

FCC Measurement/Technical Report on

WLAN and Bluetooth Module MAYA-W166

FCC ID: XPYMAYAW166 IC: 8595A-MAYAW166

Test Report Reference: MDE_UBLOX_2110_FCC_03

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

 Flayers GmbH

 Borsigstraße 11

 40880 Ratingen, Germany

 T +49 (0) 2102 749 0

 F +49 (0) 2102 749 350

Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	14
3	Administrative Data	15
3.1	Testing Laboratory	15
3.2	Project Data	15
3.3	Applicant Data	15
3.4	Manufacturer Data	16
4	Test object Data	17
4.1	General EUT Description	17
4.2	EUT Main components	18
4.3	Ancillary Equipment	19
4.4	Auxiliary Equipment	19
4.5	EUT Setups	20
4.6	Operating Modes / Test Channels	20
4.7	Product labelling	25
5	Test Results	26
5.1	Conducted Emissions at AC Mains	26
5.2	Occupied Bandwidth (6 dB)	29
5.3	Occupied Bandwidth (99%)	36
5.4	Peak Power Output	43
5.5 5.6	Spurious RF Conducted Emissions	49 58
5.7	Transmitter Spurious Radiated Emissions Band Edge Compliance Conducted	112
5.8	Band Edge Compliance Radiated	125
5.9	Power Density	148
6	Test Equipment	156
7	Antenna Factors, Cable Loss and Sample Calculations	160
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	160
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	161
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	162
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	163
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	164
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	165
8	Measurement Uncertainties	166
9	Photo Report	167

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-20 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10-2013 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.207			
Conducted Emissions at AC Mains The measurement was performed accordin	ng to ANSI C63.1	.0 6.2	Final Re	esult
OP-Mode	Setup	Date	FCC	IC
Operating mode, Connection to AC mains	occup	Dute		
worst case, via ancillary/auxiliary equipment	S03_166_AE01	2022-06-22	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a)	(2)		
Occupied Bandwidth (6 dB)				
The measurement was performed according the measurement was performed according the measurement of the measuremento of the meas	ng to ANSI C63.1	.0 11.8.1	Final Re	esult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency	S01_166_AB01	2022-07-07	Decod	Passed
Bluetooth BDR, high	S01_166_AB01	2022-07-07	Passed Passed	Passed
Bluetooth BDR, low Bluetooth BDR, mid	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 2, high	S01_100_AB01 S01 166 AB01	2022-07-07	Passed	Passed
Bluetooth EDR 2, low	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 2, mid	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 3, high	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 3, low	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 3, mid	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth LE 1 Mbps, high	S01 166 AB01	2022-06-29	Passed	Passed
Bluetooth LE 1 Mbps, low	 S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 1 Mbps, mid	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 2 Mbps, high	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 2 Mbps, low	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 2 Mbps, mid	S01_166_AB01	2022-06-29	Passed	Passed
WLAN b, high	S01_166_AB01	2022-06-27	Passed	Passed
WLAN b, low	S01_166_AB01	2022-06-27	Passed	Passed
WLAN b, mid	S01_166_AB01	2022-06-27	Passed	Passed
WLAN g, high	S01_166_AB01	2022-06-27	Passed	Passed
WLAN g, low	S01_166_AB01	2022-06-27	Passed	Passed
WLAN g, mid	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 20 MHz, high	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 20 MHz, low	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 20 MHz, mid	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 40 MHz, high	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 40 MHz, low	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 40 MHz, mid	S01_166_AB01	2022-06-27	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

IC RSS-Gen & IC TRC-43; Ch. 6.7 & Ch. 8

Occupied Bandwidth (99%) The measurement was performed according to ANSI C63.10 6.9.3 **Final Result**

OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency				
Bluetooth BDR, high	S01_166_AB01	2022-07-07	Performed	Performed
Bluetooth BDR, low	S01_166_AB01	2022-07-07	Performed	Performed
Bluetooth BDR, mid	S01_166_AB01	2022-07-07	Performed	Performed
Bluetooth EDR 2, high	S01_166_AB01	2022-07-07	Performed	Performed
Bluetooth EDR 2, low	S01_166_AB01	2022-07-07	Performed	Performed
Bluetooth EDR 2, mid	S01_166_AB01	2022-07-07	Performed	Performed
Bluetooth EDR 3, high	S01_166_AB01	2022-07-07	Performed	Performed
Bluetooth EDR 3, low	S01_166_AB01	2022-07-07	Performed	Performed
Bluetooth EDR 3, mid	S01_166_AB01	2022-07-07	Performed	Performed
Bluetooth LE 1 Mbps, high	S01_166_AB01	2022-06-29	Performed	Performed
Bluetooth LE 1 Mbps, low	S01_166_AB01	2022-06-29	Performed	Performed
Bluetooth LE 1 Mbps, mid	S01_166_AB01	2022-06-29	Performed	Performed
Bluetooth LE 2 Mbps, high	S01_166_AB01	2022-06-29	Performed	Performed
Bluetooth LE 2 Mbps, low	S01_166_AB01	2022-06-29	Performed	Performed
Bluetooth LE 2 Mbps, mid	S01_166_AB01	2022-06-29	Performed	Performed
WLAN b, high	S01_166_AB01	2022-06-27	Performed	Performed
WLAN b, low	S01_166_AB01	2022-06-27	Performed	Performed
WLAN b, mid	S01_166_AB01	2022-06-27	Performed	Performed
WLAN g, high	S01_166_AB01	2022-06-27	Performed	Performed
WLAN g, low	S01_166_AB01	2022-06-27	Performed	Performed
WLAN g, mid	S01_166_AB01	2022-06-27	Performed	Performed
WLAN n 20 MHz, high	S01_166_AB01	2022-06-27	Performed	Performed
WLAN n 20 MHz, low	S01_166_AB01	2022-06-27	Performed	Performed
WLAN n 20 MHz, mid	S01_166_AB01	2022-06-27	Performed	Performed
WLAN n 40 MHz, high	S01_166_AB01	2022-06-27	Performed	Performed
WLAN n 40 MHz, low	S01_166_AB01	2022-06-27	Performed	Performed
WLAN n 40 MHz, mid	S01_166_AB01	2022-06-27	Performed	Performed

47 CFR CHAPTER I FCC PART 15 § 15.247 (b) (3) Subpart C §15.247

Subpart C §15.247					
Peak Power Output					
The measurement was performed accordi	Final Re	sult			
11.9.1.1, 11.9.2.3.2					
OD Mada	Satur	Data	FCC	IC	
OP-Mode Radio Technology, Operating Frequency,	Setup	Date	FUL	IC	
Measurement method					
Bluetooth BDR, high, conducted	S01_166_AB01	2022-07-07	Passed	Passed	
Bluetooth BDR, low, conducted	S01_166_AB01	2022-07-07	Passed	Passed	
Bluetooth BDR, mid, conducted	S01_166_AB01	2022-07-07	Passed	Passed	
Bluetooth EDR 2, high, conducted	S01_166_AB01	2022-07-07	Passed	Passed	
Bluetooth EDR 2, low, conducted	S01_166_AB01	2022-07-07	Passed	Passed	
Bluetooth EDR 2, mid, conducted	S01_166_AB01	2022-07-07	Passed	Passed	
Bluetooth EDR 3, high, conducted	S01_166_AB01	2022-07-07	Passed	Passed	
Bluetooth EDR 3, low, conducted	S01_166_AB01	2022-07-07	Passed	Passed	
Bluetooth EDR 3, mid, conducted	S01_166_AB01	2022-07-07	Passed	Passed	
Bluetooth LE 1 Mbps, high, conducted	S01_166_AB01	2022-06-29	Passed	Passed	
Bluetooth LE 1 Mbps, low, conducted	S01_166_AB01	2022-06-29	Passed	Passed	
Bluetooth LE 1 Mbps, mid, conducted	S01_166_AB01	2022-06-29	Passed	Passed	
Bluetooth LE 2 Mbps, high, conducted	S01_166_AB01	2022-06-29	Passed	Passed	
Bluetooth LE 2 Mbps, low, conducted	S01_166_AB01	2022-06-29	Passed	Passed	
Bluetooth LE 2 Mbps, mid, conducted	S01_166_AB01	2022-06-29	Passed	Passed	
WLAN b, high, conducted	S01_166_AB01	2022-06-27	Passed	Passed	
WLAN b, low, conducted	S01_166_AB01	2022-06-29	Passed	Passed	
WLAN b, mid, conducted	S01_166_AB01	2022-06-27	Passed	Passed	
WLAN g, high, conducted	S01_166_AB01	2022-06-27	Passed	Passed	
WLAN g, low, conducted	S01_166_AB01	2022-06-27	Passed	Passed	
WLAN g, mid, conducted	S01_166_AB01	2022-06-27	Passed	Passed	
WLAN n 20 MHz, high, conducted	S01_166_AB01	2022-06-27	Passed	Passed	
WLAN n 20 MHz, low, conducted	S01_166_AB01	2022-06-27	Passed	Passed	
WLAN n 20 MHz, mid, conducted	S01_166_AB01	2022-06-27	Passed	Passed	
WLAN n 40 MHz, high, conducted	S01_166_AB01	2022-06-27	Passed	Passed	
WLAN n 40 MHz, low, conducted	S01_166_AB01	2022-06-27	Passed	Passed	
WLAN n 40 MHz, mid, conducted	S01_166_AB01	2022-06-27	Passed	Passed	

Final Result

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (d)

Spurious RF Conducted Emissions The measurement was performed according to ANSI C63.10 11.11

OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency	•			
Bluetooth BDR, high	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth BDR, low	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth BDR, mid	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 2, high	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 2, low	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 2, mid	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 3, high	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 3, low	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 3, mid	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth LE 1 Mbps, high	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 1 Mbps, low	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth LE 1 Mbps, mid	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 2 Mbps, high	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 2 Mbps, low	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 2 Mbps, mid	S01_166_AB01	2022-06-29	Passed	Passed
WLAN b, high	S01_166_AB01	2022-07-01	Passed	Passed
WLAN b, low	S01_166_AB01	2022-07-01	Passed	Passed
WLAN b, mid	S01_166_AB01	2022-07-01	Passed	Passed
WLAN g, high	S01_166_AB01	2022-07-01	Passed	Passed
WLAN g, low	S01_166_AB01	2022-07-01	Passed	Passed
WLAN g, mid	S01_166_AB01	2022-07-01	Passed	Passed
WLAN n 20 MHz, high	S01_166_AB01	2022-07-01	Passed	Passed
WLAN n 20 MHz, low	S01_166_AB01	2022-07-01	Passed	Passed
WLAN n 20 MHz, mid	S01_166_AB01	2022-07-01	Passed	Passed
WLAN n 40 MHz, high	S01_166_AB01	2022-07-01	Passed	Passed
WLAN n 40 MHz, low	S01_166_AB01	2022-07-01	Passed	Passed
WLAN n 40 MHz, mid	S01_166_AB01	2022-07-01	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (d)

Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C63.10 Final Result				
6.4, 6.5, 6.6.5				
OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	Date	FCC	IC
Bluetooth BDR, high, 1 GHz - 26 GHz Remark: At final output power	S01_166_AB01	2022-06-28	Passed	Passed
Bluetooth BDR, high, 1 GHz - 26 GHz Remark: At final output power	S02_166_AB01	2022-07-15	Passed	Passed
Bluetooth BDR, high, 1 GHz - 26 GHz Remark: At final output power	S02_166_AE01	2022-07-04	Passed	Passed
Bluetooth BDR, high, 30 MHz - 1 GHz Remark: At final output power	S02_166_AB01	2022-07-21	Passed	Passed
Bluetooth BDR, high, 30 MHz - 1 GHz Remark: At initial output power	S02_166_AE01	2022-06-23	Passed	Passed
Bluetooth BDR, high, 30 MHz - 1 GHz Remark: At final output power	S01_166_AB01	2022-07-29	Passed	Passed
Bluetooth BDR, high, 9 kHz - 30 MHz Remark: At final output power	S02_166_AB01	2022-07-21	Passed	Passed
Bluetooth BDR, low, 1 GHz - 26 GHz Remark: At initial output power	S01_166_AB01	2022-06-28	Passed	Passed
Bluetooth BDR, low, 1 GHz - 26 GHz Remark: At initial output power	S02_166_AE01	2022-06-28	Passed	Passed
Bluetooth BDR, low, 30 MHz - 1 GHz Remark: At initial output power	S02_166_AE01	2022-06-23	Passed	Passed
Bluetooth BDR, low, 30 MHz - 1 GHz Remark: At final output power	S01_166_AB01	2022-07-29	Passed	Passed
Bluetooth BDR, mid, 1 GHz - 26 GHz Remark: At final output power	S01_166_AB01	2022-06-28	Passed	Passed
Bluetooth BDR, mid, 1 GHz - 26 GHz Remark: At initial output power	S02_166_AE01	2022-06-28	Passed	Passed
Bluetooth BDR, mid, 30 MHz - 1 GHz Remark: At initial output power	S02_166_AE01	2022-06-23	Passed	Passed
Bluetooth BDR, mid, 30 MHz - 1 GHz Remark: At initial output power	S01_166_AB01	2022-07-29	Passed	Passed
Bluetooth BDR, mid, 9 kHz - 30 MHz Remark: At initial output power	S02_166_AE01	2022-06-23	Passed	Passed
Bluetooth BDR, mid, 9 kHz - 30 MHz Remark: At final output power	S01_166_AB01	2022-07-29	Passed	Passed
Bluetooth EDR 2, high, 1 GHz - 26 GHz Remark: At final output power	S01_166_AB01	2022-06-28	Passed	Passed
Bluetooth EDR 2, low, 1 GHz - 26 GHz Remark: At final output power	S01_166_AB01	2022-06-28	Passed	Passed
Bluetooth EDR 2, mid, 1 GHz - 26 GHz Remark: At final output power	S01_166_AB01	2022-06-28	Passed	Passed
Bluetooth EDR 3, high, 1 GHz - 26 GHz Remark: At final output power	S01_166_AB01	2022-06-28	Passed	Passed
Bluetooth EDR 3, low, 1 GHz - 26 GHz Remark: At final output power	S01_166_AB01	2022-06-28	Passed	Passed
Bluetooth EDR 3, mid, 1 GHz - 26 GHz Remark: At final output power	S01_166_AB01	2022-06-28	Passed	Passed
Bluetooth LE 1 Mbps, high, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (d)

Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C63.10 6.4, 6.5, 6.6.5

Final Result

IC

Passed

FCC

Passed

OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	Date
Bluetooth LE 1 Mbps, low, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
Bluetooth LE 1 Mbps, mid, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
Bluetooth LE 2 Mbps, high, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
Bluetooth LE 2 Mbps, low, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
Bluetooth LE 2 Mbps, mid, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN b, high, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN b, high, 1 GHz - 26 GHz	S02_166_AB01	2022-06-25
WLAN b, high, 1 GHz - 26 GHz	S02_166_AF01	2022-06-25
WLAN b, high, 30 MHz - 1 GHz	S02_166_AB01	2022-07-21
WLAN b, high, 30 MHz - 1 GHz	S02_166_AE01	2022-06-23
WLAN b, high, 30 MHz - 1 GHz	S01_166_AB01	2022-07-29
WLAN b, low, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN b, low, 1 GHz - 26 GHz	S02_166_AF01	2022-06-25
WLAN b, low, 30 MHz - 1 GHz	S02_166_AE01	2022-06-23
WLAN b, low, 30 MHz - 1 GHz	S01_166_AB01	2022-07-29
WLAN b, mid, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN b, mid, 1 GHz - 26 GHz	S02_166_AF01	2022-06-25
WLAN b, mid, 30 MHz - 1 GHz	S02_166_AE01	2022-06-23
WLAN b, mid, 30 MHz - 1 GHz	S01_166_AB01	2022-07-29
WLAN b, mid, 9 kHz - 30 MHz	S02_166_AB01	2022-07-21
WLAN b, mid, 9 kHz - 30 MHz	S02_166_AE01	2022-06-23
WLAN b, mid, 9 kHz - 30 MHz	S01_166_AB01	2022-07-29
WLAN g, high, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN g, low, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN g, mid, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN n 20 MHz, high, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN n 20 MHz, low, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN n 20 MHz, mid, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN n 40 MHz, high, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28
WLAN n 40 MHz, low, 1 GHz - 26 GHz	S01_166_AB01	2022-06-28

47 CFR CHAPTER I FCC PART 15 § 15.247 (d) Subpart C §15.247

Band Edge Compliance Conducted The measurement was performed according to ANSI C63.10 11.11 Final Result				
The measurement was performed according to ANSI C63.10 11.11				suit
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Bluetooth BDR, high, high	S01_166_AB01	2022-06-22	Passed	Passed
Bluetooth BDR, low, low	S01_166_AB01	2022-06-22	Passed	Passed
Bluetooth EDR 2, high, high	S01_166_AB01	2022-06-22	Passed	Passed
Bluetooth EDR 2, low, low	S01_166_AB01	2022-06-22	Passed	Passed
Bluetooth EDR 3, high, high	S01_166_AB01	2022-06-22	Passed	Passed
Bluetooth EDR 3, low, low	S01_166_AB01	2022-06-22	Passed	Passed
Bluetooth LE 1 Mbps, high, high	S01_166_AB01	2022-07-29	Passed	Passed
Bluetooth LE 1 Mbps, low, low	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 2 Mbps, high, high	S01_166_AB01	2022-07-29	Passed	Passed
Bluetooth LE 2 Mbps, low, low	S01_166_AB01	2022-07-29	Passed	Passed
WLAN b, high, high	S01_166_AB01	2022-07-07	Passed	Passed
WLAN b, low, low	S01_166_AB01	2022-07-07	Passed	Passed
WLAN g, high, high	S01_166_AB01	2022-07-07	Passed	Passed
WLAN g, low, low	S01_166_AB01	2022-07-07	Passed	Passed
WLAN n 20 MHz, high, high	S01_166_AB01	2022-07-07	Passed	Passed
WLAN n 20 MHz, low, low	S01_166_AB01	2022-07-07	Passed	Passed
WLAN n 40 MHz, high, high	S01_166_AB01	2022-07-07	Passed	Passed
WLAN n 40 MHz, low, low	S01_166_AB01	2022-07-07	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (d)

Band Edge Compliance Radiated The measurement was performed according to ANSI C63.10 6.6.5 Final Result					
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC	
Bluetooth BDR, high, high	S01_166_AB01	2022-07-28	Passed	Passed	
Bluetooth BDR, high, high	S02_166_AB01	2022-07-15	Passed	Passed	
Bluetooth BDR, high, high	S02_166_AE01	2022-06-28	Passed	Passed	
Bluetooth EDR 2, high, high	S01_166_AB01	2022-07-28	Passed	Passed	
Bluetooth EDR 2, high, high	S02_166_AE01	2022-06-28	Passed	Passed	
Bluetooth EDR 3, high, high	S01_166_AB01	2022-07-28	Passed	Passed	
Bluetooth EDR 3, high, high	S02_166_AE01	2022-06-28	Passed	Passed	
Bluetooth LE 1 Mbps, high, high	S01_166_AB01	2022-07-28	Passed	Passed	
Bluetooth LE 2 Mbps, high, high	S01_166_AB01	2022-07-28	Passed	Passed	
Bluetooth LE 2 Mbps, high, high	S02_166_AE01	2022-06-29	Passed	Passed	
WLAN b, high, high	S01_166_AB01	2022-07-28	Passed	Passed	
WLAN b, high, high	S02_166_AB01	2022-07-13	Passed	Passed	
WLAN b, high, high	S02_166_AE01	2022-06-27	Passed	Passed	
WLAN g, high, high	S01_166_AB01	2022-07-28	Passed	Passed	
WLAN g, high, high	S02_166_AG01	2022-06-28	Passed	Passed	
WLAN n 20 MHz, high, high	S01_166_AB01	2022-07-28	Passed	Passed	
WLAN n 20 MHz, high, high	S02_166_AG01	2022-06-28	Passed	Passed	
WLAN n 40 MHz, high, high	S01_166_AB01	2022-07-28	Passed	Passed	
WLAN n 40 MHz, high, high	S02_166_AG01	2022-06-28	Passed	Passed	

Final Result

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (e)

OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency	-			
Bluetooth BDR, high	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth BDR, low	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth BDR, mid	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 2, high	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 2, low	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 2, mid	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 3, high	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 3, low	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth EDR 3, mid	S01_166_AB01	2022-07-07	Passed	Passed
Bluetooth LE 1 Mbps, high	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 1 Mbps, low	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 1 Mbps, mid	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 2 Mbps, high	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 2 Mbps, low	S01_166_AB01	2022-06-29	Passed	Passed
Bluetooth LE 2 Mbps, mid	S01_166_AB01	2022-06-29	Passed	Passed
WLAN b, high	S01_166_AB01	2022-06-27	Passed	Passed
WLAN b, low	S01_166_AB01	2022-06-27	Passed	Passed
WLAN b, mid	S01_166_AB01	2022-06-27	Passed	Passed
WLAN g, high	S01_166_AB01	2022-06-27	Passed	Passed
WLAN g, low	S01_166_AB01	2022-06-27	Passed	Passed
WLAN g, mid	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 20 MHz, high	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 20 MHz, low	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 20 MHz, mid	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 40 MHz, high	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 40 MHz, low	S01_166_AB01	2022-06-27	Passed	Passed
WLAN n 40 MHz, mid	S01_166_AB01	2022-06-27	Passed	Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control					
Version	Release date	Change Description	Version validity		
initial	2022-08-08		valid		
		2 ²			

COMMENT: -

Lell

(responsible for accreditation scope) Dipl.-Ing. Daniel Gall

(responsible for testing and report) B.Sc. Jens Dörwald

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-01 -02 -03			
FCC Designation Number:	DE0015			
FCC Test Firm Registration:	929146			
ISED CAB Identifier	DE0007; ISED#: 3699A			
Responsible for accreditation scope:	DiplIng. Daniel Gall			
Report Template Version:	2021-09-09			
3.2 PROJECT DATA				
Responsible for testing and report:	B.Sc. Jens Dörwald			
Employees who performed the tests:	documented internally at 7Layers			
Date of Report:	2022-08-08			
Testing Period:	2022-06-22 to 2022-07-29			

3.3 APPLICANT DATA

Company Name:	u-blox AG
Address:	Zürcherstrasse 68 8800 Thalwil Switzerland
Contact Person:	Filip Kruzela

3.4 MANUFACTURER DATA

Company Name:

please see Applicant Data

Address:

Contact Person:

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Host-based module with WLAN and Bluetooth technology
Product name	MAYA-W166
Туре	MAYA-W166-00B-00
	MAYA-W166-01B-00
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	1.8 V + 3.3 V
Antenna / Gain	MAYA-W166-00B-00: Integral / -3.4 dBi MAYA-W166-01B-00: External / 2 dBi (No antennas were provided for the tests, radiated measurements were performed with 50 Ohm terminations)
Tested Modulation Type	BT Classic: GFSK (BDR), Pi/4 DQPSK (EDR 2), 8DPSK (EDR 3) BT LE: GFSK WLANb: DSSS WLANg/n: OFDM
Specific product	The EUT is a Bluetooth and WLAN module.
description for the EUT	In the 2.4 GHz band it supports SISO Mode only.
	Supported technologies are Bluetooth Classic, Bluetooth Low Energy and WLAN b, g, n 20 and 40 MHz bandwidth.
EUT ports (connected cables during testing):	Enclosure Data DC Antenna The EUT is a module with solder pads for surface mounting, so no cables were connected to the EUT itself.
Tested datarates	BT Classic: 1 (BDR), 2 (EDR 2) and 3 Mbps (EDR 3) BT LE: 1 and 2 Mbps WLAN b: 1 Mbps, g: 6 Mbps, n: MCS 0
Special software used for testing	Scripts were provided by the applicant on a laptop that control a board computer, which sets the test modes of the EUT.

Used output power	BT Classic: 8 dBm BT LE: max. power in Direct Test Mode set by applicant's script WLAN:											
	Mode	Ch.1	Ch.2	Ch.3	Ch.4	Ch.5	Ch.6	Ch.7	Ch.8	Ch.9	Ch.10	Ch.11
	b 18 18				1	18						
	g 16 18 18 17			17	16							
	n20 15 16 16 16			16	15							
	n40 N/A N/A 14 15 16 15 N/A N/A				N/A							
	Note b max p later o emissi origina	ower n to t ons te	of po the fir ests w	wer c nal po vere i	contro ower c not re	l leve of 8 di peate	l of te 3m. S	est m Some	ode a radia	nd wa ted sp	as redu ourious	uced s

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
MAYA W166 AB01	DE1015159ab01 MAYA-W166-01B-00		
Sample Parameter	Value		
Serial No.	AK36C1DEB90E4A80400		
HW Version	04		
SW Version	W16.92.21.p22-16.92.21.p22-MXM5X16298_V0		
Comment	Antenna Pin Sample		

Sample Name	Sample Code	Description	
MAYA W166 AE01	DE1015159ae01	MAYA-W166-00B-00	
Sample Parameter	Value		
Serial No.	M406C1DEB90B93C0400		
HW Version	04		
SW Version	W16.92.21.p22-16.92.21.p22-MXM5X16298_V0		
Comment	Integral antenna sample		

Sample Name	Sample Code	Description	
MAYA W166 AF01	DE1015159af01	MAYA-W166-00B-00	
Sample Parameter	Value		
Serial No.	M406C1DEB90B8B00400		
HW Version	04		
SW Version	W16.92.21.p22-16.92.21.p22-MXM5X16298_V0		
Comment	Integral antenna sample		

Sample Name	Sample Code	Description	
MAYA W166 AG01	DE1015159ag01	MAYA-W166-00B-00	
Sample Parameter	Value		
Serial No.	M406C1DEB90B8A40400		
HW Version	04		
SW Version	W16.92.21.p22-16.92.21.p22-MXM5X16298_V0		
Comment	Integral antenna sample		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX10	UBLOX, MAYA-W1 EVK, Rev. A, - , 10000002636490002003	Evaluation Board for module providing ports
AUX20	Toradex, Ixora, V1.2A, -, 10824714	Board Computer connected to Evaluation board for setting modes
AUX21	Toradex, Ixora, V1.2A, -, 10824739	Board Computer connected to Evaluation board for setting modes
AUX22	DELL, Latitude E7250, -, -, 43283371358	Laptop computer with prepared scripts controlling AUX10
AUX23	DELL, Latitude E7270, 2016, -, 14393036990	Laptop computer with prepared scripts controlling AUX11
AUX6	UBLOX, MAYA-W1 EVK, Rev. A, - , 10000002386976004001	Evaluation Board for module providing ports
AUX8	UBLOX, MAYA-W1 EVK, Rev. A, - , 10000002636490002004	Evaluation Board for module providing ports
AUX9	UBLOX, MAYA-W1 EVK, Rev. A, - , 10000002636490001002	Evaluation Board for module providing ports
ACDC1	Agilent, E3631A, -, -, MY40018563	120 V 60 Hz AC laboratory power supply

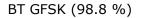
4.5 EUT SETUPS

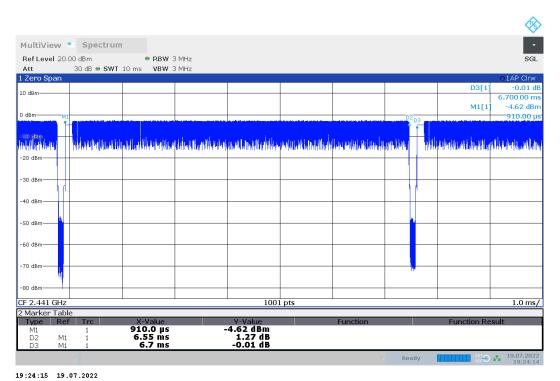
This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Combination of EUTs	Description and Rationale
MAYA W166 AE01, AUX9,	Radiated Setup
MAYA W166 AE01, AUX9, ACDC1	AC Conducted Setup
MAYA W166 AB01, AUX6, AUX10 + AUX12 or AUX 11 + AUX 13	Conducted Setup
MAYA W166 AG01, AUX10,	Radiated Setup
MAYA W166 AB01, AUX6,	Radiated Setup
MAYA W166 AF01, AUX8,	Radiated Setup
	MAYA W166 AE01, AUX9, MAYA W166 AE01, AUX9, ACDC1 MAYA W166 AB01, AUX6, AUX10 + AUX12 or AUX 11 + AUX 13 MAYA W166 AG01, AUX10, MAYA W166 AB01, AUX6,

