2]   | RSS-247 [3]<br>or<br>RSS-Gen, Issue 5 [4] | Status     | Refer<br>page |
|---------------------------------------|--------------------------|----------------------------------------|-------------------------------------------|------------|---------------|
| Maximum Peak<br>Output Power          | 2400.0 - 2483.5          | 15.247 (b) (3), (4)                    | 5.4 (d) [3]                               | Verified*  |               |
| DTS Bandwidth                         | 2400.0 - 2483.5          | 15.247 (a) (2)                         | 5.2 (a) [3]                               | not tested |               |
| Peak Power Spectral<br>Density        | 2400.0 - 2483.5          | 15.247 (e)                             | 5.2 (b) [3]                               | not tested |               |
| Band edge<br>compliance               | 2400.0 - 2483.5          | 15.247 (d)<br>15.205 (a)<br>15.209 (a) | 5.5 [3]<br>8.9 [4],<br>8.10 [4]           | not tested |               |
| Radiated emissions<br>(transmitter)   | 0.009 - 26,500           | 15.247 (d)<br>15.205 (a)<br>15.209 (a) | 5.5 [3]<br>8.9 [4],<br>8.10 [4]           | Passed     | 13 et<br>seq. |
| Conducted emissions<br>on supply line | 0.15 - 30                | 15.207 (a)                             | 8.8 [4]                                   | not tested |               |

\* The Maximum Peak Output Power was verified and compared with the original results.



# 5 Results

### 5.1 Duty cycle

Not tested, see test-reports F181014E7, F181014E8 and F181014E9 by PHOENIX TESTLAB GmbH.

#### 5.2 Maximum peak output power

The Maximum Peak output power was verified and compared with the results from the original filing. The results are similar to the original results within the measurement uncertainty. For detailed results see test-reports F181014E7, F181014E8 and F181014E9 by PHOENIX TESTLAB GmbH

### 5.3 DTS Bandwidth / 99% Bandwidth

Not tested, see test-reports F181014E7, F181014E8 and F181014E9 by PHOENIX TESTLAB GmbH.

### 5.4 Peak Power Spectral Density

Not tested, see test-reports F181014E7, F181014E8 and F181014E9 by PHOENIX TESTLAB GmbH.

### 5.5 Band-edge compliance

Not tested, see test-reports F181014E7, F181014E8 and F181014E9 by PHOENIX TESTLAB GmbH.

### 5.6 Maximum unwanted emissions

#### 5.6.1 Method of measurement (radiated emissions)

The radiated emission measurement is subdivided into five stages.

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 9 kHz to 1 GHz.
- A final measurement carried out on an outdoor test side without reflecting ground plane and a fixed antenna height in the frequency range 9 kHz to 30 MHz.
- A final measurement carried out on an open area test side with reflecting ground plane and various antenna height in the frequency range 30 MHz to 1 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a variable antenna distance and height in the frequency range above 1 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range above 1 GHz.



#### Preliminary measurement (9 kHz to 30 MHz):

In the first stage a preliminary measurement will be performed in a shielded room with a measuring distance of 3 meters. Table top devices will set up on a non-conducting turn device on the height of 1.5m. Floor-standing devices will be placed directly on the turntable/ground plane. The set-up of the Equipment under test will be in accordance to [1].

The frequency range 9 kHz to 30 MHz will be monitored with a spectrum analyzer while the system and its cables will be manipulated to find out the configuration with the maximum emission levels if applicable. The EMI Receiver will be set to MAX Hold mode. The EUT and the measuring antenna will be rotated around their vertical axis to found the maximum emissions.

The resolution bandwidth of the spectrum analyzer will be set to the following values:

| Frequency range   | Resolution bandwidth |
|-------------------|----------------------|
| 9 kHz to 150 kHz  | 200 Hz               |
| 150 kHz to 30 MHz | 10 kHz               |



#### Preliminary measurement procedure:

Pre-scans were performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz.

Pre-scans were performed in the frequency range 30 MHz to 230 MHz and 230 MHz to 1 GHz. The following procedure will be used:

- 1. Monitor the frequency range at horizontal polarization and a EUT azimuth of 0 °.
- 2. Manipulate the system cables within the range to produce the maximum level of emission.
- 3. Rotate the EUT by 360 ° to maximize the detected signals.
- 4. Repeat 1) to 3) with the vertical polarization of the measuring antenna.
- 5. Make a hardcopy of the spectrum.
- 6. Repeat 1) to 5) with the EUT raised by an angle of 0° (45°, 90°) according to 6.6.5.4 in [1].
- 7. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.



#### Final measurement (9 kHz to 30 MHz):

In the second stage a final measurement will be performed on an open area test site with no conducting ground plane in measuring distances of 3 m, 10 m and 30 m. In the case where larger measuring distances is required the results will be extrapolated based on the values measured on the closer distances according to Section 15.31 (f) (2) [2]. The final measurement will be performed with a EMI Receiver set to Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an average detector will be used according Section 15.209 (d) [2].

On the frequencies, which were detected during the preliminary measurements, the final measurement will be performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum value is found.

The resolution bandwidth of the EMI Receiver will be set to the following values:

| Frequency range   | Resolution bandwidth |
|-------------------|----------------------|
| 9 kHz to 150 kHz  | 200 Hz               |
| 150 kHz to 30 MHz | 9 kHz                |



#### Final measurement procedure:

The following procedure will be used:

- 1) Monitor the frequency range with the measuring antenna at vertical orientation parallel to the EUT at an azimuth of 0 °.
- 2) Rotate the EUT by 360 ° to maximize the detected signals and note the azimuth and orientation.
- 3) Rotate the measuring antenna to find the maximum and note the value.
- 4) Rotate the measuring antenna and repeat steps 1) to 3) until the maximum value is found.
- 5) Repeat steps 1) to 4) with the other orthogonal axes of the EUT (if the EUT is a module and might be used in a handheld equipment application).



#### Preliminary measurement (30 MHz to 1 GHz)

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Table top devices will set up on a non-conducting turn device on the height of 1.5m. Floor-standing devices will be placed directly on the turntable/ground plane. The setup of the Equipment under test will be in accordance to [1].

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °. This measurement is repeated after raising the EUT in 30° steps according 6.6.5.4 in [1].

| Frequency range   | Resolution bandwidth |
|-------------------|----------------------|
| 30 MHz to 230 MHz | 100 kHz              |
| 230 MHz to 1 GHz  | 100 kHz              |





#### Procedure preliminary measurement:

Pre-scans were performed in the frequency range 30 MHz to 230 MHz and 230 MHz to 1 GHz. The following procedure will be used:

- 8. Monitor the frequency range at horizontal polarization and a EUT azimuth of 0 °.
- 9. Manipulate the system cables within the range to produce the maximum level of emission.
- 10. Rotate the EUT by 360 ° to maximize the detected signals.
- 11. Repeat 1) to 3) with the vertical polarization of the measuring antenna.
- 12. Make a hardcopy of the spectrum.
- 13. Repeat 1) to 5) with the EUT raised by an angle of 0° (45°, 90°) according to 6.6.5.4 in [1].
- 14. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.

#### Final measurement (30 MHz to 1 GHz)

A final measurement on an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of

0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarization and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.





#### Procedure final measurement:

The following procedure will be used:

- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45 ° and repeat 2) until an azimuth of 337 ° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
- 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
- 8) Measure while moving the turntable +/- 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP and AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).

#### Preliminary and final measurement (1 GHz to 40 GHz)

This measurement will be performed in a fully anechoic chamber. Table top devices will set up on a nonconducting turn device on the height of 1.5m. The set-up of the Equipment under test will be in accordance to [1].