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

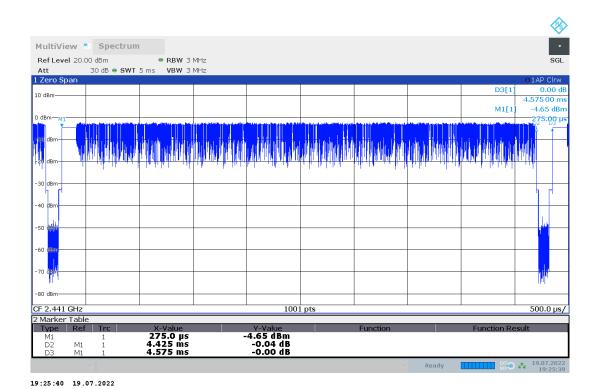

WLAN	2.4 GH 2400 -	z ISM 2483.5	MHz
20 MHz Test Channels:	low	mid	high
Channel:	1	6	11
Frequency [MHz]	2412	2437	2462
40 MHz Test Channels:	low	mid	high
Channel:	3	6	9
Frequency [MHz]	2422	2437	2452
	2.4 GH	z ISM	
	2400 -	2483.5	MHz
BT Test Channels:	low	mid	high
Channel:	0	39	78
Frequency [MHz]	2402	2441	2480
	2.4 GH	z ISM	
	2400 -	2483.5	MHz
BT LE Test Channels:	low	mid	high
Channel:	0	19	39
Frequency [MHz]	2402	2440	2480



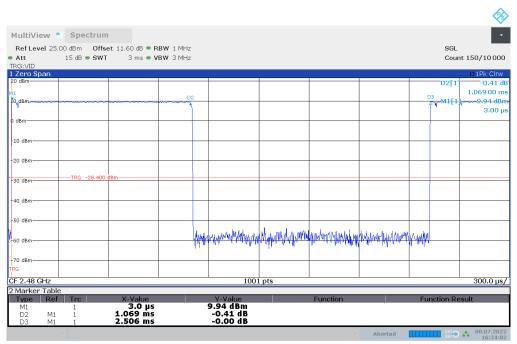
Duty Cycle:

								
MultiView 🗧	Spectrum							•
Ref Level 20.00	dBm	RBW 3 MHz						SGL
	30 dB 👄 SWT 20 ms	VBW 3 MHz						
1 Zero Span								O1AP Clrw
10 dBm							D3[1	0.01 dE 13.080 0 ms
							М1[1	
M1 GrdBm					0.03			220.0 µ
					<u>↑</u> ↑			
-10 dBm								
-20 dBm								
30 dBm								
					11 1			
40 dBm								
50 dBm					`			
60 dBm								
70 dBm								
					1			
80 dBm								
CF 2.441 GHz			1001	l pts				2.0 ms/
2 Marker Table			100.					210 1110/
Type Ref	Trc X-	Value	Y-Value		Function		Function Re	sult
M1 D2 M1	1 220 1 12.	0.0 μs 92 ms	-1.73 dBm -0.02 dB					
D2 M1 D3 M1	i 13.	08 ms	0.01 dB					
-					~	Ready		. 19.07.2022

19:22:59 19.07.2022

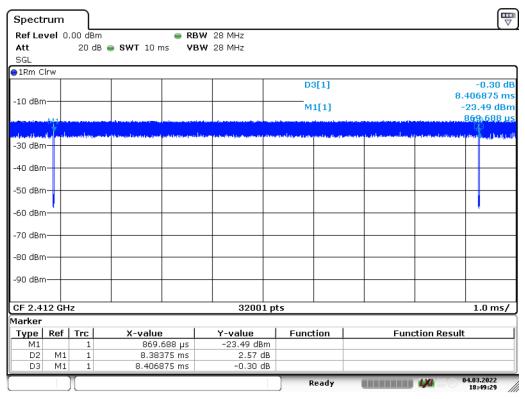

BT Classic Pi/4 DQPSK (97.8 %)

16:22:57 08.07.2022


ΒT	LE 1	Mbps	(85	%)
		- 1000	(00	,0,

Ref Level 2	Spectrun 5.00 dBm Offs		RW 1 MHz					SGL	
Att G:VID	15 dB 🖷 SWT		BW 3 MHz						nt 853/1000
Zero Span				1	1			M1[]	• 1Pk Clr 9,94 d
							D2		3.00
dBm			· · · ·	· · · · · · ·	• • • • • • •	***	4]
dBm									
0 dBm									
0 dBm									
0 dBm	TRG -28.400	dBm							
0 dBm									
0 dBm							مرا المراد	a literation	
0 dBm							- Whendaladar	YNY	
0 dBm							,		
G									
2.48 GHz				100	l pts				300.0 L

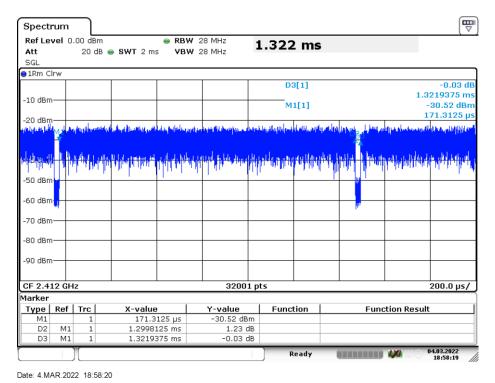
BT Classic 8DPSK (96.7 %)



16:24:02 08.07.2022

BT LE 2 Mbps (42.7 %)

Date: 4.MAR.2022 18:49:29


WLAN b (99.7 %)

Spect	rum										
Ref Le Att	vel O		im dB e SWT 2		W 28 MHz W 28 MHz	1	.414	l ms			
SGL 1Rm C	Irw										
J INIT C							D	3[1]			-0.13 dE
10 - 10 -											1.4140625 m
-10 dBn	n — —						M	1[1]			-29.95 dBn
-20 dBn	n			_		\rightarrow					204.8125 µs
[P] (PP)	MM	العمرونا	فتعابدهم والارتسادية	والالالا والالواليا م	سافاعاته فأوراء أرصاكا ومرفى	i Maran	ake haadd	halperte	والمتراسية فتشار والمراسية	المسالية التحيير	والمراجع والمراجع والمتعاد والمراجع
	Ť									*	
na IU	ad III	ا ملات	a adalahi shi shi s	n lultinda "a	ha, dia ta kali anti anti i	l dat	الشابية الم	اسا بسا	ատեղ հետավելու հ	dia dia dia	م ماند ماند م
a Martu	יין ויייו	1111	I . I ALA	in the state	<u>th airseichair bail</u>		n di la c	L. Indeat	and the second secon		Albund Charles and Albunda Albu
-50 dBn			" P "	· ·	1.1	<u> </u>		11.1	. 1 . 6		· ·
										"	
-60 dBn	n — <mark></mark>					+					
	1									r	
-70 dBn	n —					-					
-80 dBn	n										
-90 dBn	n					_					
CF 2.4	12 GH	z			32	001 pt	ts		1		200.0 µs/
4arker											
Туре	Ref	Trc	X-va		Y-value		Func	tion	Fund	ction Res	ult
M1		1		4.8125 µs	-29.95						
D2 D3	M1 M1	1		1.392 ms 40625 ms		1 dB 3 dB					
03	1911		1.41	TUU23 IIIS	-0.1	JUD					04.03.2022
							F	teady		1XI	18:55:34

Date: 4.MAR.2022 18:55:34

WLAN g (98.4 %)

WLAN n 20 MHz (98.3 %)

Spectru	m											E
Ref Leve					28 MHz	6	72.5	63	us			
Att	20	dB 🧉	SWT 1 ms	S VBW	28 MHz	•	/ 2.10		Po			
SGL												
⊖1Rm Clrv	v											
pan and an the	(Musippin	0.d_,	, ^{III} , Illowyoddy	sased Magai	hpanta ana ana fa	դեր	D: Ներկելին	3[1] ul ^l lall	d)deparations	National Constant	6 <u></u>	-9.91 df
		М1	hita, inte	i il i			M Luci	1[1] l	and the second		2	-21.05 dBn 180.5000 μ
-30 dBm—		M			le divinitie	<u>ette</u>		P			DЗ	and the first state of the second state of the
-40 dBm—			n I i	1.1							1	
-50 dBm—												
-60 dBm—												
-70 dBm—		- 1										
-80 dBm—	_											
-90 dBm—												
CF 2.422	GHz				3200	1 pts	5					100.0 µs/
Marker												
	tef Trc		X-value		Y-value		Func	tion		Functior	n Resu	lt
M1	1			0.5 µs	-21.05 dB							
D2 D3	M1 1 M1 1			813 μs 625 μs	3.00 (
50			01210		5152.		R	eady				04.03.2022 19:07:09

Date: 4.MAR.2022 19:07:09

WLAN n 40 MHz (98.3 %)

4.7 PRODUCT LABELLING

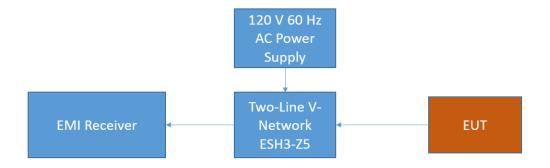
4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS


5.1 CONDUCTED EMISSIONS AT AC MAINS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10 6.2

5.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C 63.10 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold & Average
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 2.5 kHz
- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1. EMI receiver settings:

- Detector: Quasi-Peak & (CISPR) Average

- IF Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

5.1.2 TEST REQUIREMENTS / LIMITS

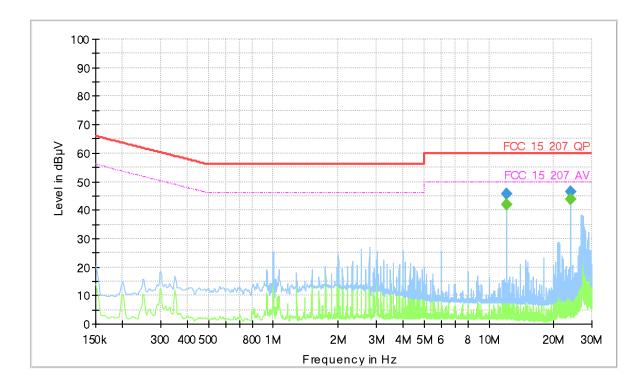
FCC Part 15, Subpart C, §15.207

Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBµV)
0.15 - 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

5.1.3 TEST PROTOCOL

Temperature:	28 °C
Air Pressure:	1008 hPa
Humidity:	40 %


nunnunty.	40 70					
Power line	PE	Frequency [MHz]	Measured value QP [dBµV]	Measured value AV [dBµV]	Limit [dBµV]	Margin [dB]
Ν	GND	12.005	45.7	-	60.0	14.3
Ν	GND	12.005	-	42.0	50.0	8.0
Ν	FLO	24.009	46.5	-	60.0	13.5
Ν	FLO	24.009	-	43.7	50.0	6.3

Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOT

Operating mode = worst case, Connection to AC mains = via ancillary/auxiliary equipment (S03_166_AE01)

Final_Result

F	requency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	PE	Corr. (dB)
	12.005250		41.97	50.00	8.03	1000.0	9.000	Ν	GND	10.7
	12.005250	45.68		60.00	14.32	1000.0	9.000	Ν	GND	10.7
	24.009000	46.46		60.00	13.54	1000.0	9.000	Ν	FLO	11.2
	24.009000		43.73	50.00	6.27	1000.0	9.000	Ν	FLO	11.2

5.1.5 TEST EQUIPMENT USED

- Conducted Emissions FCC

5.2 OCCUPIED BANDWIDTH (6 DB)

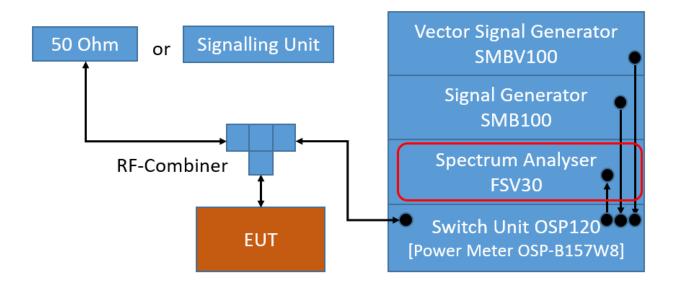
Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10 11.8.1

5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.


The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: Two times nominal bandwidth
- Trace: Maxhold
- Sweeps: Till stable (min. 500, max. 15000)
- Sweeptime: Auto
- Detector: Peak

TS8997; Channel Bandwidth

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.2.3 TEST PROTOCOL

Ambient temperature:23 °CAir Pressure:1006 hPaHumidity:53 %BT Classic GFSK

Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.535	0.5	0.035
	39	2441	0.535	0.5	0.035
	78	2480	0.535	0.5	0.035

BT Classic Pi/4 DQPSK

Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.109	0.5	0.609
	39	2441	1.109	0.5	0.609
	78	2480	1.109	0.5	0.609

BT Classic 8DPSK

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.109	0.5	0.609
	39	2441	1.089	0.5	0.589
	78	2480	1.089	0.5	0.589
BT LE 1 Mbit/s					

Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.760	0.5	0.260
	19	2440	0.760	0.5	0.260
	39	2480	0.770	0.5	0.270

BT LE 2 Mbit/s

Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.440	0.5	0.940
	19	2440	1.410	0.5	0.910
	39	2480	1.410	0.5	0.910

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	9.2	0.5	8.7
	6	2437	9.2	0.5	8.7
	11	2462	9.2	0.5	8.7

WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	16.4	0.5	15.9
	6	2437	16.4	0.5	15.9
	11	2462	16.4	0.5	15.9

WLAN n-Mode; 20 MHz; MCS0

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	17.7	0.5	17.2
	6	2437	17.7	0.5	17.2
	11	2462	17.7	0.5	17.2

WLAN n-Mode; 40 MHz; MCS0

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	3	2422	35.9	0.5	35.4
	6	2437	35.8	0.5	35.3
	9	2452	35.9	0.5	35.4

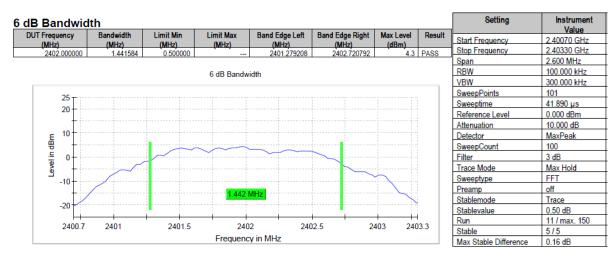

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

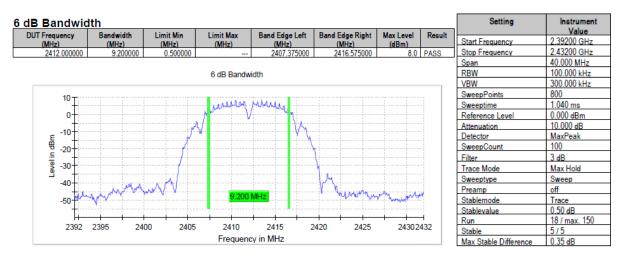
Radio Technology = BT Classic GFSK, Operating Frequency = mid (S01_166_AB01)