#### Preliminary measurement (1 GHz to 40 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The spectrum analyzer set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °. This measurement is repeated after raising the EUT in 30° steps according 6.6.5.4 in [1].

| Frequency range         | Resolution bandwidth |
|-------------------------|----------------------|
| 1 GHz to 4 GHz          | 100 kHz              |
| 4 GHz to 12 GHz         | 100 kHz              |
| 12 GHz to 18 GHz        | 100 kHz              |
| 18 GHz to 25 / 26.5 GHz | 100 kHz              |
| 26.5 GHz to 40 GHz      | 100 kHz              |





#### Procedure preliminary measurement:

Prescans were performed in the frequency range 1 to 40 GHz. The following procedure will be used:

- 1. Monitor the frequency range at horizontal polarization and a EUT azimuth of 0 °.
- 2. Rotate the EUT by 360° to maximize the detected signals.
- 3. Repeat 1) to 2) with the vertical polarization of the measuring antenna.
- 4. Make a hardcopy of the spectrum.
- 5. Repeat 1) to 4) with the EUT raised by an angle of 30° (60°, 90°, 120° and 150°) according to 6.6.5.4 in [1].
- 6. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 7. The measurement antenna polarization, with the according EUT position (Turntable and Turn device) which produces the highest emission for each frequency will be used for the final measurement. The six closest values to the applicable limit will be used for the final measurement.

#### Final measurement (1 GHz to 40 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed by rotating the turntable through 0 to 360° in the worst-case EUT orientation which was obtained during the preliminary measurements.

| Frequency range         | Resolution bandwidth |
|-------------------------|----------------------|
| 1 GHz to 4 GHz          | 1 MHz                |
| 4 GHz to 12 GHz         | 1 MHz                |
| 12 GHz to 18 GHz        | 1 MHz                |
| 18 GHz to 25 / 26.5 GHz | 1 MHz                |
| 26.5 GHz to 40 GHz      | 1 MHz                |





#### Procedure of measurement:

The measurements were performed in the frequency ranges 1 GHz to 4 GHz, 4 GHz to 12 GHz, 12 GHz to 18 GHz, 18 GHz to 25 /26.5 GHz and 26.5 GHz to 40 GHz.

The following procedure will be used:

- 1) Set the turntable and the turn device to obtain the worst-case emission for the first frequency identified in the preliminary measurements.
- 2) Set the measurement antenna polarization to the orientation with the highest emission for the first frequency identified in the preliminary measurements.
- 3) Set the spectrum analyzer to EMI mode with peak and average detector activated.
- 4) Rotate the turntable from 0° to 360° to find the TT Pos. that produces the highest emissions.
- 5) Note the highest displayed peak and average values
- 6) Repeat the steps 1) to 5) for each frequency detected during the preliminary measurements.



#### 5.6.1.1 Test results (radiated emissions) 5.6.1.1.1 Preliminary radiated emission measurement 5.6.1.1.1 Emissions below 1 GHz

| Ambient temperature | 21.5 °C | Date      | 29.01.2019 |
|---------------------|---------|-----------|------------|
| Relative humidity   | 26 %    | Tested by | B. Rohde   |

| Position of EUT: | The EUT was set-up on an EUT turn device of a height of 1.5 m. The distance between EUT and antenna was 3 m.                                                                 |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cable guide:     | For detail information of test set-up and the cable guide refer to the pictures in Test setup Photo annex.                                                                   |
| Test record:     | All results are shown in the following.                                                                                                                                      |
| Supply voltage:  | During all measurements the host of the EUT was powered with 5 V DC via an USB cable.                                                                                        |
| Remark:          | No measurement in the frequency range 9 kHz - 30 MHz was performed. No change in the spectrum from 30 – 1000 MHz compared to test-reports F181014E7, F181014E8 and F181014E9 |

# Operation mode 1: Spurious emissions from 30 MHz – 1 GHz (Preliminary plot)



Test equipment (please refer to chapter 6 for details) 1 - 3, 5, 9 - 12, 14



### 5.6.1.1.1.2 Emissions above 1 GHz

|                                                                                                                               |                                                                                                            |         | - |           |            |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------|---|-----------|------------|
| Ambient temperature                                                                                                           |                                                                                                            | 21.5 °C |   | Date      | 29.01.2019 |
| Relative humidity                                                                                                             |                                                                                                            | 26 %    |   | Tested by | B.Rohde    |
| Position of EUT: The EUT was set-up on an EUT turn device of a height of 1.5 m. The distance between EUT and antenna was 3 m. |                                                                                                            |         |   |           | distance   |
| Cable guide:                                                                                                                  | For detail information of test set-up and the cable guide refer to the pictures in Test setup Photo annex. |         |   |           |            |
| Test record:                                                                                                                  | All results are shown in the following.                                                                    |         |   |           |            |
| Supply voltage:                                                                                                               | During all measurements the host of the EUT was powered with 5 V DC via an USB cable.                      |         |   |           |            |
| Remark:                                                                                                                       |                                                                                                            |         |   |           |            |

Operation mode 1: Spurious emissions from 1 - 4 GHz: (Preliminary plot)







Operation mode 1: Spurious emissions from 4 - 12 GHz: (Preliminary plot)

Operation mode 1: Spurious emissions from 12 - 18 GHz: (Preliminary plot)







All modes: Spurious emissions from 18 – 26.5 GHz: (Preliminary, no significant emission, no final measurement)

Test equipment (please refer to chapter 6 for details) 1 - 9, 11, 13 - 21



# 5.6.1.1.2 Final radiated emission measurement (9 kHz to 1 GHz)

No final radiated emission measurement done, no change in the spectrum from 9 kHz – 1000 MHz compared to test-reports F181014E7, F181014E8 and F181014E9

### 5.6.1.1.3 Final radiated emission measurement (1 GHz to 25 GHz)

| Ambient temperature | 21.5 °C | Date      | 29.01.2019 |
|---------------------|---------|-----------|------------|
|                     |         |           | 02.02.2019 |
| Relative humidity   | 26 %    | Tested by | B. Rohde   |

| Position of EUT:        | The EUT was set-up on an EUT turn device of a height of 1.5 m. The distance between EUT and antenna was 3 m. |
|-------------------------|--------------------------------------------------------------------------------------------------------------|
| Cable guide:            | For detail information of test set-up and the cable guide refer to the pictures in test setup photos.        |
| Test record:            | All results are shown in the following.                                                                      |
| Supply voltage:         | During all measurements the host of the EUT was powered with 5 V DC via an USB cable.                        |
| Resolution bandwidth:   | For all measurements a resolution bandwidth of 1 MHz was used.                                               |
| Additional information: | For simplification all values were compared to the restricted band limits.                                   |