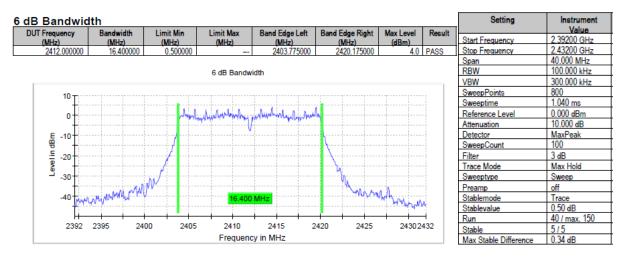
Radio Technology = BT Classic Pi/4 DQPSK, Operating Frequency = mid (S01_166_AB01)





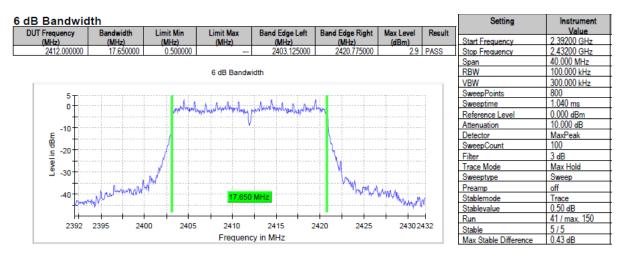
Radio Technology = BT Classic 8DPSK, Operating Frequency = mid (S01_166_AB01)

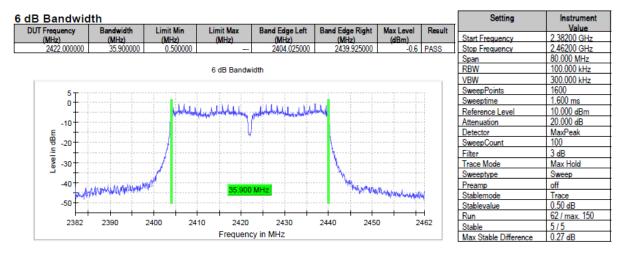




Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low (S01_166_AB01)

Radio Technology = WLAN b, Operating Frequency = low (S01_166_AB01)





Radio Technology = WLAN g, Operating Frequency = low (S01_166_AB01)

Radio Technology = WLAN n 20 MHz, Operating Frequency = low (S01_166_AB01)

Radio Technology = WLAN n 40 MHz, Operating Frequency = low (S01_166_AB01)

5.2.5 TEST EQUIPMENT USED

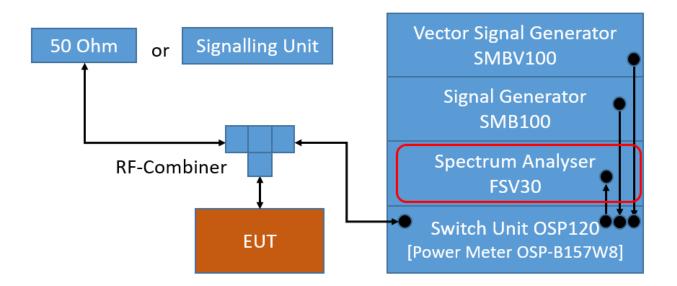
- R&S TS8997

5.3 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10 6.9.3

5.3.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): 1 to 5 % of the OBW
- Video Bandwidth (VBW): ≥ 3 times the RBW
- Span: 1.5 to 5 times the OBW
- Trace: Maxhold
- Sweeps: Till stable (min. 500, max. 75000)
- Sweeptime: Auto
- Detector: Peak

TS8997; Channel Bandwidth

5.3.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

5.3.3 TEST PROTOCOL

Ambient temperature: Air Pressure: Humidity: BT GFSK	23 °C 1006 hPa 53 %		
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	0.860
	39	2441	0.850
	78	2480	0.850

BT п/4 DQPSK

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.117
	39	2441	1.117
	78	2480	1.117

BT 8-DPSK

Band	nd Channel No.		99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.175
	39	2441	1.175
	78	2480	1.175

BT LE 1 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.030
	19	2440	1.020
	39	2480	1.030

BT LE 2 Mbit/s

			-
Band Channel No.		Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	2.025
	19	2440	2.025
	39	2480	2.025

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	12.0
	6	2437	12.0
	11	2462	12.0

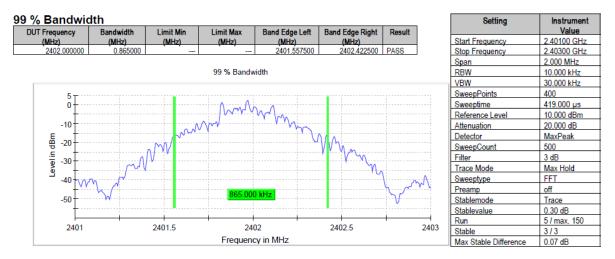
WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Band Channel No.		99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	16.6
	6	2437	16.7
	11	2462	16.6

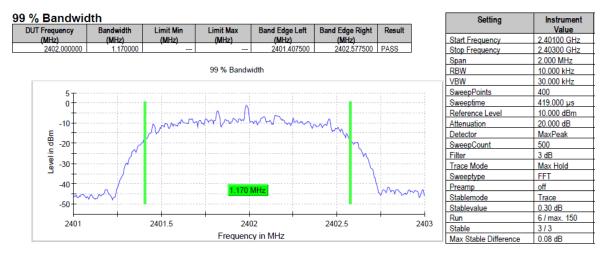
WLAN n-Mode; 20 MHz; MCS0

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]	
2.4 GHz ISM	1	2412	17.7	
	6	2437	17.7	
	11	2462	17.7	

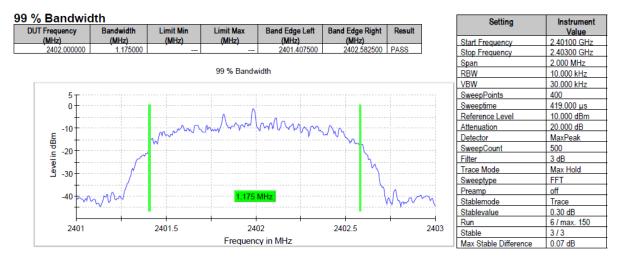
WLAN n-Mode; 40 MHz; MCS0

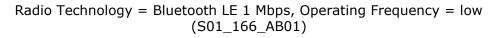

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	3	2422	36.3
	6	2437	36.5
	9	2452	36.5

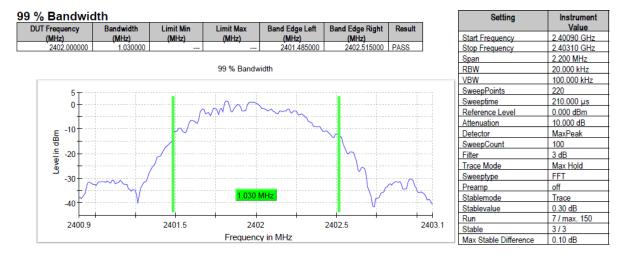
Remark: Please see next sub-clause for the measurement plot.

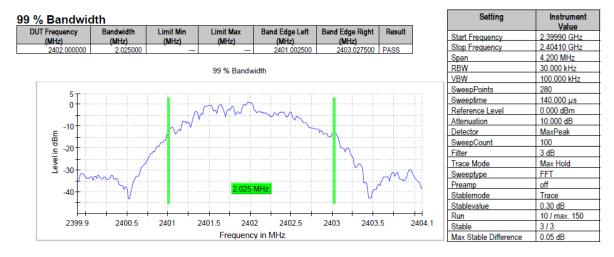


5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

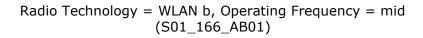

Radio Technology = Bluetooth BDR, Operating Frequency = low (S01_166_AB01)

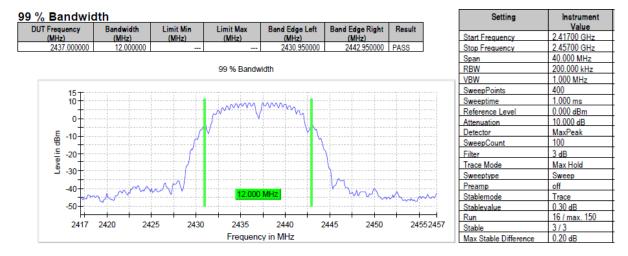

Radio Technology = Bluetooth EDR 2, Operating Frequency = low (S01_166_AB01)



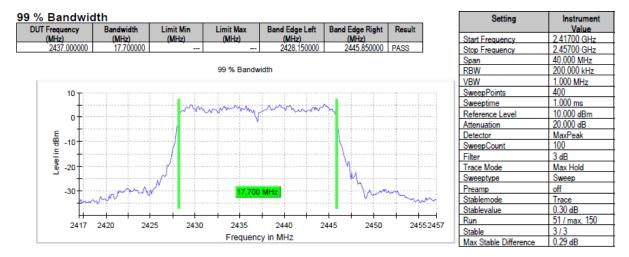


Radio Technology = Bluetooth EDR 3, Operating Frequency = low (S01_166_AB01)






Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low (S01_166_AB01)



Radio Technology = WLAN g, Operating Frequency = mid (S01_166_AB01)

Radio Technology = WLAN n 20 MHz, Operating Frequency = mid (S01_166_AB01)

99 % Bandwidth Setting Instrument DUT Frequency (MHz) Limit Min (MHz) Band Edge Left (MHz) Band Edge Right (MHz) Bandwidth (MHz) Limit Max Result Value (MHz) 2.39700 GHz Start Frequency 2437.000000 36.500000 2418.625000 2455.125000 PASS Stop Frequency 2.47700 GHz 80.000 MHz 500.000 kHz Span 99 % Bandwidth RBW 2.000 MHz VBW SweepPoints Sweeptime 320 1.000 ms 15-10-10.000 dBm Reference Level Attenuation 20.000 dB 0 Detector MaxPeak Level in dBm SweepCount 100 -10 Filter 3 dB Trace Mode Max Hold Sweep -20 Sweeptype 6.500 MHz Preamp off Stablemode Trace -30 Stablevalue 0.30 dB 65 / max. 150 Run 2397 2410 2420 2430 2440 2450 2460 2470 2477 3/3 Stable Frequency in MHz 0.22 dB Max Stable Difference

Radio Technology = WLAN n 40 MHz, Operating Frequency = mid (S01_166_AB01)

5.3.5 TEST EQUIPMENT USED

- R&S TS8997

5.4 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10 11.9.1.1, 11.9.2.3.2

5.4.1 TEST DESCRIPTION

DTS EQUIPMENT:

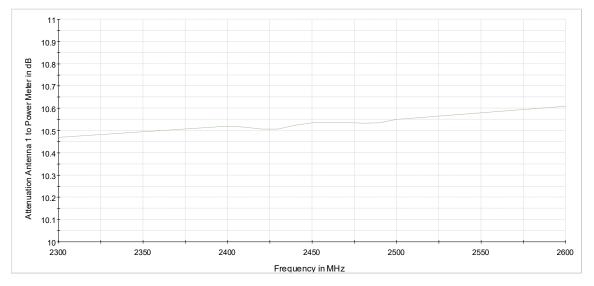
The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.

Maximum peak conducted output power (e.g. Bluetooth Low Energy):

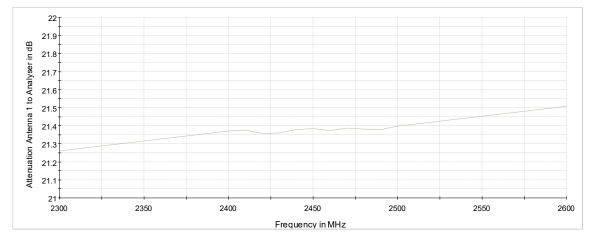
The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. The reference level of the spectrum analyser was set higher than the output power of the EUT.

Analyser settings:

- Resolution Bandwidth (RBW): ≥ DTS bandwidth
- Video Bandwidth (VBW): ≥ 3 times RBW or maximum of analyzer
- Span: \geq 3 times RBW
- Trace: Maxhold
- Sweeps: Till stable (min. 300, max. 15000)
- Sweeptime: Auto
- Detector: Peak


Maximum conducted average output power (e.g. WLAN):

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. Measurement is performed using the gated RF average power meter integrated in the OSP 120 module OSP-B157W8 with signal bandwidth >300 MHz.



TS8997; Output Power

Attenuation of the measurement path to Power Meter

Attenuation of the measurement path to Analyser

5.4.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (\text{Limit (W)}/1\text{mW})$

5.4.3 TEST PROTOCOL

Ambient temperature: Air Pressure:	23 °C 1006 hPa
Humidity:	53 %
BT GFSK (1-DH1)	

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	7.9	30.0	22.1	9.9
	39	2441	6.6	30.0	23.4	8.6
	78	2480	6.6	30.0	23.4	8.6

BT π/4 DQPSK (2-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	6.1	30.0	23.9	8.1
	39	2441	6.0	30.0	24.0	8.0
	78	2480	5.8	30.0	24.2	7.8

BT 8-DPSK (3-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	6.4	30.0	23.6	8.4
	39	2441	6.2	30.0	23.8	8.2
	78	2480	6.5	30.0	23.5	8.5

BT LE 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	7.8	30.0	22.2	9.8
	19	2440	7.6	30.0	22.4	9.6
	39	2480	7.6	30.0	22.4	9.6

BT LE 2 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	7.8	30.0	22.2	9.8
	19	2440	7.8	30.0	22.2	9.8
	39	2480	7.6	30.0	22.4	9.6

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	17.5	30.0	12.5	19.5
	6	2437	17.5	30.0	12.5	19.5
	11	2462	17.6	30.0	12.4	19.6

WLAN g-Mode; 20 MHz; 6 Mbit/s

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	15.2	30.0	14.8	17.2
	6	2437	17.3	30.0	12.7	19.3
	11	2462	15.4	30.0	14.6	17.4

WLAN n-Mode; 20 MHz; MCS0

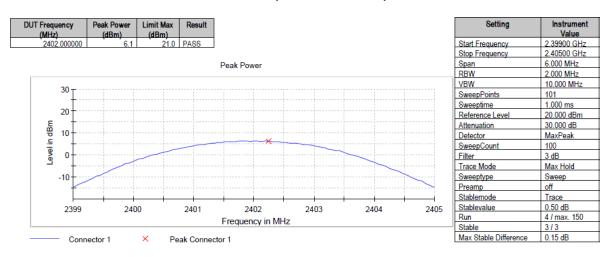
Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	14.4	30.0	15.6	16.4
	6	2437	15.5	30.0	14.5	17.5
	11	2462	14.6	30.0	15.4	16.6

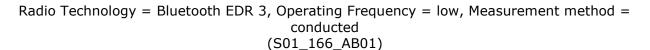
WLAN n-Mode; 40 MHz; MCS0

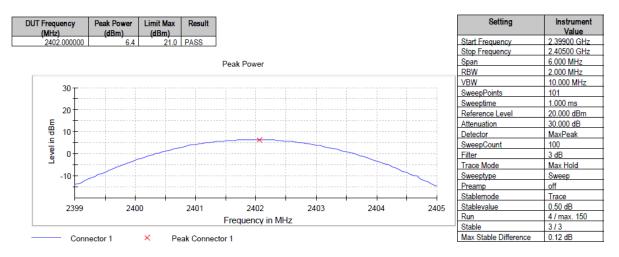

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	3	2422	13.3	30.0	16.7	15.3
	6	2437	15.3	30.0	14.7	17.3
	9	2452	14.5	30.0	15.5	16.5

Remark: Please see next sub-clause for the measurement plot.