### Operation mode 1

| Spurious Emissions (Operation mode 1) 1 – 25 GHz |                                                                             |             |          |        |     |         |                |            |        |
|--------------------------------------------------|-----------------------------------------------------------------------------|-------------|----------|--------|-----|---------|----------------|------------|--------|
|                                                  | Duty cycle correction factor of 0.25 dB was applied for the Average reading |             |          |        |     |         |                |            |        |
| Frequency                                        | Max Peak                                                                    | Average     | Limit    | Margin | Pol | Azimuth | Elevation      | Correction | Result |
| [MHz]                                            | [dBµV/m]                                                                    | [dBµV/m]    | [dBµV/m] | dB     |     | [°]     | [°]            | [dB]       |        |
| 4803.511111                                      | 47.1                                                                        |             | 74       | 26.9   | V   | 249     | 120            | -2.0       | Passed |
| 4803.511111                                      |                                                                             | 37.4        | 54       | 16.6   | V   | 249     | 120            | -1.8       | Passed |
| 4804.488889                                      | 46.2                                                                        |             | 74       | 27.8   | V   | 301     | 0              | -2.0       | Passed |
| 4804.488889                                      |                                                                             | 36.0        | 54       | 18.0   | V   | 301     | 0              | -1.8       | Passed |
| 7205.288889                                      | 51.9                                                                        |             | 74       | 22.1   | V   | 283     | 30             | 4.0        | Passed |
| 7205.288889                                      |                                                                             | 42.2        | 54       | 11.8   | V   | 283     | 30             | 4.3        | Passed |
| 7206.666667                                      | 53.2                                                                        |             | 74       | 20.8   | V   | 305     | 30             | 4.0        | Passed |
| 7206.666667                                      |                                                                             | 44.5        | 54       | 9.5    | V   | 305     | 30             | 4.3        | Passed |
| 9607.111111                                      | 55.5                                                                        |             | 74       | 18.5   | V   | 277     | 30             | 8.0        | Passed |
| 9607.111111                                      |                                                                             | 44.9        | 54       | 9.1    | V   | 277     | 30             | 8.3        | Passed |
| 9609.111111                                      | 54.9                                                                        |             | 74       | 19.1   | V   | 291     | 30             | 7.0        | Passed |
| 9609.111111                                      |                                                                             | 44.9        | 54       | 9.1    | V   | 291     | 30             | 7.3        | Passed |
| 12008.940000                                     | 51.7                                                                        |             | 74       | 22.3   | V   | 277     | 120            | 12.0       | Passed |
| 12008.940000                                     |                                                                             | 42.6        | 54       | 11.4   | V   | 277     | 120            | 12.3       | Passed |
| 12011.400000                                     | 51.6                                                                        |             | 74       | 22.4   | V   | 293     | 60             | 12.0       | Passed |
| 12011.400000                                     |                                                                             | 41.9        | 54       | 12.1   | V   | 293     | 60             | 12.3       | Passed |
| Me                                               | asurement                                                                   | uncertainty |          |        |     | +2      | .2 dB / -3.6 d | IB         |        |



### **Operation mode 2**

| Spurious Emissions (Operation mode 2) 1 – 25 GHz                         |           |             |          |        |     |         |               |            |        |
|--------------------------------------------------------------------------|-----------|-------------|----------|--------|-----|---------|---------------|------------|--------|
| Duty cycle correction factor of 0 dB was applied for the Average reading |           |             |          |        |     |         |               |            |        |
| Frequency                                                                | Max Peak  | Average     | Limit    | Margin | Pol | Azimuth | Elevation     | Correction | Result |
| [MHz]                                                                    | [dBµV/m]  | [dBµV/m]    | [dBµV/m] | dB     |     | [°]     | [°]           | [dB]       |        |
| 9618.100000                                                              | 55.2      |             | 74       | 18.8   | V   | 320     | 30            | 7.0        | Passed |
| 9618.100000                                                              |           | 45.5        | 54       | 8.5    | V   | 320     | 30            | 7.0        | Passed |
| 9620.100000                                                              | 53.5      |             | 74       | 20.5   | V   | 278     | 30            | 7.0        | Passed |
| 9620.100000                                                              |           | 37.9        | 54       | 16.1   | V   | 278     | 30            | 7.0        | Passed |
| 9622.100000                                                              | 55.5      |             | 74       | 18.5   | V   | 282     | 30            | 7.0        | Passed |
| 9622.100000                                                              |           | 45.6        | 54       | 8.4    | V   | 282     | 30            | 7.0        | Passed |
| 12022.850000                                                             | 51.2      |             | 74       | 22.8   | V   | 296     | 120           | 12.1       | Passed |
| 12022.850000                                                             |           | 42.6        | 54       | 11.4   | V   | 296     | 120           | 12.1       | Passed |
| 12025.200000                                                             | 49.6      |             | 74       | 24.4   | V   | 286     | 150           | 12.1       | Passed |
| 12025.200000                                                             |           | 31.7        | 54       | 22.3   | V   | 286     | 150           | 12.1       | Passed |
| 12027.450000                                                             | 50.6      |             | 74       | 23.4   | V   | 295     | 60            | 12.1       | Passed |
| 12027.450000                                                             |           | 41.9        | 54       | 12.1   | V   | 295     | 60            | 12.1       | Passed |
| Me                                                                       | asurement | uncertainty |          |        |     | +2      | 2 dB / -3.6 c | IB         |        |