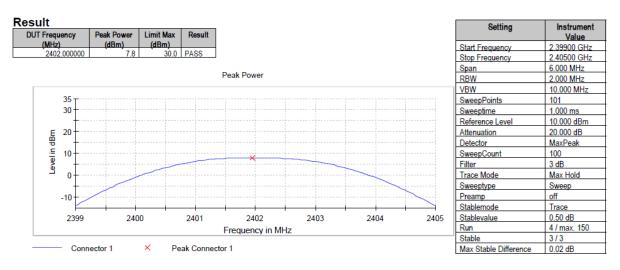
No plots are provided for WLAN since a power meter was used for measurement.

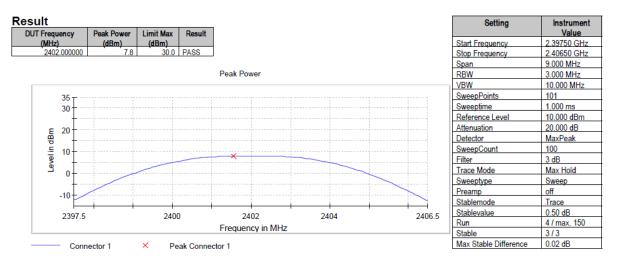

5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement method = conducted (S01_166_AB01)



Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Measurement method = conducted (S01_166_AB01)





Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low, Measurement method = conducted (S01_166_AB01)

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low, Measurement method = conducted (S01_166_AB01)

5.4.5 TEST EQUIPMENT USED

- R&S TS8997

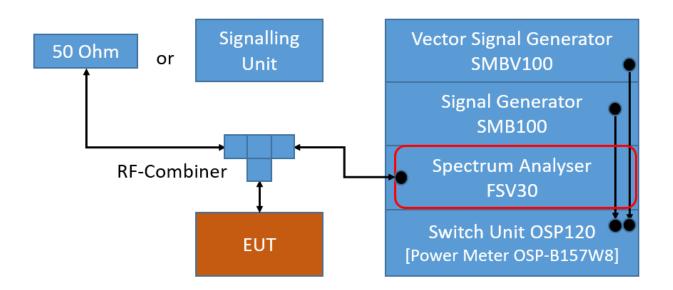
5.5 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

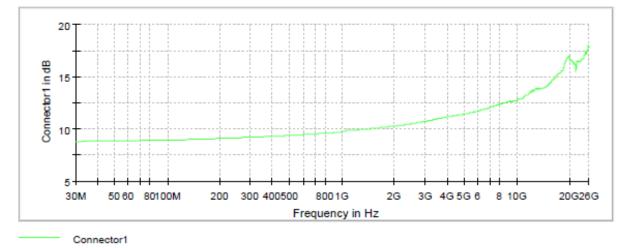
ANSI C63.10 11.11

5.5.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:


- Frequency range: 30 26000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Trace: Maxhold
- Sweeps: Till Stable (max. 120)
- Sweep Time: Auto
- Detector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc or 30 dBc limit.

TS8997; Spurious RF Conducted Emissions

Attenuation of the measurement part

5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.5.3 TEST PROTOCOL

Channel No	Channel Center Freq.	Spurious Freq. [MHz]
BT GFSK		
Humidity:		53 %
Air Pressure:	1006 hPa	
Ambient temper	rature:	23 °C

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2395.0	-53.7	PEAK	100	6.7	-13.3	40.4
39	2441	841.6	-44.7	PEAK	100	6.4	-13.6	31.1
78	2480	2488.5	-55.9	PEAK	100	6.4	-13.6	42.3

BT п/4 DQPSK

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2395.0	-48.6	PEAK	100	4.7	-15.3	33.3
39	2441	7325.7	-62.2	PEAK	100	2.4	-17.6	44.6
78	2480	2884.5	-56.2	PEAK	100	4.3	-15.7	40.5

BT 8-DPSK

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2395.0	-46.8	PEAK	100	4.1	-15.9	30.9
39	2441	7325.7	-59.4	PEAK	100	3.0	-17.0	42.4
78	2480	2488.5	-55.8	PEAK	100	2.0	-18.0	37.8

BT LE 1 Mbit/s

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	881.4	-40.6	PEAK	100	5.6	-14.4	26.2
19	2440	891.4	-56.0	PEAK	100	6.3	-13.7	42.3
39	2480	881.4	-43.1	PEAK	100	6.7	-13.3	29.8

BT LE 2 Mbit/s

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2395.0	-27.0	PEAK	100	4.3	-15.7	11.3
19	2440	881.4	-44.5	PEAK	100	6.9	-13.1	31.4
39	2480	881.4	-44.3	PEAK	100	6.7	-13.3	31.0

WLAN b-Mode; 20 MHz; 1 Mbit/s

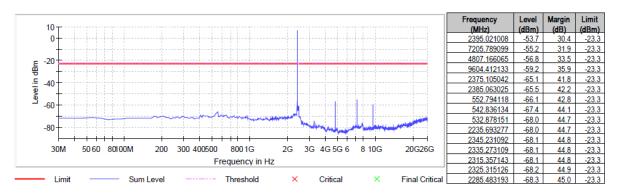
Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2395.0	-38.7	PEAK	100	8.0	-22.0	16.7
6	2437	1628.3	-45.0	PEAK	100	8.0	-22.0	23.0
11	2462	25855.1	-39.1	PEAK	100	8.0	-22.0	17.1

WLAN g-Mode; 20 MHz; 6 Mbit/s

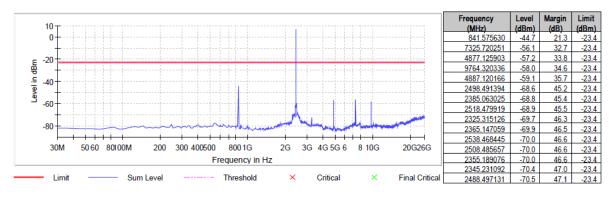
Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2395.0	-38.1	PEAK	100	3.9	-26.1	12.0
6	2437	3248.1	-44.2	PEAK	100	5.9	-24.1	20.1
11	2462	24915.6	-39.9	PEAK	100	4.1	-25.9	14.0

WLAN n-Mode; 20 MHz; MCS0

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2395.0	-36.8	PEAK	100	2.8	-27.2	9.6
6	2437	2688.4	-47.8	PEAK	100	4.0	-26.0	21.8
11	2462	24865.7	-40.3	PEAK	100	3.1	-26.9	13.4

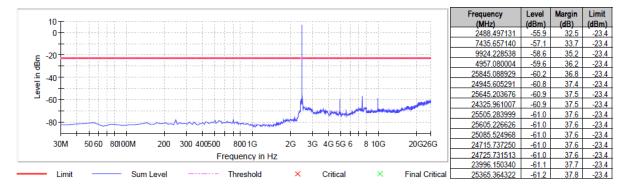

WLAN n-Mode; 40 MHz; MCS0

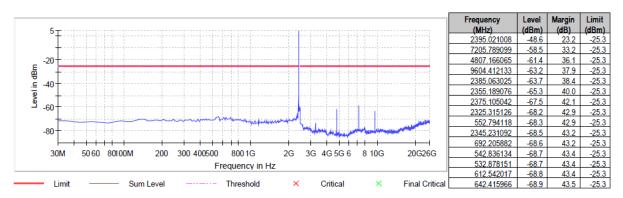
Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422	2395.0	-39.7	PEAK	100	0.3	-29.7	10.0
6	2437	2488.5	-44.2	PEAK	100	0.1	-29.9	14.3
9	2452	2488.5	-36.5	PEAK	100	1.1	-28.9	7.6


Remark: Please see next sub-clause for the measurement plot.

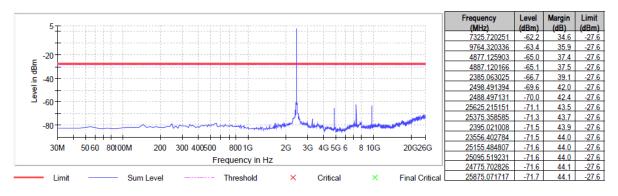
5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = low (S01_166_AB01)

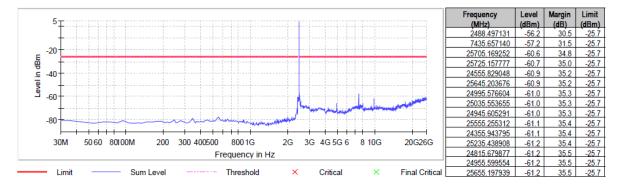


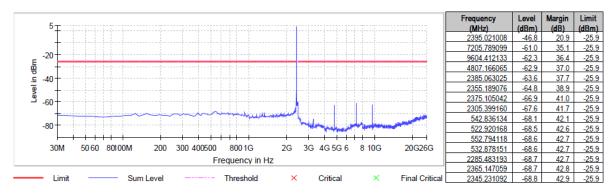


Radio Technology = Bluetooth BDR, Operating Frequency = mid (S01_166_AB01)

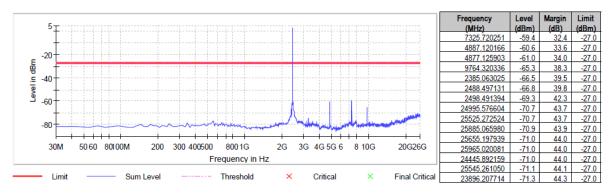

Radio Technology = Bluetooth BDR, Operating Frequency = high $(S01_166_AB01)$

Radio Technology = Bluetooth EDR 2, Operating Frequency = low (S01_166_AB01)

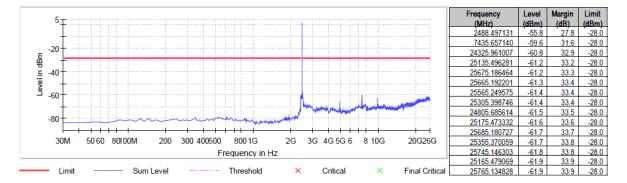


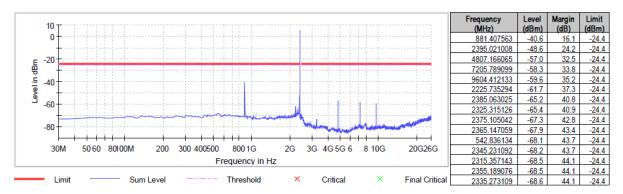


Radio Technology = Bluetooth EDR 2, Operating Frequency = mid (S01_166_AB01)

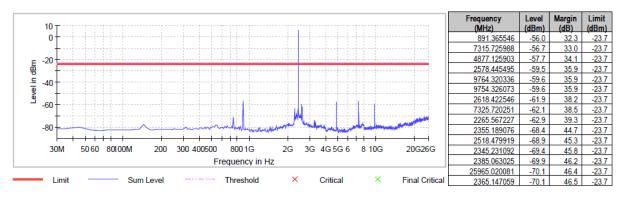

Radio Technology = Bluetooth EDR 2, Operating Frequency = high (S01_166_AB01)

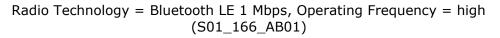
Radio Technology = Bluetooth EDR 3, Operating Frequency = low (S01_166_AB01)

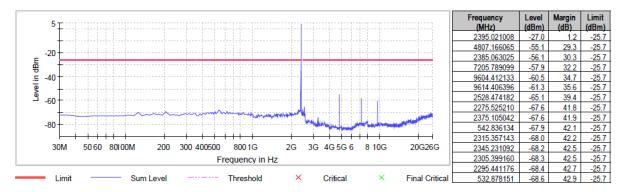




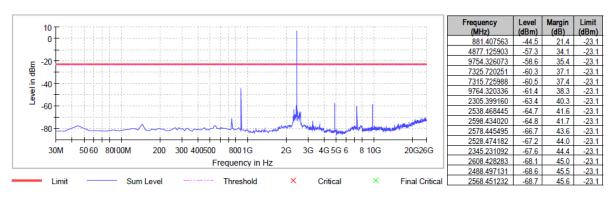
Radio Technology = Bluetooth EDR 3, Operating Frequency = mid (S01_166_AB01)

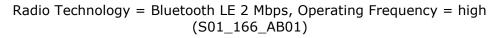

Radio Technology = Bluetooth EDR 3, Operating Frequency = high (S01_166_AB01)

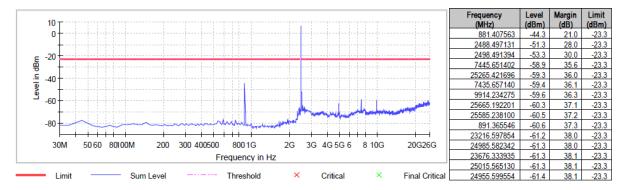

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low (S01_166_AB01)



Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = mid (S01_166_AB01)




Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low (S01_166_AB01)



Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = mid (S01_166_AB01)

5.5.5 TEST EQUIPMENT USED

- R&S TS8997

5.6 TRANSMITTER SPURIOUS RADIATED EMISSIONS

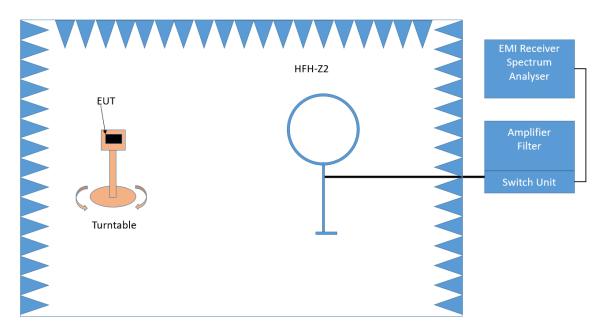
Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.6.1 TEST DESCRIPTION

Radiated Measurement with integral antenna or 50 Ohm termination at antenna port

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapters of ANSI C63.10:


- < 30 MHz: Chapter 6.4
- 30 MHz 1 GHz: Chapter 6.5
- > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

1. Measurement up to 30 MHz

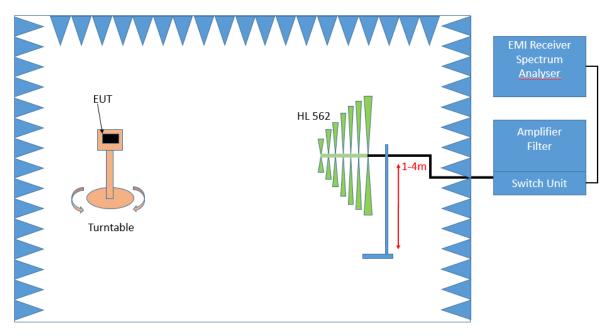
Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

TEST REPORT REFERENCE: MDE_UBLOX_2110_FCC_03

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF–Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)


Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak (9 kHz 150 kHz, Peak / Average 150 kHz- 30 MHz)
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 4 m
- Height variation step size: 1.5 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

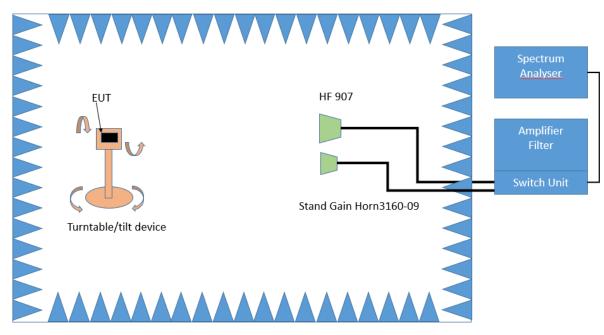
- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: 360 °
- Height variation range:1 4 m
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

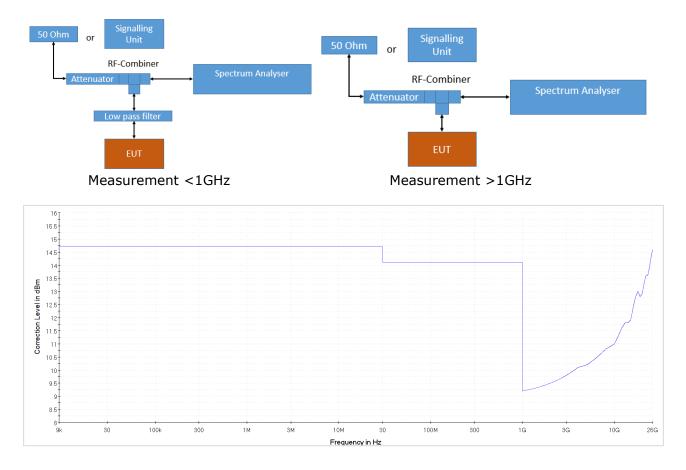
The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$. The elevation angle will slowly vary by $\pm 45^{\circ}$ Spectrum analyser settings: - Detector: Peak

Step 3:


- Spectrum analyser settings for step 3:
- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

Conducted Measurements at antenna ports

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Frequency range: 0.009 30 MHz
- Resolution Bandwidth (RBW): 10 kHz
- Video Bandwidth (VBW): 30 kHz
- Trace: Maxhold
- Sweeps: till stable
- Sweep Time: coupled
- Detector: Peak
- Frequency range: 30 1000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Trace: Maxhold
- Sweeps: till stable
- Sweep Time: coupled
- Detector: Peak

- Frequency range: 1000 26000 MHz
- Resolution Bandwidth (RBW): 1000 kHz
- Video Bandwidth (VBW): 3000 kHz
- Trace: Maxhold, Average Power
- Sweeps: 500
- Sweep Time: coupled
- Detector: Peak, RMS

For the conducted emissions in restricted bands the Value is measured in dBm and then converted to $dB\mu V/m$ as given in KDB 558074:

1. Measure the conducted output power in dBm.

Add the maximum antenna gain in dBi. (Included in measurement result by offset)
 Add the appropriate ground reflection factor (included in measurement result by transducer factor)

6 dB for frequencies \leq 30 MHz;

4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and

0 dB for frequencies > 1000 MHz).

4. Convert the resultant EIRP level to an equivalent electric field strength level using the following relationship:

 $E = EIRP - 20 \log D + 104.8$

Where E is the electric field strength in $dB\mu V/m$,

EIRP is the equivalent isotropically radiated power in dBm

D is the specified measurement distance in m

Value [dB μ V/m] = Measured value [dBm] (including gain and ground reflection factor) – 20 log D + 104.8

5.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.6.3 TEST PROTOCOL

Ambient temperature:	24-30 °C
Air Pressure:	990–1020 hPa
Humidity:	30-40 %
BT GFSK	
Applied duty avela corre-	$d = (\Lambda) / (\Lambda = 0 + 1)$

Applied duty cycle correction (AV): 0.1 dB

Measurement Method	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
Radiated Integral Antenna	2402	4804.0	55.3	PEAK	1000	74.0	18.7	RB
Radiated Integral Antenna	2402	4804.0	49.1	AV	1000	54.0	4.9	RB
Radiated Integral Antenna	2441	4882.4	58.1	PEAK	1000	74.0	15.9	RB
Radiated Integral Antenna	2441	4882.2	51.8	AV	1000	54.0	2.2	RB
Radiated Integral Antenna	2441	7322.3	60.1	PEAK	1000	74.0	13.9	RB
Radiated Integral Antenna	2441	7322.3	50.2	AV	1000	54.0	3.8	RB
Radiated Integral Antenna	2480	4960.0	56.2	PEAK	1000	74.0	17.8	RB
Radiated Integral Antenna	2480	4960.0	52.4	AV	1000	54.0	1.6	RB
Radiated 50 Ohm Termination	2480	4960.9	52.2	PEAK	1000	74.0	21.8	RB
Radiated 50 Ohm Termination	2480	4960.9	45.7	AV	1000	54.0	8.3	RB
Radiated 50 Ohm Termination	2480	7439.5	50.1	PEAK	1000	74.0	23.9	RB
Radiated 50 Ohm Termination	2480	7439.5	41.0	AV	1000	54.0	13.0	RB
Conducted	2402	4804.3	46.7	PEAK	1000	74.0	27.3	RB
Conducted	2402	4804.0	41.5	AV	1000	54.0	12.5	RB
Conducted	2441	4881.8	46.8	PEAK	1000	74.0	27.2	RB
Conducted	2441	4881.0	39.9	AV	1000	54.0	14.1	RB
Conducted	2480	4960.1	45.9	PEAK	1000	74.0	28.1	RB
Conducted	2480	4960.0	38.0	AV	1000	54.0	16.0	RB
Conducted	2480	7439.8	49.5	PEAK	1000	74.0	24.5	RB
Conducted	2480	7440.1	41.0	AV	1000	54.0	13.0	RB

BT п/4 DQPSK

Applied duty cycle correction (AV): 0.2 dB

Measurement Method	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
Conducted	2402	4804.3	45.4	PEAK	1000	74.0	28.6	RB
Conducted	2402	4804.0	37.5	AV	1000	54.0	16.5	RB
Conducted	2441	4882.3	44.4	PEAK	1000	74.0	29.6	RB
Conducted	2441	4882.0	36.3	AV	1000	54.0	17.7	RB
Conducted	2441	7321.8	48.4	PEAK	1000	74.0	25.6	RB
Conducted	2441	7323.1	40.4	AV	1000	54.0	13.6	RB
Conducted	2480	4959.8	44.8	PEAK	1000	74.0	29.2	RB
Conducted	2480	4960.3	36.5	AV	1000	54.0	17.5	RB
Conducted	2480	7439.3	48.6	PEAK	1000	74.0	25.4	RB
Conducted	2480	7440.2	39.8	AV	1000	54.0	14.2	RB

BT 8-DPSK

Applied duty cycle correction (AV): 0.3 dB

Measurement Method	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
Conducted	2402	4803.6	45.2	PEAK	1000	74.0	28.8	RB
Conducted	2402	4803.7	37.5	AV	1000	54.0	16.5	RB
Conducted	2441	4882.1	45.3	PEAK	1000	74.0	28.7	RB
Conducted	2441	4882.0	36.7	AV	1000	54.0	17.3	RB
Conducted	2441	7322.8	48.2	PEAK	1000	74.0	25.8	RB
Conducted	2441	7323.1	40.9	AV	1000	54.0	13.1	RB
Conducted	2480	4958.3	45.1	PEAK	1000	74.0	28.9	RB
Conducted	2480	4960.2	36.5	AV	1000	54.0	17.5	RB
Conducted	2480	7349.3	50.8	PEAK	1000	74.0	23.2	RB
Conducted	2480	7440.3	39.8	AV	1000	54.0	14.2	RB

BT LE 1 Mbit/s

Applied duty cycle correction (AV): 1.4 dB

Measurement Method	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
Conducted	2402	4804.8	47.8	PEAK	1000	74.0	26.2	RB
Conducted	2402	4803.8	41.6	AV	1000	54.0	12.4	RB
Conducted	2440	4880.3	46.3	PEAK	1000	74.0	27.7	RB
Conducted	2440	4880.1	40.2	AV	1000	54.0	13.8	RB
Conducted	2440	7319.6	49.3	PEAK	1000	74.0	24.7	RB
Conducted	2440	7320.3	42.2	AV	1000	54.0	11.8	RB
Conducted	2480	4959.8	46.3	PEAK	1000	74.0	27.7	RB
Conducted	2480	4960.3	38.3	AV	1000	54.0	15.7	RB
Conducted	2480	7440.3	49.1	PEAK	1000	74.0	24.9	RB
Conducted	2480	7440.1	41.2	AV	1000	54.0	12.8	RB

BT LE 2 Mbit/s

Applied duty cycle correction (AV): 7.4 dB

Measurement Method			Spurious Detec- Level tor [dBµV/m]		RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type	
Conducted	2402	4803.3	47.1	PEAK	1000	74.0	26.9	RB	
Conducted	2402	4804.8	44.1	AV	1000	54.0	9.9	RB	
Conducted	2440	4878.8	46.4	PEAK	1000	74.0	27.6	RB	
Conducted	2440	4879.1	43.5	AV	1000	54.0	10.5	RB	
Conducted	2440	7318.6	48.4	PEAK	1000	74.0	25.6	RB	
Conducted	2440	7318.5	46.6	AV	1000	54.0	7.4	RB	
Conducted	2480	4960.6	45.5	PEAK	1000	74.0	28.5	RB	
Conducted	2480	4960.9	43.1	AV	1000	54.0	10.9	RB	
Conducted	2480	7438.3	48.5	PEAK	1000	74.0	25.5	RB	
Conducted	2480	7438.5	45.9	AV	1000	54.0	8.1	RB	

WLAN b-Mode; 20 MHz; 1 Mbit/s
Applied duty cycle correction (AV): 0 dB

Applied duty cycle correction (AV): 0 dB Measurement Ch. Spurious Detec- RBW Limit Margin Limit												
Measurement Method	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type				
Radiated	ted 2412 12061.6		55.3	PEAK	1000	74.0	18.7	RB				
Integral Antenna												
Radiated	2412	12061.6	47.9	PEAK	1000	74.0	26.1	RB				
Integral Antenna												
Radiated	2412	19295.7	54.2	PEAK	1000	74.0	19.8	RB				
Integral Antenna												
Radiated	2412	19295.7	47.2	AV	1000	54.0	6.8	RB				
Integral Antenna												
Conducted	2412	2711.4	56.4	PEAK	1000	74.0	17.6	RB				
Conducted	2412	2712.1	47.5	AV	1000	54.0	6.5	RB				
Conducted	2412	3618.9	58.8	PEAK	1000	74.0	15.2	RB				
Conducted	2412	3617.7	53.4	AV	1000	54.0	0.6	RB				
Radiated	2437	7312.8	54.1	PEAK	1000	74.0	19.9	RB				
Integral Antenna												
Radiated	2437	7312.8	48.0	AV	1000	54.0	6.0	RB				
Integral Antenna												
Radiated	2437	12185.4	56.8	PEAK	1000	74.0	17.2	RB				
Integral Antenna												
Radiated	2437	12185.4	49.6	AV	1000	54.0	4.4	RB				
Integral Antenna												
Conducted	2437	1608.1	56.2	PEAK	1000	74.0	17.8	RB				
Conducted	2437	1608.0	53.5	AV	1000	54.0	0.5	RB				
Conducted	2437	2712.3	57.0	PEAK	1000	74.0	17.0	RB				
Conducted	2437	2712.3	46.8	AV	1000	54.0	7.2	RB				
Conducted	2437	3618.1	58.9	PEAK	1000	74.0	15.1	RB				
Conducted	2437	3618.1	53.4	AV	1000	54.0	0.6	RB				
Radiated	2462	7384.5	54.9	PEAK	1000	74.0	19.1	RB				
Integral Antenna												
Radiated	2462	7384.5	48.4	AV	1000	54.0	5.6	RB				
Integral Antenna												
Radiated	2462	12309.3	57.9	PEAK	1000	74.0	16.1	RB				
Integral Antenna												
Radiated	2462	12309.3	51.3	AV	1000	54.0	2.7	RB				
Integral Antenna												
Radiated	2462	7385.0	55.1	PEAK	1000	74.0	18.9	RB				
50 Ohm Termination												
Radiated	2462	7385.0	48.6	AV	1000	54.0	5.4	RB				
50 Ohm Termination												
Radiated	2462	12310.6	53.8	PEAK	1000	74.0	20.2	RB				
50 Ohm Termination												
Radiated	2462	12310.6	46.0	AV	1000	54.0	8.0	RB				
50 Ohm Termination												
Conducted	2462	2228.9	56.4	PEAK	1000	74.0	17.6	RB				
Conducted	2462	2228.8	44.0	AV	1000	54.0	10.0	RB				
Conducted	2462	2729.9	55.8	PEAK	1000	74.0	18.2	RB				
Conducted	2462	2729.9	44.7	AV	1000	54.0	9.3	RB				
Conducted	2462	3692.9	57.2	PEAK	1000	74.0	16.8	RB				
Conducted	2462	3693.1	51.5	AV	1000	54.0	2.5	RB				

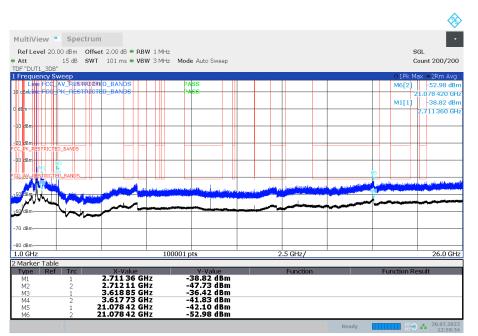
WLAN g-Mode; 20 MHz; 6 Mbit/s Applied duty cycle correction (AV): 0.1 dB