#### **Operation mode 3**

|                         | Spurious Emissions (Operation mode 3) 1 – 25 GHz |              |                |            |       |               |               |            |        |
|-------------------------|--------------------------------------------------|--------------|----------------|------------|-------|---------------|---------------|------------|--------|
|                         | Duty cy                                          | cle correcti | on factor of C | ).26 dB wa | as ap | plied for the | e Average rea | ading      |        |
| Frequency               | Max Peak                                         | Average      | Limit          | Margin     | Pol   | Azimuth       | Elevation     | Correction | Result |
| [MHz]                   | [dBµV/m]                                         | [dBµV/m]     | [dBµV/m]       | dB         |       | [°]           | [°]           | [dB]       |        |
| 9607.500000             | 55.3                                             |              | 74             | 18.7       | V     | 308           | 30            | 8.0        | Passed |
| 9607.500000             |                                                  | 45.8         | 54             | 8.2        | V     | 308           | 30            | 8.3        | Passed |
| 9608.800000             | 55.1                                             |              | 74             | 18.9       | V     | 319           | 30            | 7.0        | Passed |
| 9608.800000             |                                                  | 45.9         | 54             | 8.1        | V     | 319           | 30            | 7.3        | Passed |
| 12009.250000            | 52.2                                             |              | 74             | 21.8       | V     | 300           | 30            | 12.1       | Passed |
| 12009.250000            |                                                  | 42.8         | 54             | 11.2       | V     | 300           | 30            | 12.4       | Passed |
| 12010.900000            | 52.1                                             |              | 74             | 21.9       | V     | 282           | 120           | 12.1       | Passed |
| 12010.900000            |                                                  | 43.2         | 54             | 10.8       | V     | 282           | 120           | 12.4       | Passed |
| Measurement uncertainty |                                                  |              |                |            |       | +2            | 2 dB / -3.6 c | IB         |        |

| Test equipment (please refer to chapter 6 for details) |  |
|--------------------------------------------------------|--|
| 1 - 9, 11, 13 - 21                                     |  |

# 5.7 Conducted emissions on power supply lines (150 kHz to 30 MHz)

Not tested, see test-reports F181014E7, F181014E8 and F181014E9 by PHOENIX TESTLAB GmbH.