Applied duty cycle correction (AV): 0.1 dB Measurement Ch. Spurious Detec- RBW Limit Margin Limit											
Measurement Cn. Method Center		Spurious				-		_			
method		Freq.	Level	tor	[kHz]	[dBµV/m]	to Limit	Туре			
	Freq. [MHz]	[MHz]	[dBµV/m]				[dB]				
Conducted	2412	1608.1	52.0	PEAK	1000	74.0	22.0	RB			
Conducted	2412	1607.8	44.0	AV	1000	54.0	10.0	RB			
Conducted	2412	2719.9	56.1	PEAK	1000	74.0	17.9	RB			
Conducted	2412	2720.6	44.0	AV	1000	54.0	10.0	RB			
Conducted	2412	3620.4	57.5	PEAK	1000	74.0	16.5	RB			
Conducted	2412	3620.1	48.0	AV	1000	54.0	6.0	RB			
Conducted	2437	1625.1	53.8	PEAK	1000	74.0	20.2	RB			
Conducted	2437	1624.8	46.4	AV	1000	54.0	7.6	RB			
Conducted	2437	2712.4	56.7	PEAK	1000	74.0	17.3	RB			
Conducted	2437	2712.1	45.2	AV	1000	54.0	8.8	RB			
Conducted	2437	3648.1	59.1	PEAK	1000	74.0	14.9	RB			
Conducted	2437	3648.4	49.2	AV	1000	54.0	4.8	RB			
Conducted	2462	2234.1	56.7	PEAK	1000	74.0	17.3	RB			
Conducted	2462	2234.0	43.1	AV	1000	54.0	10.9	RB			
Conducted	2462	2726.6	57.9	PEAK	1000	74.0	16.1	RB			
Conducted	2462	2726.1	44.8	AV	1000	54.0	9.2	RB			
Conducted	2462	3694.6	55.2	PEAK	1000	74.0	18.8	RB			
Conducted	2462	3695.4	46.1	AV	1000	54.0	7.9	RB			

WLAN n-Mode; 20 MHz; MCS0 Applied duty cycle correction (AV): 0.1 dB

Measurement Method	ethod Center Freq. Leve		Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
Conducted	2412	1607.9	51.0	PEAK	1000	74.0	23.1	RB
Conducted	2412	1608.0	44.1	AV	1000	54.0	9.9	RB
Conducted	2412	2720.1	55.6	PEAK	1000	74.0	18.4	RB
Conducted	2412	2720.1	43.2	AV	1000	54.0	10.8	RB
Conducted	2412	3614.9	56.4	PEAK	1000	74.0	17.6	RB
Conducted	2412	3615.4	47.0	AV	1000	54.0	7.0	RB
Conducted	2437	2203.1	55.5	PEAK	1000	74.0	18.5	RB
Conducted	2437	2203.3	43.0	AV	1000	54.0	11.0	RB
Conducted	2437	2693.9	57.8	PEAK	1000	74.0	16.2	RB
Conducted	2437	2693.6	44.8	AV	1000	54.0	9.2	RB
Conducted	2437	3659.4	57.4	PEAK	1000	74.0	16.6	RB
Conducted	2437	3659.4	46.7	AV	1000	54.0	7.3	RB
Conducted	2462	2211.4	55.4	PEAK	1000	74.0	18.6	RB
Conducted	2462	2211.5	43.0	AV	1000	54.0	11.0	RB
Conducted	2462	2713.1	55.6	PEAK	1000	74.0	18.4	RB
Conducted	2462	2713.6	44.4	AV	1000	54.0	9.6	RB
Conducted	2462	3685.9	54.7	PEAK	1000	74.0	19.3	RB
Conducted	2462	3685.6	45.8	AV	1000	54.0	8.2	RB

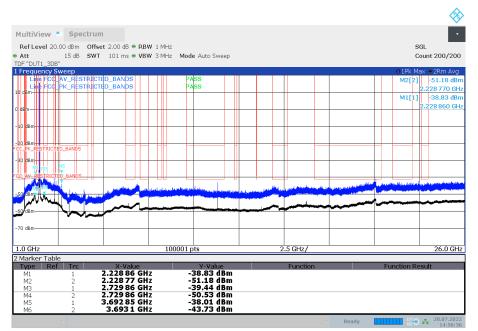
WLAN n-Mode; 40 MHz; MCS0


Measurement Method	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
Conducted	2422	1614.9	51.2	PEAK	1000	74.0	22.9	RB
Conducted	2422	1614.5	41.6	AV	1000	54.0	12.4	RB
Conducted	2422	2710.1	53.8	PEAK	1000	74.0	20.2	RB
Conducted	2422	2708.6	43.1	AV	1000	54.0	10.9	RB
Conducted	2422	3618.1	53.7	PEAK	1000	74.0	20.3	RB
Conducted	2422	3617.1	44.4	AV	1000	54.0	9.6	RB
Conducted	2452	2204.6	54.4	PEAK	1000	74.0	19.6	RB
Conducted	2452	2707.6	43.2	AV	1000	54.0	10.8	RB
Conducted	2452	2707.6	54.5	PEAK	1000	74.0	19.5	RB
Conducted	2452	3269.1	44.0	AV	1000	54.0	10.0	RB
Conducted	2452	3269.4	53.9	PEAK	1000	74.0	20.1	RB
Conducted	2452	3269.4	48.1	AV	1000	54.0	5.9	RB

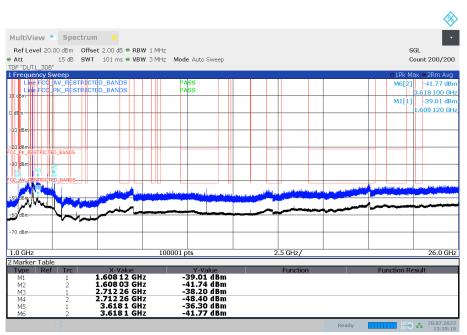
Remark: Please see next sub-clause for the measurement plot.

5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = WLAN b, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz

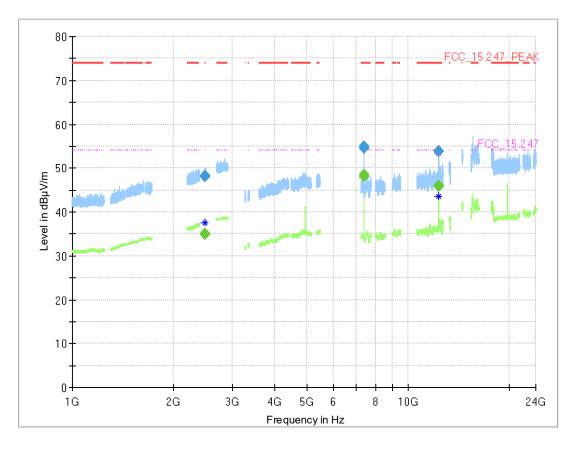

(S01_166_AB01)

12:59:34 28.07.2022



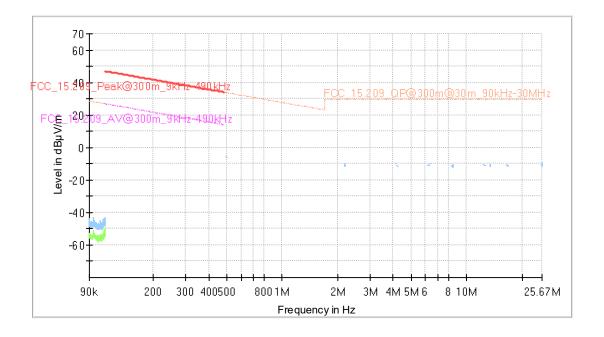
Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_166_AB01)

14:56:37 28.07.2022


Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_166_AB01)

13:39:20 28.07.2022

Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S02_166_AB01)



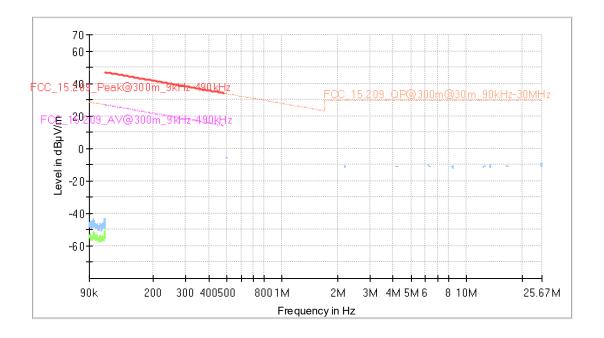
Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag	Limit (dBµ	Margi	Meas. Time	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr. (dB/
(10172)	(upha/iii)	e (dBµV/m)	V/m)	n (dB)	(ms)	n (kHz)	(cm)		h (deg)	n (deg)	(ub/ m)
2483.500	48.1		74.00	25.93	1000.0	1000.000	150.0	Н	64.0	105.0	5.3
2483.500		35.0	54.00	18.96	1000.0	1000.000	150.0	Н	64.0	105.0	5.3
2483.995	48.2		74.00	25.78	1000.0	1000.000	150.0	V	-66.0	91.0	5.3
2483.995		35.0	54.00	19.04	1000.0	1000.000	150.0	V	-66.0	91.0	5.3
7384.375	54.5		74.00	19.55	1000.0	1000.000	150.0	Н	62.0	94.0	-14.2
7384.375		48.1	54.00	5.91	1000.0	1000.000	150.0	Н	62.0	94.0	-14.2
7385.000	55.1		74.00	18.92	1000.0	1000.000	150.0	Н	65.0	105.0	-14.2
7385.000		48.6	54.00	5.40	1000.0	1000.000	150.0	Н	65.0	105.0	-14.2
12310.555		45.7	54.00	8.29	1000.0	1000.000	150.0	Н	-31.0	75.0	-7.0
12310.555	53.8		74.00	20.22	1000.0	1000.000	150.0	Н	-31.0	75.0	-7.0
12310.660		46.0	54.00	8.04	1000.0	1000.000	150.0	V	-180.0	8.0	-7.0
12310.660	53.7		74.00	20.25	1000.0	1000.000	150.0	V	-180.0	8.0	-7.0

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S02_166_AE01)

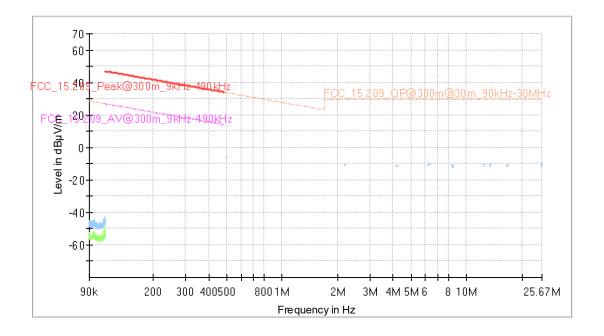
Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)

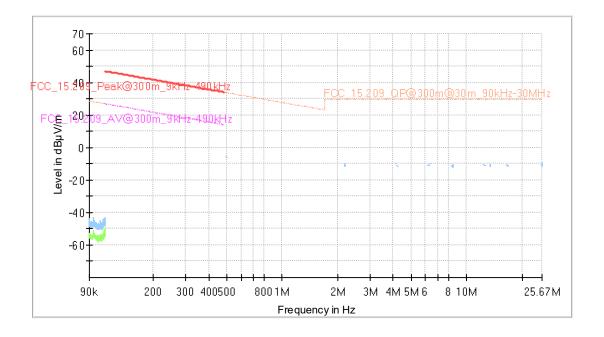

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_166_AB01)

MultiView •	Spectrum	× Spe	ectrum 2	×					-
Ref Level 0.00 dB	m Offset	2.00 dt	3 = RBW 10 kH	z					
		837 µs (~24 ms) 🗢 VBW 30 kH	z Mode Auto F	FT				
TDF "DUT1_3dB_FCC 1 Frequency Swee		DC							o1Pk Max
Limit Check	-		PA					M1[1	
Line FCC_QP_	BELOW_10	1	PA	SS					10.960 0 MHz
F <u>ငင် စွ</u> မ္မာ <mark>BELOW_1¢</mark>									
-20 dBm									
}									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
			M1						
-80 dBm	hhmhunn	When the mount	Mannahurdur	with the star	monorinte	how many man	ndenamentari	mununun	monorman
oo ubiii									
-90 dBm									
9.0 kHz		l		S	3	.0 MHz/	l	<u> </u>	30.0 MHz
~							Measuring		29.07.2022

16:52:20 29.07.2022


Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 9 kHz - 30 MHz (S02_166_AB01)

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)


Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S02_166_AB01)

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)

Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S02_166_AE01)

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)

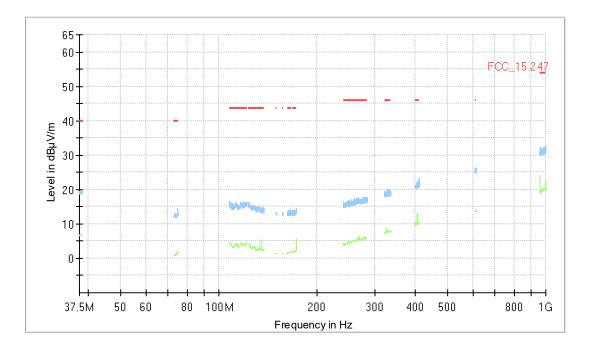
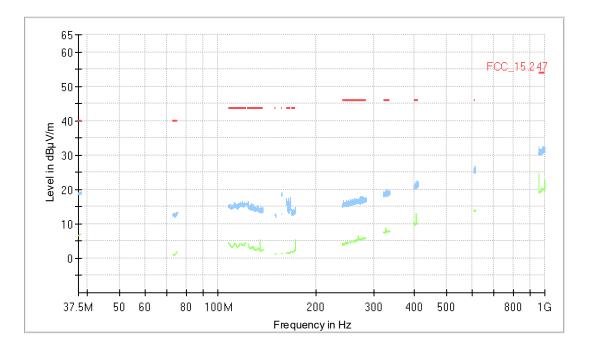

Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_166_AB01)

									 Image: A start of the start of
MultiView	Spectrum	× Spe	ectrum 2	×					-
Ref Level 0.0	0 dBm Offset	2.00 dE	3 🖷 RBW 10 kH	z					
Att The "Duitt 24P	0 dB SWT _FCC_below1G"	837 µs (~24 ms) 🖷 VBW 30 kH	z Mode Auto F	FT				
1 Frequency S		be							o1Pk Max
Limit Che	ck QP_BELOW_10		PA PA					M1[1	
FCG_ 88mBELOW_10	-		PA	22					21.806 0 MHz
10-85 marcan=10									
-20 dBm									
20 0011									
-30 dBm									
-30 0811									
-40 dBm									
-40 uBm-									
-50 dBm									
-50 UBm									
-60 dBm									
-00 uBm									
1-70 dBm									
							M1		
-80 dBm-	methodown	Mummun	Man market	and an all and a second	woodwarden	hummulin	mahanamon	Muhamman	ant at a show the show
-60 0811									
-90 dBm									
-90 0811									
9.0 kHz			1001 pt	5	3	3.0 MHz/			30.0 MHz
							Measuring	EXT REF	29.07.2022

16:39:35 29.07.2022

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S02_166_AE01)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)


Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_166_AB01)

					
MultiView 📑 Spectrum	n × Spectrum 2	×			•
Ref Level 0.00 dBm Offse					
TDF "DUT1_3dB_FCC_below1G	9.7 ms 🗢 VBW 300 kHz 🛛 Mod " DC	le Auto Sweep			
1 Frequency Sweep		00			●1Pk Max
Limit Check Line FCC_QP_BELOW_1		SS SS		M1[]	-
-10 dBm					543.100 MHz
-10 ubm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
FCC_QP_BELOW_IG					
-60 dBm					
		M1			
-70 dBm		•			
My marken and make any marken war	hanger and the second	mananapproverse and more and	- Mary Market Market and Ma	ready when the more thank	and mar brillion
-80 dBm					
-90 dBm					
30.0 MHz	1001 pt		 97.0 MHz/		1.0 GHz
	1001 pt	3		Measuring	
~				measuring	16:53:47

16:53:47 29.07.2022

Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S02_166_AE01)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

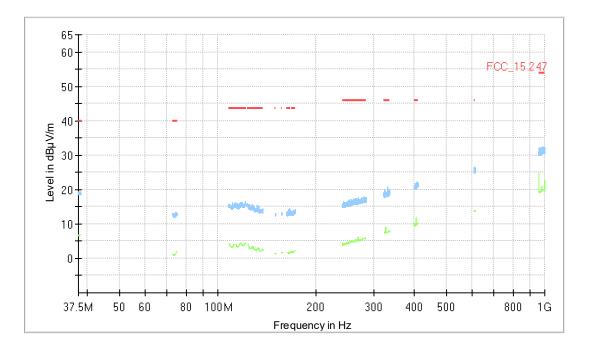
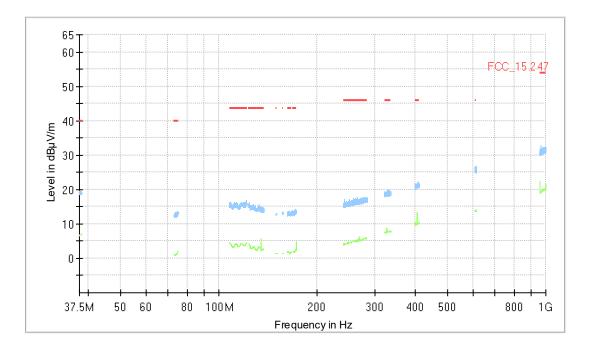

Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S01_166_AB01)

						 Image: A start of the start of
MultiView Spectrum	Spectrum 2	×				-
RefLevel 0.00 dBm Offset	t 2.00 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Moo	la Auto Succes				
_TDF "DUT1_3dB_FCC_below1G"		e Auto Sweep				o (D), Marci
1 Frequency Sweep Limit Che <mark>ck</mark>		SS			M1[1]	●1Pk Max -69.29 dBm
Line FCC_QP_BELOW_1	G PA	SS				546.010 MHz
-10 dBm						
-20 dBm						
20 000						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm		M1				
and a support of the	Angunan have been all and and and	hum human	man Marine Marine	mannunhallinga	Mahrsellion	markan
-80 dBm						
-90 dBm						
30.0 MHz	1001 pt	S	97.0 MHz/			1.0 GHz
				Measuring		29.07.2022

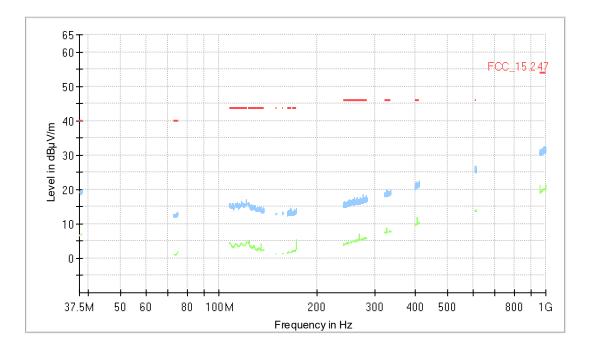
16:54:58 29.07.2022


Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S02_166_AB01)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S02_166_AE01)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

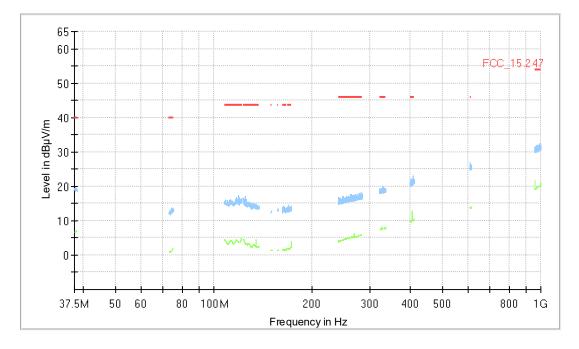

Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S01_166_AB01)

		-	-			
MultiView - Spectrum	Spectrum 2	×				-
Ref Level 0.00 dBmOffsetAtt0 dBSWT	t 2.00 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mod	e Auto Sweep				
TDF "DUT1_3dB_FCC_below1G" 1 Frequency Sweep	' DC				01Pk	May
Limit Check Line FCC_QP_BELOW_1	G PA				M1[1] -55.52 819.280	2 dBm
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
FCC_QP_BELOW_1G				M1 X		
-60 dBm						
-70 dBm	un man and a second and a second	untrumburner he mark the With the	merthallopenelle	manuman w	application and with	Mund
	n han and an an a had so and and an					
-80 dBm						
-90 dBm						
30.0 MHz	1001 pt	S	97.0 MHz/) GHz
7				Measuring	EXT 29.07	·.2022

16:44:04 29.07.2022

Radio Technology = WLAN b, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S02_166_AE01)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

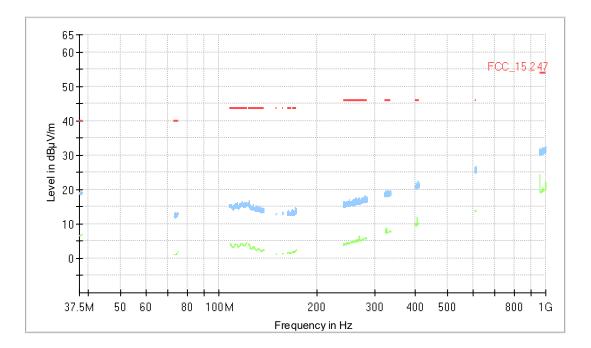

Radio Technology = WLAN b, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S01_166_AB01)

MultiView Spectrum Spectrum 2 Spectrum Spectrum 2 Spectrum 3 Spectrum 3 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th> Image: A start of the start of</th>							 Image: A start of the start of
Att 0.dB SWT 9.7 ms VBW 300 kHz Mode Auto Sweep TDF "DUT1_3dB, FCC_below1G* DC 01Pk Max Line FCC_QP_BELOW_1G PASS M1[1] -54.39.48m -10 dsm -30 dsm -30 dsm -30 dsm -30 dsm -50 dsm -50 dsm -50 dsm -50 dsm -50 dsm -70 dsm -30 dsm -30 dsm -40 dsm -40 dsm -40 dsm -30 dsm -50 dsm -50 dsm -50 dsm -50 dsm -50 dsm -70 dsm -70 dsm -50 dsm -50 dsm -50 dsm -50 dsm -50 dsm -70 dsm -70 dsm -50 dsm	MultiView - Spectrun	n × Spectrum 2	×				•
TDF "DUTI 3 db .FCC below 1G" DC I Frequency Sweep 01Fk Max Limit Che3k PASS M1[1] -54.39 dBm -10 dBm -0 -0 -0 -20 dBm -0 -0 -0 -30 dBm -0 -0 -0 -50 dBm -0 -0 -0 -50 dBm -0 -0 -0 -50 dBm -0 -0 -0 -00 dBm -0 -0 -0							
Limit Chesk Line FCC_QP_BELOW_1G PASS PASS M1[1] -54.39 dBm 803.770 MHz -10 dBm -20 dBm -30 dBm			le Auto Sweep				
Line FCC_QP_BELOW_1C PASS 803.770 MHz -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -10 dBm -10 dBm -90 dBm -10 dBm -10 dBm -10 dBm -10 dBm	1 Frequency Sweep						
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -10						M1[1]	
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 lpts 97.0 MHz/ 1.0 GHz	-10 dBm						
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 lpts 97.0 MHz/ 1.0 GHz							
-40 dBm -50 dBm FCC_OP_BELOW_1G -60 dBm -70 dBm -70 dBm -70 dBm -90 dBm -90 dBm -90 dBm -10 L L L L L L L L L L L L L L L L L L L	-20 dBm						
-40 dBm -50 dBm FCC_OP_BELOW_16 -60 dBm -70 dBm -70 dBm -70 dBm -90 dBm -90 dBm -90 dBm -100 Ipts 97.0 MHz/ 1.0 GHz							
-50 dBm FCC_QP_BELOW_1G -60 dBm -70 dBm -70 dBm -90 dBm -90 dBm -90 dBm -90 dBm -10 GHz 1001 pts 97.0 MHz/ 1.0 GHz	-30 dBm						
FCC_OP_BELOW_1G -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -90 dBm -90 dBm 30.0 MHz 1001 pts 97.0 MHz/	-40 dBm						
FCC_OP_BELOW_1G -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -90 dBm -90 dBm 30.0 MHz 1001 pts 97.0 MHz/							
-60 dBm -70 dBm	-50 dBm				мі		
-70 dBm -80 dBm -90 dB	FCC_QP_BELOW_16				۸.		
-80 dBm -90 dBm 30.0 MHz 1001 pts 97.0 MHz/ 1.0 GHz	-60 dBm						
-80 dBm -90 dBm 30.0 MHz 1001 pts 97.0 MHz/ 1.0 GHz							A. C. C. Mason
-80 dBm -90 dBm 1001 pts 97.0 MHz/ 1.0 GHz	-70 dBm-	and the manufacture of the second	man man man man man	al manufacture the	Warman and the	www.hatawwww.	p and a second and the second s
-90 dBm Image: state							
30.0 MHz 1001 pts 97.0 MHz/ 1.0 GHz							
	-90 dBm						
	20.0 MHz	1001 pt	<u> </u>				10047
T Measuring 23/07/2022	- 5070 WIL12	1001 pt	ə		Measuring	EXT	

16:42:41 29.07.2022

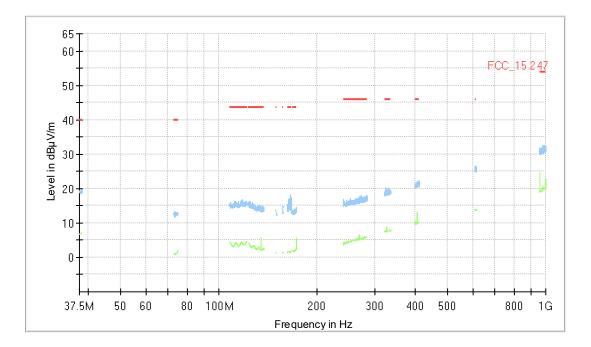
Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S02_166_AE01)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)


Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_166_AB01)

				-	-				I
MultiView	Spectrum	× Sp	ectrum 2	×					•
	O dB SWT	9.7 ms 🖷 VBW		e Auto Sweep					
TDF "DUT1_3dB_F0 1 Frequency Swe	eep	DC							o1Pk Max
Limit Check			PA					M1[1]	-53.91 dBm
Line FCC_Q	P_BELOW_10		PA	SS					813.460 MHz
-10 dBm									
-20 dBm									
-30 dBm									
oo abiii									
-40 dBm									
-50 dBm	F							M1	
FCC_QP_BELOW_1G								λ	
-60 dBm								μ	
-70 dBm									mannanth
-70 dBm	Industrilium	Mulupmahar	and show have	markalinanon	when the way the house and	An Martin Martin Martin	Noncontractions	hululuminan	,,
-80 dBm									
-90 dBm									
30.0 MHz	-		1001 pt	S	9	7.0 MHz/		БИТ —	1.0 GHz
~							Measuring		16:40:58

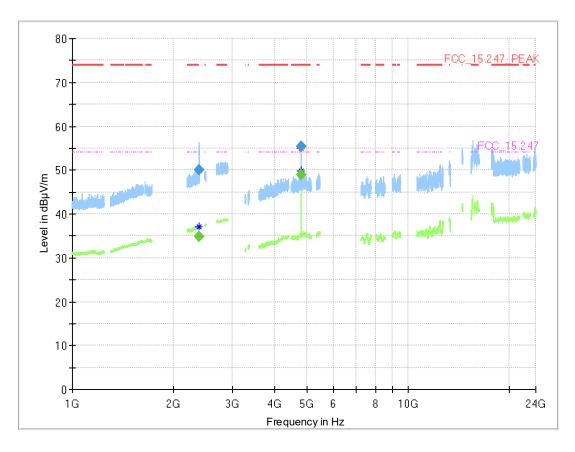
16:40:58 29.07.2022


Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S02_166_AB01)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S02_166_AE01)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)


Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S01_166_AB01)

MultiView 📑 Spectrum	Spectrum 2	×				
Ref Level 0.00 dBm Offset						
Att 0 dB SWT TDF "DUT1_3dB_FCC_below1G"		le Auto Sweep				
1 Frequency Sweep						o1Pk Max
Limit Check Line FCC_QP_BELOW_1		SS SS			M1[1]	-69.13 dBm
-						535.350 MHz
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
		M1				
-70 dBm		he with a state of the state of	the contract of the second second			
martinepropriation	all and the second stranger with	Man war working	draw was should a	and the second	mannor	And marked and the second
-80 dBm						
-90 dBm						
30.0 MHz	1001 pt	i i i i i i i i i i i i i i i i i i i	97.0 MHz/			1.0 GHz
~				Measuring	EXT REF	

16:55:57 29.07.2022

Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S02_166_AE01)

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2389.600		34.8	54.00	19.20	1000.0	1000.000	150.0	Н	96.0	75.0	4.9
2389.600	50.0		74.00	24.04	1000.0	1000.000	150.0	Н	96.0	75.0	4.9
4804.038		49.0	54.00	5.02	1000.0	1000.000	150.0	Н	-128.0	15.0	4.8
4804.038	55.3		74.00	18.68	1000.0	1000.000	150.0	Н	-128.0	15.0	4.8