# 6 Test Equipment used for Tests

| No. | Test equipment                      | Туре                   | Manufacturer                   | Serial No.                            | PM. No. | Cal. Date         | Cal Due   |
|-----|-------------------------------------|------------------------|--------------------------------|---------------------------------------|---------|-------------------|-----------|
| 1   | Antenna mast                        | AS615P                 | Deisel                         | 615/310                               | 480187  | Calibration not   | necessary |
| 2   | Fully anechoic chamber<br>M20       | B83117-E2439-<br>T232  | Albatross Projects             | 103                                   | 480303  | Calibration not   | necessary |
| 3   | Turntable                           | DS420 HE               | Deisel                         | 420/620/00                            | 480315  | Calibration not   | necessary |
| 4   | RF-cable No.3                       | Sucoflex 106B          | Suhner                         | 0563/6B / Kabel<br>3                  | 480670  | Calibration not   | necessary |
| 5   | Multiple Control Unit               | MCU                    | Maturo GmbH                    | MCU/043/97110<br>7                    | 480832  | Calibration not   | necessary |
| 6   | Antenna (Log.Per.)                  | HL050                  | Rohde & Schwarz                | 100438                                | 481170  | 09.10.2017        | 10.2020   |
| 7   | RF-Cable No. 40                     | Sucoflex 106B          | Suhner                         | 0708/6B / Kabel<br>40                 | 481330  | Calibration not   | necessary |
| 8   | HF-Cable                            | Sucoflex 104           | Huber+Suhner                   | 517406                                | 482391  | Calibration not   | necessary |
| 9   | EMI Receiver /<br>Spectrum Analyzer | ESW44                  | Rohde & Schwarz                | 101635                                | 482467  | 22.062017         | 06.2019   |
| 10  | Antenna (Bilog)                     | CBL6112B               | Schaffner EMV<br>GmbH (-Chase) | 2688                                  | 480328  | 19.06.2017        | 06.2020   |
| 11  | Software                            | EMC32                  | Rohde & Schwarz                | 481800 Calibration not neces          |         | necessary         |           |
| 12  | RF-cable No.36                      | Sucoflex 106B          | Suhner                         | 0587/6B / Kabel<br>36                 | 480865  | Calibration not   | necessary |
| 13  | HF-Cable                            | Sucoflex 104           | Huber+Suhner                   | 517402 482392 Calibration not necessa |         | necessary         |           |
| 14  | Positioners                         | TDF 1.5- 10Kg          | Maturo                         | 15920215                              | 482034  | Calibration not   | necessary |
| 15  | standard gain horn<br>antenna       | 18240-20               | Flann Microwave                | 483                                   | 480294  | Calibration not i | necessary |
| 16  | standard gain horn<br>antenna       | 20240-20               | Flann Microwave                | 411                                   | 480297  | Calibration not   | necessary |
| 17  | Microwave cable 2m                  | Insulated Wire<br>Inc. | Insulated Wire                 | KPS-1533-800-<br>KPS                  | 480302  | Calibration not   | necessary |
| 18  | Preamplifier 100 MHz -<br>13 GHz    | JS3-00101200-<br>23-5A | MITEQ Hauppauge<br>N.Y.        | 681851                                | 480337  | 14.03.2018        | 03.2020   |
| 19  | Preamplifier 18 GHz -<br>26 GHz     | JS4-18002600-<br>20-5A | MITEQ Hauppauge<br>N.Y.        | 658697                                | 480342  | 14.03.2018        | 03.2020   |
| 20  | Preamplifier 12 GHz -<br>18 GHz     | JS3-12001800-<br>16-5A | MITEQ Hauppauge<br>N.Y.        | 571667                                | 480343  | 14.03.2018        | 03.2020   |
| 21  | High pass filter                    | WHKX4.0/18G-<br>8SS    | Wainwright<br>Instruments GmbH | 1                                     | 480587  | Calibration not   | necessary |



# 7 Test site Validation

| Test equipment             | PM. No. | Frequency range | Type of validation | According to        | Val. Date  | Val Due    |
|----------------------------|---------|-----------------|--------------------|---------------------|------------|------------|
| OATS M6                    | 480085  | 30 – 1000 MHz   | NSA                | ANSI C63.4-2014     | 25.10.2018 | 24.10.2020 |
| Fully anechoic chamber M20 | 480303  | 1 -18 GHz       | SVSWR              | CISPR 16-1-4 Amd. 1 | 13.07.2018 | 12.07.2020 |
| Shielded chamber M4        | 480088  | 9 kHz – 30 MHz  | GND-Plane          | ANSI C63.4-2014     | 06.11.2018 | 05.11.2020 |

# 8 Report History

| Report Number | Date       | Comment             |
|---------------|------------|---------------------|
| F190149E3     | 18.03.2019 | Initial Test Report |
|               |            |                     |
|               |            |                     |
|               |            |                     |

# 9 List of Annexes

#### Annex B External Photos

6 pages

4 pages